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1. Introduction

When we had worked on Raoelina Andriambololona idea on the use of tensor product in
Dirac equation [1, 2], we had met the unitary matrix

U2⊗2 =

⎛
⎜⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎟⎠ . (1.1)

This matrix is frequently found in quantum information theory [3–5] where one writes,
by using the Pauli matrices [3–5],

U2⊗2 = 1
2
I2⊗ I2 +

1
2

3∑

i=1

σi⊗ σi (1.2)

with I2 the 2× 2 unit matrix. We call this matrix a tensor commutation matrix 2⊗ 2. The
tensor commutation matrix 3⊗ 3 is expressed by using the Gell-Mann matrices under
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the following form [6]:

U3⊗3 = 1
3
I3⊗ I3 +

1
2

8∑

i=1

λi⊗ λi. (1.3)

We have to talk a bit about different types of matrices because in the generalization
of the above formulas, we will consider a commutation matrix as a matrix of fourth-
order tensor and in expressing the commutation matrices U3⊗2, U2⊗3, at the last section,
a commutation matrix will be considered as matrix of second-order tensor.

�m×n(C) denotes the set of m×n matrices whose elements are complex numbers.

2. Tensor product of matrices

2.1. Matrices. If the elements of a matrix are considered as the components of a second-
order tensor, we adopt the habitual notation for a matrix, without parentheses inside,
whereas if the elements of the matrix are, for instance, considered as the components of
sixth-order tensor, three times covariant and three times contravariant, then we represent
the matrix of the following way, for example:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝

(
1 0
1 1

) (
1 1
3 2

)

(
0 0
0 0

) (
1 1
1 1

)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

(
1 0
1 2

) (
7 8
9 0

)

(
3 4
5 6

) (
9 8
7 6

)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

(
1 1
1 1

) (
0 0
3 2

)

(
4 5
1 6

) (
1 7
8 9

)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

(
5 4
3 2

) (
1 0
1 2

)

(
3 4
5 6

) (
7 8
9 0

)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

(
1 2
3 4

) (
9 8
7 6

)

(
5 6
7 8

) (
5 4
3 2

)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

(
9 8
7 6

) (
5 4
3 2

)

(
1 0
1 2

) (
3 4
5 6

)

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

M=(Mi1i2i3
j1 j2 j3

)
i1i2i3=111,112,121,122,211,212,221,222,311,312,321,322 row indices,

j1 j2 j3 = 111,112,121,122,211,212,221,222 column indices.
(2.1)

The first indices i1 and j1 are the indices of the outside parenthesis which we call the
first-order parenthesis; the second indices i2 and j2 are the indices of the next parentheses
which we call the second-order parentheses; the third indices i3 and j3 are the indices of
the most interior parentheses, of this example, which we call third-order parentheses. So,
for instance, M321

121 = 5.
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If we delete the third-order parenthesis, then the elements of the matrix M are consid-
ered as the components of a fourth-order tensor, twice contravariant and twice covari-
ant.

A matrix is a diagonal matrix if deleting the interior parentheses, we have a habitual
diagonal matrix.

A matrix is a symmetric (resp., antisymmetric) matrix if deleting the interior paren-
theses, we have a habitual symmetric (resp., antisymmetric) matrix.

We identify one matrix to another matrix if after deleting the interior parentheses, they
are the same matrices.

2.2. Tensor product of matrices

Definition 2.1. Consider A= (Ai
j)∈�m×n(C), B = (Bi

j)∈�p×r(C). The matrix defined
by

A⊗B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1
1B . . . A1

j B . . . A1
nB

...
...

...
Ai

1B . . . Ai
jB . . . Ai

nB
...

...
...

Am
1 B . . . Am

j B . . . Am
n B

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.2)

is called the tensor product of the matrix A by the matrix B,

A⊗B ∈�mp×nr(C),

A⊗B = (Ci1i2
j1 j2

)= (Ai1
j1B

i2
j2

)
,

(2.3)

(cf., e.g., [3]) where, i1i2 are row indices and j1 j2 are column indices.

3. Generalized Gell-Mann matrices

Let us fix n ∈ N, n ≥ 2 for all continuations. The generalized Gell-Mann matrices or
n× