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1. Introduction

A λ-ring is, roughly speaking, a commutative ring R with unit together with operations
λi, i ≥ 0, on it that act like the exterior power operations. It is widely used in algebraic
topology, algebra, and representation theory. For example, the complex representation
ring R(G) of a group G is a λ-ring, where λi is induced by the map that sends a represen-
tation to its ith exterior power. Another example of a λ-ring is the complex K-theory of
a topological space X . Here, λi arises from the map that sends a complex vector bundle η
over X to the ith exterior power of η. In the algebra side, the universal Witt ring W(R) of
a commutative ring R is a λ-ring.

The purpose of this paper is to consider the following two interrelated questions:
(i) classify the λ-ring structures over power series and truncated polynomial rings;

(ii) which ones and how many of these λ-rings are realizable as (i.e., isomorphic to)
the K-theory of a topological space?

The first question is purely algebraic, with no topology involved. One can think of the
second question as a K-theoretic analogue of the classical Steenrod question, which asks
for a classification of polynomial rings (over the field of p elements and has an action by
the mod p Steenrod algebra) that can be realized as the singular mod p cohomology of a
topological space.

In addition to being a λ-ring, the K-theory of a space is filtered, making K(X) a fil-
tered λ-ring. Precisely, by a filtered λ-ring we mean a filtered ring (R,{R= I0 ⊃ I1 ⊃ ···})
in which R is a λ-ring and the filtration ideals In are all closed under the λ-operations λi

(i > 0). It is, therefore, more natural for us to consider filtered λ-ring structures over
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filtered rings. Moreover, we will restrict to torsion-free spaces, that is, spaces whose inte-
gral cohomology is Z-torsion-free. The reason for this is that one has more control over
the K-theory of such spaces than non-torsion-free spaces.

A discussion of our main results follows. Proofs are mostly given in later sections. Our
first result shows that there is a huge diversity of filtered λ-ring structures over most power
series and truncated polynomial rings.

Theorem 1.1. Let x1, . . . ,xn be algebraically independent variables with the same (arbitrary
but fixed) filtration d > 0, and let r1, . . . ,rn be integers ≥ 2, possibly ∞. Then the possibly
truncated power series filtered ring Z[[x1, . . . ,xn]]/(xr1

1 , . . . ,xrnn ) admits uncountably many
isomorphism classes of filtered λ-ring structures.

Here x∞i is by definition equal to 0. In particular, this theorem covers both finitely
generated power series rings and truncated polynomial rings. The case ri =∞ (1≤ i≤ n)
is proved in [11]. In this case, there are uncountably many isomorphism classes that are
topologically realizable, namely, by the spaces in the localization genus of (BS3)×n. The
remaining cases are proved by directly constructing uncountably many filtered λ-rings.
In general, there is no complete classification of all of the isomorphism classes of filtered
λ-ring structures. However, such a classification can be obtained for small truncated poly-
nomial rings, in which case we can also give some answers to the second question above.
This will be considered below after a brief discussion of the Adams operations.

The Adams operations. The results below are all described in terms of the Adams oper-
ations. We will use a result of Wilkerson [9] on recovering the λ-ring structure from the
Adams operations. More precisely, Wilkerson’s theorem says that if R is a Z-torsion-free
ring which comes equipped with ring endomorphisms ψk (k ≥ 1) satisfying the condi-
tions, (1) ψ1 = Id and ψkψl = ψkl = ψlψk, and (2) ψp(r) ≡ r p(mod pR) for each prime
p and r ∈ R, then R admits a unique λ-ring structure with the ψk as the Adams opera-
tions. The obvious filtered analogue of Wilkerson’s theorem is also true for the filtered
rings considered in Theorem 1.1. Therefore, for these filtered rings, in order to describe a
filtered λ-ring structure, it suffices to describe the Adams operations.

When there are more than one λ-ring in sight, we will sometimes write ψnR to denote
the Adams operation ψn in R.

Truncated polynomial rings. Consider the filtered truncated polynomial rings (Z[x]/(xn),
|x| = d) and (Z[x]/(xn), |x| = d′), with x in filtration exactly d > 0 and d′ > 0, respec-
tively. Let Λd denote the set of isomorphism classes of filtered λ-ring structures over
(Z[x]/(xn), |x| = d). Define Λd′ similarly. Then it is obvious that Λd and Λd′ are in one-
to-one correspondence, and there is no reason to distinguish between them. Indeed, for
R ∈ Λd one can associate to it R′ ∈ Λd′ such that ψkR(x) = ψkR′(x) as polynomials for all
k, and this construction gives the desired bijection between Λd and Λd′ . Therefore, using
the above bijections, we will identify the sets Λd for d = 1,2, . . . , and write Λ(Z[x]/(xn))
for the identified set. Each isomorphism class of filtered λ-ring structures on Z[x]/(xn)
with |x| ∈ {1,2, . . .} is considered an element in Λ(Z[x]/(xn)).

When there is no danger of confusion, we will sometimes not distinguish between a
filtered λ-ring structure and its isomorphism class.
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We start with the simplest case n= 2, that is, the dual number ring Z[x]/(x2).

Theorem 1.2 ([10, Corollary 4.1.2]). There is a bijection between Λ(Z[x]/(x2)) and the
set of sequences (bp) indexed by the primes in which the component bp is divisible by p. The
filtered λ-ring structure corresponding to (bp) has the Adams operations ψp(x)= bpx.

Moreover, such a filtered λ-ring is isomorphic to the K-theory of a torsion-free space if
and only if there exists an integer k ≥ 1 such that bp = pk for all p.

Therefore, in this case, exactly countably infinitely many (among the uncountably
many) isomorphism classes are topologically realizable by torsion-free spaces. Indeed,
the K-theory of the even-dimensional sphere S2k realizes the filtered λ-ring with bp = pk

for all p. On the other hand, if X is a torsion-free space with K(X) = Z[x]/(x2), then
ψp(x)= pkx for all p if x lies in filtration exactly 2k [2, Corollary 5.2].

In what follows we will use the notation θp(n) to denote the largest integer for which
pθp(n) divides n, where p is any prime. By convention we set θp(0)=−∞.

To study the case n = 3, we need to consider the following conditions for a sequence
(bp) of integers indexed by the primes.

(A) b2 	= 0, bp ≡ 0 (mod p) for all primes p, and bp(bp − 1) ≡ 0 (mod2θ2(b2)) for all
odd primes p.

(B) Let (bp) be as in (A). Consider a prime p > 2 (if any) for which bp 	= 0 and
θp(bp)=min{θp(bq(bq− 1)) : bq 	= 0}.

We will call them conditions (A) and (B), respectively. Notice that in (B), θp(bp) =
θp(bp(bp− 1)), since p does not divide (bp− 1). Moreover, there are at most finitely many
such primes, since each such p divides b2(b2− 1), which is nonzero.

The following result gives a complete classification for Λ(Z[x]/(x3)), the set of iso-
morphism classes of filtered λ-ring structures over the filtered truncated polynomial ring
Z[x]/(x3). As before we will describe a λ-ring in terms of its Adams operations.

Theorem 1.3. Let R be a filtered λ-ring structure on Z[x]/(x3). Then R is isomorphic to one
of the following filtered λ-rings.

(1) S((cp))= {ψp(x)= cpx2 : p prime} with c2 ≡ 1 (mod2) and cp ≡ 0 (mod p) for p >
2. Moreover, any such sequence (cp) gives rise to an element of Λ(Z[x]/(x3)), and two
such filtered λ-rings, S((cp)) and S((c′p)), are isomorphic if and only if (cp)=±(c′p).

(2) S((bp),k)= {ψp(x)= bpx+ cpx2 : p prime}with (bp) satisfying condition (A) above
and the cp having the following form. Let p1, . . . , pn be the list of all odd primes satis-
fying condition (B) above. Then there exists an odd integer k such that, writing G for
gcd(bp(bp− 1) : all primes p),
(i) 1≤ k ≤G/2;

(ii) k ≡ 0 (mod p1 ··· pn);
(iii) cp = kbp(bp− 1)/G for all primes p.

Moreover, any such pair ((bp),k) gives rise to an element of Λ(Z[x]/(x3)). Two such
filtered λ-rings, S((bp),k) and S((b′p),k′), are isomorphic if and only if bp = b′p for
all primes p and k = k′. No S((cp)) is isomorphic to any S((bp),k).

Notice that in this theorem, there are uncountably many isomorphism classes in each
of cases (1) and (2). Also note that if there is no prime p satisfying condition (B), then
p1 ··· pn is the empty product (i.e., 1), and k ≡ 0 (mod p1 ··· pn) is an empty condition.
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In case (2), if (bp) satisfies condition (A), then it follows that there are exactly

⌈
G

4p1 ··· pn

⌉
=
⌈

gcd
(
bp
(
bp− 1

)
: all p

)
4p1 ··· pn

⌉
(1.1)

isomorphism classes of filtered λ-ring structures over Z[x]/(x3) with the property that
ψp(x)≡ bpx (modx2) for all primes p. Here 
s� denotes the smallest integer that is greater
than or equal to s. Applying formula (1.1) to the cases (bp)= (pr), where r ∈ {1,2,4}, we
see that there are a total of 64 elements in Λ(Z[x]/(x3)) satisfying ψp(x)= prx (modx2)
for all primes p. In fact, there is a unique such element when r = 1 (k = 1), three such ele-
ments when r = 2 (k ∈ {1,3,5}), and sixty such elements when r = 4 (k ∈ {1,3, . . . ,119}).
This simple consequence of Theorem 1.3 leads to the following upper bound for the
number of isomorphism classes of filtered λ-ring structures over Z[x]/(x3) that are topo-
logically realizable by torsion-free spaces.

Corollary 1.4. Let X be a torsion-free space whose K-theory filtered ring is Z[x]/(x3).
Then, using the notation of Theorem 1.3,K(X) is isomorphic as a filtered λ-ring to S((pr),k)
for some r ∈ {1,2,4} and some k. In particular, at most 64 of the uncountably many iso-
morphism classes of filtered λ-ring structures on Z[x]/(x3) can be topologically realized by
torsion-free spaces.

Indeed, if X is a torsion-free space whose K-theory filtered ring is Z[x]/(x3), then by
Adams’ result on Hopf invariant 1 [1], the generator x must have filtration exactly 2, 4, or
8. When the filtration of x is equal to 2r, one has ψp(x)≡ prx (modx2) for all primes p.
Therefore, by Theorem 1.3, K(X) must be isomorphic to S((pr),k) for some r ∈ {1,2,4}
and some k. The discussion preceding this corollary then implies that there are exactly 64
such isomorphism classes of filtered λ-rings.

It should be remarked that at least 3 of these 64 isomorphism classes are actually real-
ized by spaces, namely, the projective 2-spaces FP2, where P denotes the complex num-
bers, the quaternions, or the Cayley octonions. These spaces correspond to r = 1,2, and
4, respectively. Further work remains to be done to determine whether any of the other
61 filtered λ-rings in Corollary 1.4 are topologically realizable.

Before moving on to the case n= 4, we would like to present another topological ap-
plication of Theorem 1.3, which involves the notion of Mislin genus. Let X be a nilpotent
space of finite type (i.e., its homotopy groups are all finitely generated and πn(X) is a
nilpotent π1(X)-module for each n≥ 2). The Mislin genus of X , denoted by Genus(X), is
the set of homotopy types of nilpotent finite type spaces Y such that the p-localizations
of X and Y are homotopy equivalent for all primes p. Let H denote the quaternions. It is
known that Genus(HP∞) is an uncountable set [8]. Moreover, these uncountably many
homotopically distinct spaces have isomorphic K-theory filtered rings [11] but pairwise
nonisomorphic K-theory filtered λ-rings [7]. In other words, K-theory filtered λ-ring
classifies the Mislin genus of HP∞. It is also known that Genus(HP2) has exactly 4 ele-
ments [6]. We will now show that the genus of HP2 behaves very differently from that of
HP∞ as far as K-theory filtered λ-rings are concerned.
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Corollary 1.5. K-theory filtered λ-ring does not classify the Mislin genus of HP2. In other
words, there exist homotopically distinct spaces X and Y in Genus(HP2) whose K-theory
filtered λ-rings are isomorphic.

Indeed, an argument similar to the one in [11] shows that the 4 homotopically distinct
spaces in the Mislin genus of HP2 all have Z[x]/(x3) as their K-theory filtered ring, with
x in filtration exactly 4. Therefore, in each one of these λ-rings, we have ψp(x) ≡ p2x
(modx2) for all primes p. The corollary now follows, since by Theorem 1.3, there are only
3 isomorphism classes of filtered λ-ring structures on Z[x]/(x3) of the form S((p2),k)
because k must be 1, 3, or 5. It is still an open question as to whether K-theory filtered
λ-ring classifies the genus of HPn for 2 < n <∞.

We now move on to the case n = 4, that is, the filtered truncated polynomial ring
Z[x]/(x4). A complete classification theorem along the lines of Theorems 1.2 and 1.3
has not yet been achieved for n≥ 4. However, some sort of classification is possible if one
imposes certain conditions on the linear coefficients of the Adams operations that usually
appear in the K-theory of spaces.

Theorem 1.6. Let R be an element of Λ(Z[x]/(x4)).
(1) If ψ

p
R(x) ≡ px (modx2) for all primes p, then R is isomorphic to the filtered λ-ring

structure with ψp(x)= (1 + x)p− 1 for all primes p.
(2) If ψ

p
R(x)≡ p2x (modx2) for all primes p, then R is isomorphic to one of the following

60 mutually nonisomorphic filtered λ-ring structures on Z[x]/(x4):

S
(
k,d2

)=
{
ψp(x)= p2x+

kp2
(
p2− 1

)
12

x2 +dpx3

}
, (1.2)

where k ∈ {1,5}, d2 ∈ {0,2,4, . . . ,58}, and

dp = p2
(
p4− 1

)
d2

60
+
k2p2

(
p2− 1

)(
p2− 4

)
360

(1.3)

for odd primes p.
(3) In general, if ψ

p
R(x)≡ bpx (modx2) with bp 	= 0 for all primes p, then there are only

finitely many isomorphism classes of filtered λ-ring structures S over Z[x]/(x4) such
that ψ

p
S (x)≡ bpx (modx2) for all primes p.

(4) If (in the notation of the previous statement) b2 = 0, then R is of the form S((cp),
(dp)) = {ψp(x) = cpx2 + dpx3}. Any such collection of polynomials gives rise to a
filtered λ-ring structure, provided that ψp(x) ≡ xp (mod p) for all primes p. Two
such filtered λ-rings, S((cp),(dp)) and S((c̄p),(d̄p)), are isomorphic if and only if
(i) (cp) = ±(c̄p), and (ii) there exists an integer α such that d̄p = dp + 2cpα for all
primes p.

The first two statements of this theorem immediately leads to the following upper
bound for the number of isomorphism classes of filtered λ-ring structures on Z[x]/(x4)
that can be topologically realized by torsion-free spaces.

Corollary 1.7. Let X be a torsion-free space whose K-theory filtered ring is Z[x]/(x4).
Then, as a filtered λ-ring, K(X) is isomorphic to one of the filtered λ-rings described in parts
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(1) and (2) in Theorem 1.6. In particular, at most 61 of the uncountably many isomorphism
classes of filtered λ-ring structures on Z[x]/(x4) can be realized as the K-theory of a torsion-
free space.

Indeed, if X is such a space, then the filtration of x must be exactly 2 or 4 [4, Corollary
4L.10], and therefore the linear coefficient of ψp(x) for any prime p must be p (if the
filtration of x is 2) or p2 (if the filtration of x is 4). So the result follows immediately from
Theorem 1.6.

It should be noted that at least 2 of the 61 isomorphism classes in the first two state-
ments of Theorem 1.6 are topologically realizable, namely, by the projective 3-spaces FP3,
where F is either the complex numbers or the quaternions. The K-theory of the former
space is case (1) in Theorem 1.6, while the latter space has S(1,0) as its K-theory. It is still
an open question as to whether any of the other 59 isomorphism classes are topologically
realizable.

What happens when n > 4, as far as the two questions stated in the beginning of this in-
troduction is concerned, is only partially understood. We will discuss several conjectures
and some partial results in this general setting.

Concerning the problem of topological realizations, we believe that the finiteness phe-
nomenon in Corollaries 1.4 and 1.7 should not be isolated examples.

Conjecture 1.8. Let n be any integer ≥ 3. Then, among the uncountably many isomor-
phism classes of filtered λ-ring structures over the filtered truncated polynomial ring
Z[x]/(xn), only finitely many of them can be realized as the K-theory of torsion-free
spaces.

As mentioned above, the cases n = 3 and 4 are known to be true. Just like the way
Corollaries 1.4 and 1.7 are proved, one way to approach this conjecture is to consider λ-
rings with given linear coefficients in its Adams operations. More precisely, we offer the
following conjecture.

Conjecture 1.9. Let n be any integer ≥ 3 and let {bp ∈ pZ : p prime} be nonzero integers.
Then there exist only finitely many isomorphism classes of filtered λ-ring structures on
Z[x]/(xn) with the property that ψp(x)≡ bpx (modx2) for all primes p.

In fact, Conjecture 1.8 for n≥ 4 would follow from the cases, (bp = p) and (bp = p2),
of Conjecture 1.9. The n = 3 case of Conjecture 1.9 is contained in Theorem 1.3. More-
over, (1.1) gives the exact number of isomorphism classes in terms of the bp. One plausi-
ble way to prove this conjecture is to consider extensions of λ-ring structures one degree
at a time.

Conjecture 1.10. Let n be any integer ≥ 3 and let R and S be isomorphic filtered λ-ring

structures on Z[x]/(xn). Then there exists an isomorphism σ : R
∼=−→ S with the follow-

ing property. If R̃ is a filtered λ-ring structure on Z[x]/(xn+1) such that ψ
p

R̃
(x) ≡ ψ

p
R(x)

(modxn) for all primes p, then

S̃
def=
{
ψ
p

S̃
(x)=

(
σ−1 ◦ψp

R̃
◦ σ
)

(x)∈ Z[x](
xn+1

) : p primes
}

(1.4)

is also a filtered λ-ring structure on Z[x]/(xn+1).
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Here σ(x) is considered a polynomial in both Z[x]/(xn) and Z[x]/(xn+1), and σ−1(x) is
the (compositional) inverse of σ(x) in Z[x]/(xn+1). In the definition of ψ

p

S̃
(x), the symbol

◦means composition of polynomials.
Observe that for any isomorphism σ : R→ S, one has that (ψ

p

S̃
◦ψq

S̃
)(x)= (ψ

q

S̃
◦ψp

S̃
)(x)

for all primes p and q. Thus, to prove Conjecture 1.10, one only needs to show that
ψ
p

S̃
(x)≡ xp (mod p) for all primes p. Furthermore, if Conjecture 1.10 is true, then σ in-

duces an isomorphism R̃ ∼= S̃. Denote by ΛR the set of isomorphism classes of filtered
λ-ring structures R̃ over Z[x]/(xn+1) such that ψ

p

R̃
(x)≡ ψ

p
R(x) (modxn) for all primes p,

and define ΛS similarly with S replacing R. Since ψ
p

S̃
(x)≡ ψ

p
S (x) (modxn) for all primes

p and any isomorphism τ : R→ S, it follows that Conjecture 1.10 implies that σ induces
an embedding ΛR↩ΛS. In particular, Conjecture 1.9 would follow from Conjecture 1.10
and the following finiteness result.

Theorem 1.11. Let n be any integer ≥ 3, and let ap,i be integers for p primes and 1 ≤ i ≤
n− 2 with ap,1 	= 0 for every p. Then the number of isomorphism classes of filtered λ-ring
structures R on Z[x]/(xn) satisfying

ψ
p
R(x)≡ ap,1x+ ···+ ap,n−2x

n−2 (modxn−1) (1.5)

for all primes p is at most min{|an−1
p,1 − ap,1| : p primes}.

Notice that if Conjecture 1.10 is true for n≤N for some N , then, using Theorem 1.11,
one infers that Conjecture 1.9 is true for n≤N + 1, which in turn implies Conjecture 1.8
for n≤N + 1. We summarize this in the following diagram:

{
(Conjecture 1.10)n≤N + Theorem 1.11

}=⇒ (Conjecture 1.9)n≤N+1

=⇒ (Conjecture 1.8)n≤N+1.
(1.6)

In view of these implications, even partial results about Conjecture 1.10 would be of in-
terest.

It was mentioned above that in order to prove Conjecture 1.10, one only needs to prove
the congruence identity, ψ

p

S̃
(x)≡ xp (mod p), for all primes p. In fact, this only needs to

be proved for p < n, since the following result takes care of the rest.

Theorem 1.12. Let the assumptions and notations be the same as in the statement of

Conjecture 1.10. If σ : R
∼=−→ S is any filtered λ-ring isomorphism, then ψ

p

S̃
(x) ≡ xp (mod p)

for all primes p ≥ n.

Using this result, one can show that Conjecture 1.10 is true for some small values of n.
More precisely, we have the following consequence of Theorem 1.12.

Corollary 1.13. Conjecture 1.10 is true for n= 3,4, and 5. Therefore, Conjectures 1.8 and
1.9 are true for n= 3,4,5, and 6.

This corollary will be proved by directly verifying the congruence identity about ψ
p

S̃
(x)

for p < n. The arguments for the three cases are essentially the same, and it does not seem
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to go through for n = 6 (see the discussion after the proof of this corollary). A more
sophisticated argument seems to be needed to prove Conjecture 1.10 in its full generality.

Organization. The rest of this paper is organized as follows. The following section gives a
brief account of the basics of λ-rings and the Adams operations, ending with the proof of
Theorem 1.1. Proofs of Theorems 1.3 and 1.6 are in the two sections after the following
section. The results concerning the three conjectures, namely, Theorems 1.11 and 1.12
and Corollary 1.13, are proved in the final section.

2. Basics of λ-rings

The reader may refer to the references [3, 5] for more in-depth discussion of basic prop-
erties of λ-rings. We should point out that what we call a λ-ring here is referred to as a
“special” λ-ring in [3]. All rings considered in this paper are assumed to be commutative,
associative, and have a multiplicative unit.

2.1. λ-rings. By a λ-ring, we mean a commutative ring R that is equipped with functions

λi : R−→ R (i≥ 0), (2.1)

called λ-operations. These operations are required to satisfy the following conditions. For
any integers i, j ≥ 0 and elements r and s in R, one has

(i) λ0(r)= 1;
(ii) λ1(r)= r;

(iii) λi(1)= 0 for i > 1;
(iv) λi(r + s)=∑i

k=0 λ
k(r)λi−k(s);

(v) λi(rs)= Pi(λ1(r), . . . ,λi(r); λ1(s), . . . ,λi(s));
(vi) λi(λj(r))= Pi, j(λ1(r), . . . ,λi j(r)).

The Pi and Pi, j are certain universal polynomials with integer coefficients, and they are de-
fined using the elementary symmetric polynomials as follows. Given the variables ξ1, . . . ,ξi
and η1, . . . ,ηi, let s1, . . . ,si and σ1, . . . ,σi, respectively, be the elementary symmetric func-
tions of the ξ’s and the η’s. Then the polynomial Pi is defined by requiring that the ex-
pression Pi(s1, . . . ,si;σ1, . . . ,σi) is the coefficient of ti in the finite product

i∏
m,n=1

(
1 + ξmηnt

)
. (2.2)

The polynomial Pi, j is defined by requiring that the expression Pi, j(s1, . . . ,si j) is the coef-
ficient of ti in the finite product ∏

l1<···<lj

(
1 + ξl1 ···ξlj t

)
. (2.3)

A λ-ring map is a ring map which commutes with all the λ-operations.
By a filtered ring, we mean a commutative ring R together with a decreasing sequence

of ideals

R= I0 ⊇ I1 ⊇ I2 ⊇ ··· . (2.4)
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A filtered ring map f : R→ S is a ring map that preserves the filtrations, that is, f (InR)⊆ InS
for all n.

A filtered λ-ring is a λ-ring R which is also a filtered ring in which each ideal In is
closed under λi for i ≥ 1. Suppose that R and S are two filtered λ-rings. Then a filtered
λ-ring map f : R→ S is a λ-ring map that also preserves the filtration ideals.

2.2. The Adams operations. There are some very useful operations inside a λ-ring R, the
so-called Adams operations:

ψn : R−→ R (n≥ 1). (2.5)

They are defined by the Newton formula:

ψn(r)− λ1(r)ψn−1(r) + ···+ (−1)n−1λn−1(r)ψ1(r) + (−1)nnλn(r)= 0. (2.6)

Alternatively, one can also define them using the closed formula:

ψk =Qk
(
λ1, . . . ,λk

)
. (2.7)

Here Qk is the integral polynomial with the property that

Qk
(
σ1, . . . ,σk

)= xk1 + ···+ xkk , (2.8)

where the σi are the elementary symmetric polynomials of the x’s. The Adams operations
have the following properties.

(i) All the ψn are λ-ring maps on R, and they preserve the filtration ideals if R is a
filtered λ-ring.

(ii) ψ1 = Id and ψmψn = ψmn = ψnψm.
(iii) ψp(r)≡ r p (mod pR) for each prime p and element r in R.

A λ-ring map f is compatible with the Adams operations, in the sense that f ψn = ψn f
for all n.

The following simple observation will be used many times later in this paper. Suppose
that R and S are λ-rings with S Z-torsion-free and that f : R→ S is a ring map satisfying
f ψ p = ψp f for all primes p. Then f is a λ-ring map. Indeed, it is clear that f is compatible
with all ψn by (ii) above. The Newton formula and the Z-torsion-freeness of S then imply
that f is compatible with the λn as well.

As discussed in the introduction, Wilkerson’s theorem [9] says that if R is a Z-torsion-
free ring equipped with ring endomorphisms ψn (n ≥ 1) satisfying conditions (ii) and
(iii) above, then there exists a unique λ-ring structure on R whose Adams operations are
exactly the given ψn. In particular, over the possibly truncated power series filtered ring
Z[[x1, . . . ,xn]]/(xr1

1 , . . . ,xrnn ) as in Theorem 1.1, a filtered λ-ring structure is specified by
power series ψp(xi) without constant terms, p primes and 1≤ i≤ n, such that

ψp
(
ψq
(
xi
))= ψq(ψp

(
xi
))

, (2.9)

ψp
(
xi
)≡ xpi (mod p) (2.10)

for all such p and i.
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2.3. Proof of Theorem 1.1

Proof. Denote by R the possibly truncated power series filtered ring Z[[x1, . . . ,xn]]/(xr1
1 ,

. . . ,xrnn ) as in the statement of Theorem 1.1.
As was mentioned in the introduction, the case ri =∞ for all i is proved in [11]. It

remains to consider the cases when at least one ri is finite.
Assume that at least one ri is finite. Let N be the maximum of those r j that are finite.

For each prime p ≥N and each index j for which r j <∞, choose an arbitrary positive in-
teger bp, j ∈ pZ such that bp, j ≥ r j and bp, j 	= p. There are uncountably many such choices,
sinceN <∞ and there are countably infinitely many choices for bp, j for each p ≥N . Con-
sider the following power series in R:

ψp
(
xi
)=

⎧⎨
⎩
(
1 + xi

)bp,i − 1 if p ≥N , ri <∞,(
1 + xi

)p− 1 otherwise.
(2.11)

Here p runs through the primes and i= 1,2, . . . ,n. The collection of power series {ψp(xi) :
1≤ i≤ n} extends uniquely to a filtered ring endomorphism ψp of R.

We first claim that these endomorphisms ψp, p primes, are the Adams operations of a
filtered λ-ring structure S on R. Since R is Z-torsion-free, by Wilkerson’s theorem [9], it
suffices to show that

ψpψq = ψqψp (2.12)

and that

ψp(r)≡ r p (mod pR) (2.13)

for all primes p and q and elements r ∈ R. Both of these conditions are verified easily
using (2.11). Equation (2.12) is true because it is true when applied to each xi and that
the xi are algebra generators of R. Equation (2.13) is true, since it is true for each r = xi.

Now suppose that S̄ is another filtered λ-ring structure on R constructed in the same
way with the integers {b̄p, j}. (Here again p runs through the primes ≥ N and j runs
through the indices for which r j <∞.) So in S̄, ψp(xi) looks just like it is in (2.11), except
that bp,i is replaced by b̄p,i. Suppose, in addition, that there is a prime q ≥N such that

{
bq, j

} 	= {b̄q, j
}

(2.14)

as sets. We claim that S and S̄ are not isomorphic as filtered λ-rings.
To see this, suppose to the contrary that there exists a filtered λ-ring isomorphism

σ : S−→ S̄. (2.15)

Let j be one of those indices for which r j is finite. Then, modulo filtration 2d, one has

σ
(
xj
)≡ a1x1 + ···+ anxn (2.16)
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for some a1, . . . ,an ∈ Z, not all of which are equal to 0. If ri =∞, we set b̄q,i = q. Equating
the linear coefficients on both sides of the equation

σψq
(
xj
)= ψqσ(xj), (2.17)

one infers that

bq, j ·
∑
aixi =

∑
aib̄q,ixi. (2.18)

If ai 	= 0 (and such an ai must exist), then

bq, j = b̄q,i (2.19)

for some i. In particular, it follows that {bq, j} is contained in {b̄q, j}. Therefore the two
sets are equal by symmetry. This is a contradiction.

This finishes the proof of Theorem 1.1. �

3. Proof of Theorem 1.3

First we need to consider when a collection of polynomials can be the Adams operations
of a filtered λ-ring structure on Z[x]/(x3). We will continue to describe λ-rings in terms
of their Adams operations.

Lemma 3.1. A collection of polynomials, {ψp(x)= bpx + cpx2 : p prime}, in Z[x]/(x3) ex-
tends to (the Adams operations of) a filtered λ-ring structure if and only if the following three
statements are satisfied:

(1) bp ≡ 0 (mod p) for all primes p;
(2) c2 ≡ 1 (mod2) and cp ≡ 0 (mod p) for all primes p > 2;
(3) (b2

q− bq)cp = (b2
p− bp)cq for all primes p and q.

Now suppose that these conditions are satisfied. If b2 	= 0, then (b2
p − bp) ≡ 0 (mod2θ2(b2))

for all odd primes p. If b2 = 0, then bp = 0 for all odd primes p.

Proof. The polynomials ψp(x) in the statement above extend to a filtered λ-ring struc-
ture on Z[x]/(x3) if and only if (2.9) and (2.10) are satisfied. Expanding ψp(ψq(x)), one
obtains

ψp
(
ψq(x)

)= bp(bqx+ cqx2)+ cp
(
bqx+ cqx2)2

= (bpbq)x+
(
bpcq + b2

qcp
)
x2.

(3.1)

Using symmetry and equating the coefficients of x2, it follows that (2.9) in this case is
equivalent to

(
b2
q− bq

)
cp =

(
b2
p− bp

)
cq. (3.2)

It is clear that (2.10) is equivalent to conditions (2) and (3) together, since xp = 0 for
p > 2.

Now assume that statements (1), (2), and (3) are satisfied. If b2 	= 0, then the right-
hand side of (3.2) when p = 2 is congruent to 0 modulo 2θ2(b2), and therefore so is the
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left-hand side. The assertion now follows, since c2 is odd. If b2 = 0, then the right-hand
side of (3.2) when p = 2 is equal to 0, and so b2

q = bq for all odd primes q, since c2 	= 0.
But bq 	= 1, so bq = 0. �

Next we need to know when two filtered λ-ring structures over Z[x]/(x3) are isomor-
phic.

Lemma 3.2. Let S = {ψp(x) = bpx + cpx2} and S̄ = {ψp(x) = b̄px + c̄px2} (where p runs
through the primes) be two filtered λ-ring structures over Z[x]/(x3). Then S and S̄ are iso-
morphic filtered λ-rings if and only if the following two conditions are satisfied simultane-
ously:

(1) bp = b̄p for all primes p;
(2)(a) if b2 = b̄2 = 0, then there exists u∈ {±1} such that cp = uc̄p for all primes p;

(b) if b2 = b̄2 	= 0, then there exist u∈ {±1} and a∈ Z such that

ab2
(
b2− 1

)= c2−uc̄2. (3.3)

Proof. Suppose that S and S̄ are isomorphic, and let σ : S→ S̄ be a filtered λ-ring isomor-
phism. Then

σ(x)= ux+ ax2 (3.4)

for some u∈ {±1} and integer a. Applying the map σψp, p is any prime, to the generator
x, one obtains

σψp(x)= ubpx+
(
abp + cp

)
x2. (3.5)

Similarly, one has

ψpσ(x)= ub̄px+
(
ab̄2

p +uc̄p
)
x2. (3.6)

Recall from the previous lemma that b2 = 0 implies bp = 0 for all odd primes p. There-
fore, the “only if” part now follows by equating the coefficients in the equation σψp(x)=
ψpσ(x).

Conversely, suppose that conditions (1) and (2)(a) in the statement of the lemma hold.
Then clearly the map σ : S→ S̄ given on the generator by σ(x)= ux is the desired isomor-
phism.

Now suppose that conditions (1) and (2)(b) hold. The polynomial σ(x) = ux + ax2

extends uniquely to a filtered ring automorphism on Z[x]/x3. The calculation in the first
paragraph of this proof shows that if bp = 0 for a certain prime p, then σψp(x)= ψpσ(x).
If bp 	= 0, then (3.2) in the proof of Lemma 3.1 implies that

a= c2−uc̄2

b2
2− b2

= cp−uc̄p
b2
p− bp . (3.7)

Therefore, the argument in the first paragraph once again shows that σψp(x)= ψpσ(x),
and σ : S→ S̄ is the desired isomorphism. �
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Proof of Theorem 1.3. It follows immediately from Lemmas 3.1 and 3.2 that, in the no-
tation of the statement of Theorem 1.3, the S((cp)) are all filtered λ-ring structures on
Z[x]/(x3) and that two of them are isomorphic if and only if the stated conditions hold.
Similar remarks apply to the S((bp),k). Also no S((cp)) is isomorphic to an S((bp),k). It
remains only to show that any filtered λ-ring structure R on Z[x]/(x3) is isomorphic to
one of them.

Write ψp(x) = bpx + cpx2 for the Adams operations in R. If b2 = 0, then so is bp for
each odd prime p. Then (cp) satisfies condition (2) in Lemma 3.1, and R is isomorphic
(in fact, equal) to S((cp)).

Suppose that b2 	= 0. Then by Lemma 3.1 the sequence (bp) satisfies condition (A).
First consider the case when bp = 0 for all odd primes p. In this case, condition (3) in
Lemma 3.1 implies that cp = 0 for all odd primes p. Let r denote the remainder of c2

modulo b2(b2 − 1). Since r is also an odd integer, there exists a unique odd integer k in
the range 1 ≤ k ≤ b2(b2 − 1)/2 that is congruent (modb2(b2 − 1)) to either r or −r. By
Lemma 3.2, R is isomorphic to S((bp),k).

Finally, consider the case when b2 	= 0 and there is at least one odd prime p for which
bp 	= 0. If

c2 = qb2
(
b2− 1

)
+ r (3.8)

for some integers q and r with 0≤ r < b2(b2− 1), then r must be an odd integer, since b2

is even and c2 is odd. Define

c̄2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
r if 1≤ r ≤ b2

(
b2− 1

)
2

,

b2
(
b2− 1

)− r if r >
b2
(
b2− 1

)
2

,

c̄q =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
cq− qbq

(
bq− 1

)
if 1≤ r ≤ b2

(
b2− 1

)
2

,

(1 + q)bq
(
bq− 1

)− cq if r >
b2
(
b2− 1

)
2

(3.9)

for q > 2. The three conditions (1)–(3) in Lemma 3.1 are all easily verified for the poly-
nomials S = {ψp(x) = bpx + c̄px2}, and so S is a filtered λ-ring structure on Z[x]/(x3).
Observe that 1≤ c̄2 ≤ b2(b2− 1)/2. Moreover, by Lemma 3.2, S is isomorphic to R. Equa-
tion (3.2) implies that, if p is a prime for which bp 	= 0, then

c̄2 ≡ 0

(
mod

b2
(
b2− 1

)
gcd

(
b2
(
b2− 1

)
,bp
(
bp− 1

))
)
. (3.10)

Therefore, we have

c̄2 ≡ 0

(
modlcm

(
b2
(
b2− 1

)
gcd

(
b2
(
b2− 1

)
,bp
(
bp− 1

)) : all primes p

))
. (3.11)
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Now observe that

lcm

(
b2
(
b2− 1

)
gcd

(
b2
(
b2− 1

)
,bp
(
bp− 1

)) : all primes p

)
= b2

(
b2− 1

)
G

, (3.12)

where

G= gcd
(
bp
(
bp− 1

)
: all primes p

)
. (3.13)

From the last assertion of Lemma 3.1, we see that 2θ2(b2) is a factor of G, and so b2(b2 −
1)/G is odd. If

c̄2 = lb2
(
b2− 1

)
G

, (3.14)

then it follows that l must be odd with 1≤ l ≤G/2 and that

c̄p =
lbp
(
bp− 1

)
G

(3.15)

for all primes p. Let p1, . . . , pn be the list of all (if any) odd primes for which condition
(B) holds for the sequence (bp). For each p = pi, 1≤ i≤ n, we have

θp
(
c̄p
)= θp

(
lbp
(
bp− 1

)
G

)
= θp(l)≥ 1, (3.16)

and so

l ≡ 0 (mod p). (3.17)

It follows that

l ≡ 0
(

mod p1 ··· pn
)
. (3.18)

We have shown that R is isomorphic to S= S((bp), l), as desired. �

4. Proof of Theorem 1.6

4.1. Proof of Theorem 1.6(1)

Proof. First we make the following observation. Consider a collection of polynomials

R= {ψp(x)= bpx+ cpx2 +dpx3 : p primes
}

(4.1)

in Z[x]/(x4). Then R extends to (the Adams operations of) a filtered λ-ring structure if
and only if (i) the bp and cp satisfy conditions (1)–(3) of Lemma 3.1, (ii)

(
b3
q− bq

)
dp =

(
b3
p− bp

)
dq + 2cpcq

(
bp− bq

)
(4.2)
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for all primes p and q, and (iii)

dp ≡
⎧⎨
⎩

0 (mod p) if p 	= 3,

1 (mod3) if p = 3.
(4.3)

In fact, (4.2) and (4.3) are obtained from (2.9) and (2.10), respectively, by comparing the
coefficients of x3.

Now restrict to case (1) of Theorem 1.6, that is, when bp = p for all primes p. By
condition (3) in Lemma 3.1, we have that in R,

ψp(x)= px+
c2p(p− 1)

2
x2 +dpx3 (4.4)

for each prime p. Applying (4.2) to this present case, we obtain

dp = 1
6
p(p− 1)

(
(p+ 1)d2 + c2

2(p− 2)
)∈ Z. (4.5)

Let S denote the filtered λ-ring structure on Z[x]/(x4) with

ψp(x)= (1 + x)p− 1 (4.6)

for all primes p. Define σ(x) by

σ(x)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−x+

c2 + 1
2

x2−
(
c2 + 1

)(
c2 + 2

)
+d2

6
x3 if c2 ≡ 0 (mod3),

x+
c2− 1

2
x2 +

(
c2− 1

)(
c2− 2

)
+d2

6
x3 otherwise.

(4.7)

Extend σ(x) to a filtered ring automorphism on Z[x]/(x4). Using (4.4) and (4.5), it is now
straightforward to check that σ is compatible with the Adams operations ψp in R and S
(i.e., σψ

p
R(x)= ψp

S σ(x)), and so it gives an isomorphism R∼= S. �

4.2. Proof of Theorem 1.6(2)

Proof. Using the case n= 3 of Corollary 1.13 (i.e., Conjecture 1.10 for n= 3), which will
be proved below, one infers that R is isomorphic to some filtered λ-ring structure T on
Z[x]/(x4) with the following property: there exists an integer k ∈ {1,3,5} such that

ψ
p
T(x)≡ ψp

S (x)
(

modx3) (4.8)

for all primes p, where S= S((p2),k) is as in Theorem 1.3(2). In other words, R must be
isomorphic to a “λ-ring extension” to Z[x]/(x4) of one of the three S((p2),k). Therefore,
to prove Theorem 1.6(2), it suffices to prove the following three statements.

(1) The sixty S(k,d2) listed in the statement of Theorem 1.6 are all filtered λ-ring
structures on Z[x]/(x4).

(2) Those 60 filtered λ-rings are mutually nonisomorphic.
(3) T (and thus R) is isomorphic to one of the sixty S(k,d2).

Each one of these three statements is dealt with in a lemma below.
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Lemma 4.1. Let k ∈ {1,5} be an integer and let d2 be an even integer. Consider the collection
of polynomials

S=
{
ψp(x)= p2x+

kp2
(
p2− 1

)
12

x2 +dpx3
}

, (4.9)

where dp for p > 2 is determined by d2 via (1.3). Then S is a filtered λ-ring structures on
Z[x]/(x4).

Thus, this S looks just like one of those S(k,d2), except that in S we only require d2

to be even. In particular, this Lemma implies that each S(k,d2) is indeed a filtered λ-ring
structure on Z[x]/(x4).

Proof. We only need to check (4.2) and (4.3) in S, since it is clear that conditions (1)–(3)
of Lemma 3.1 are satisfied by bp = p2 and cp = kp2(p2− 1)/12. The condition (4.2) can
be verified directly by using (1.3), which expresses each dp in terms of d2.

Now consider (4.3). The case p = 2 is true by hypothesis. If p = 3, then it follows from
(1.3) that

d3 = 12d2 + k2. (4.10)

Since k is either 1 or 5, we must have that d3 ≡ 1 (mod3). If p = 5, then

d5 = 260d2 + 35k2 ≡ 0 (mod5). (4.11)

Suppose now that p > 5. We will show that both summands of dp in (1.3) are divisible
by p. First observe that 12= 22 · 3 must divide (p− 1)(p+ 1). If 5 divides either (p− 1) or
(p+ 1), then 60 divides (p2− 1). If 5 divides neither one of them, then p ≡ 2 or 3 (mod5).
In either case, we have p2 + 1 ≡ 0 (mod5), and therefore 60 divides (p2 − 1)(p2 + 1) =
(p4 − 1). It follows that the first summand of dp, namely, p2(p4 − 1)d2/60, is an integer
that is divisible by p (in fact, by p2). Now we consider the second summand. Since p is
odd, (p− 1)p(p+ 1) is divisible by 23 · 3, and so p(p2− 1)(p2− 4) is divisible by 23 · 32. It
is also clear that it is divisible by 5. Therefore, 23 · 32 · 5= 360 divides p(p2− 1)(p2− 4).
It follows that the second summand of dp is an integer that is divisible by p. This proves
the lemma. �

Lemma 4.2. Let S and S′ be two filtered λ-ring structures on Z[x]/(x4) of the form described
in Lemma 4.1. Write k′ and d′p for the coefficients of x2 in ψ2

S′(x) and of x3 in ψ
p
S′(x), respec-

tively. Then S and S′ are isomorphic filtered λ-rings if and only if (i) k = k′ and (ii) d2 ≡ d′2
(mod60).

In particular, it follows from this lemma that the sixty S(k,d2) are mutually noniso-
morphic and that any S as in Lemma 4.1 is isomorphic to one of the S(k,d2).

Proof. Suppose that S and S′ are isomorphic. Since their reductions modulo x3 are also
isomorphic filtered λ-rings and since k,k′ ∈ {1,5}, it follows from Theorem 1.3 that k =
k′. Let σ : S→ S′ be an isomorphism, and write

σ(x)= ux+αx2 +βx3, (4.12)
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so that u∈ {±1}. Consider the equality

(
ψ2
S ◦ σ

)
(x)= (σ ◦ψ2

S′
)
(x). (4.13)

(Recall that ◦means composition of polynomials.) The coefficients of x2 on both sides of
this equation give rise to the equality

4α+ k = uk+ 16α, (4.14)

or, equivalently,

(1−u)k = 12α. (4.15)

Since 3 does not divide k, the only solution is u = 1 and α = 0. The coefficients of x3 in
(4.13) then give rise to the equality

4β+d2 = d′2 + 64β. (4.16)

This proves the “only if” part of the lemma.
Conversely, suppose that k = k′ and d2 = d′2 + 60β for some integer β. Let σ be the

filtered ring automorphism on Z[x]/(x4) given by

σ(x)= x+βx3. (4.17)

Since k = k′ and σ(x)≡ x (modx3), it is clear that

(
ψ
p
S ◦ σ

)
(x)≡ (σ ◦ψp

S′
)
(x)

(
modx3) (4.18)

for any prime p. The coefficients of x3 in (ψ
p
S ◦ σ)(x) and (σ ◦ψp

S′)(x) are (p2β+ dp) and
(d′p +βp6), respectively. They are equal since

dp−d′p =
p2
(
p4− 1

)(
d2−d′2

)
60

= p2(p4− 1
)
β. (4.19)

This shows that σ : S→ S′ is an isomorphism of filtered λ-ring. This proves the lemma.
�

Lemma 4.3. T is isomorphic to one of the sixty S(k,d2) listed in the statement of Theorem 1.6.

Proof. The first paragraph of the proof of Lemma 4.1 also applies to T , and so the coeffi-
cient of x3 in ψ

p
T(x), call it dp, satisfies (1.3) for some k ∈ {1,3,5} and some even integer

d2. Since (4.10) holds in T as well, it follows that k2 ≡ 1 (mod3). Therefore, k must be ei-
ther 1 or 5. In other words, T is of the form described in Lemma 4.1, and, by Lemma 4.2,
it is isomorphic to one of the sixty S(k,d2), as desired. This proves the lemma. �

The proof of Theorem 1.6(2) is complete. �

4.3. Proof of Theorem 1.6(3). This case will be proved below as part of Corollary 1.13
(the n = 4 case of Conjecture 1.9, which follows from the n = 3 case of Conjecture 1.10
and Theorem 1.11).
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4.4. Proof of Theorem 1.6(4)

Proof. Since the reduction of R modulo x3 is a filtered λ-ring structure on Z[x]/(x3), it
follows from Theorem 1.3(1) that

ψp(x)= ψp
R(x)≡ 0

(
modx2) (4.20)

for all primes p. Thus, R has the form S((cp),(dp)) as in the statement of Theorem 1.6(4).
Now let S = S((cp),(dp)) = {ψp(x) = cpx2 + dpx3} be a collection of polynomials sat-

isfying ψp(x) ≡ xp (mod p). In order to show that S is a filtered λ-ring structure on
Z[x]/(x4), we only need to show that (ψp ◦ ψq)(x) = (ψq ◦ ψp)(x) for all primes p and
q. This is true, since both sides are equal to 0 modulo x4.

To prove the last assertion, let

S̄= S((c̄p),(d̄p))= {ψp(x)= c̄px2 + d̄px3} (4.21)

be another filtered λ-ring structure on Z[x]/(x4). Suppose first that S and S̄ are isomor-
phic, and let σ : S→ S̄ be an isomorphism. Write σ(x) = ux + αx2 + βx3 with u ∈ {±1}.
Then we have

(
ψ
p
S ◦ σ

)
(x)= cpx2 +

(
2cpuα+dpu

)
x3,

(
σ ◦ψp

S̄

)
(x)= uc̄px2 +ud̄px3.

(4.22)

Conditions (i) and (ii) in the statement of Theorem 1.6(4) now follow by comparing the
coefficients.

The converse is similar. Indeed, if (cp)= u(c̄p) for some u∈ {±1} and d̄p = dp + 2cpα
for some integer α, then the calculation above shows that an isomorphism σ : S→ S̄ is
given by

σ(x)= ux+αx2, (4.23)

as desired. This proves Theorem 1.6(4).
The proof of Theorem 1.6 is complete. �

5. Results about the conjectures

5.1. Proof of Theorem 1.11

Proof. Consider a prime q such that

∣∣an−1
q,1 − aq,1

∣∣=min
{∣∣an−1

p,1 − ap,1
∣∣ : p primes

}
. (5.1)

Let S and T be two filtered λ-ring structures on Z[x]/(xn) satisfying (1.5) for all primes
p, and let a and b be the coefficients of xn−1 in ψ

q
S (x) and ψ

q
T(x), respectively. We claim

that if

a≡ b (mod
∣∣an−1

q,1 − aq,1
∣∣), (5.2)
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then S and T are isomorphic. Indeed, if (5.2) is true, then we can write

a+ aq,1c = b+ an−1
q,1 c (5.3)

for some integer c. Consider the filtered ring automorphism σ on Z[x]/(xn) given by

σ(x)= x+ cxn−1. (5.4)

Then we have that

(
ψ
q
S ◦ σ

)
(x)=

(n−2∑
i=1

aq,i
(
x+ cxn−1)i)+ a

(
x+ cxn−1)n−1

=
(n−2∑

i=1

aq,ix
i

)
+
(
a+ aq,1c

)
xn−1

=
(n−2∑

i=1

aq,ix
i

)
+
(
b+ an−1

q,1 c
)
xn−1

= (σ ◦ψqT)(x).

(5.5)

Now it follows from (5.5) and [10, Theorem 4.4] that

(
ψ
p
S ◦ σ

)
(x)= (σ ◦ψp

T

)
(x) (5.6)

for all primes p. (It is here that we are using the hypothesis ap,1 	= 0 for all p.) That is,
σ : S→ T is a filtered λ-ring isomorphism, as claimed. It is clear that Theorem 1.11 also
follows from this claim. �

5.2. Proof of Theorem 1.12

Proof. Write σ(x) =∑n−1
k=1 bkx

k and σ−1(x) =∑n
i=1 cix

i. In particular, we have b1 = c1 ∈
{±1}. Let p be a prime with p ≥ n. Write ψ

p

R̃
(x) =∑n

j=1 ajx
j . Considering ψ

p
S (x) as a

polynomial in Z[x]/(xn+1), we have

ψ
p

S̃
(x)= (σ−1 ◦ψp

R̃
◦ σ)(x)= ψp

S (x) +
(
bn+1

1 an +α
)
xn, (5.7)

in which α is a sum of integers, each summand having a factor of ai for some i = 1, . . . ,
n− 1.

If p > n, then ψ
p

R̃
(x) ≡ xp = 0 (mod p), which implies that ai ≡ 0 (mod p) for i =

1, . . . ,n. Since ψ
p
S (x)≡ 0 (mod p) as well, one infers that ψ

p

S̃
(x)≡ 0= xp (mod p).

If p = n, then we still have ψ
p
S (x) ≡ 0 (mod p). But now ap ≡ 1 (mod p) and ai ≡ 0

(mod p) for i < p. Since p + 1 is an even integer, it follows that ψ
p

S̃
(x) ≡ xp (mod p), as

desired. �
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5.3. Proof of Corollary 1.13

Proof. Consider the case n= 3 of Conjecture 1.10 first. In view of Theorem 1.12, we only
need to show that

ψ2
S̃
(x)≡ x2 (mod2). (5.8)

Since ψ2
S (x)≡ x2 (mod2) already, it suffices to show that the coefficient of x3 in ψ2

S̃
(x) is

even. We will use the same notations as in the proof of Theorem 1.12. Observe that the
congruence identity, ψ2

R̃
(x) ≡ x2 (mod2), means that a1 and a3 are even and that a2 is

odd. Computing modulo 2 and x4, we have

ψ2
S̃
(x)≡

3∑
i=1

ci

( 3∑
j=1

aj
(
b1x+ b2x

2) j)i

≡
3∑
i=1

cia
i
2

(
b1x+ b2x

2)2i
.

(5.9)

It follows that the coefficient of x3 in ψ2
S̃
(x) is congruent (mod 2) to c1a2(2b1b2)≡ 0. This

proves the case n= 3 of Conjecture 1.10.
The proofs for the cases n = 4 and 5 of Conjecture 1.10 are essentially identical to

the previous paragraph. The only slight deviation is that, when n = 4, to check that the
coefficient of x4 in ψ2

S̃
(x) is even, one needs to use the fact that c2 =−b1b2.

As discussed in the introduction, Conjectures 1.8 and 1.9 for n ≤ 6 follow from
Conjecture 1.10 for n≤ 5 and Theorem 1.11. �

It should be pointed out that the argument above for the first three cases of Conjecture
1.10 does not seem to go through for n= 6. In fact, to use the same argument, one would
have to check, among other things, that the coefficient of x6 in ψ2

S̃
(x) is even. But this

coefficient turns out to be congruent (mod2) to b3. It may be true that one can always
arrange to have an isomorphism σ in which b3 is even, but this is only a speculation.
Further works remain to be done to settle the three conjectures for higher values of n.
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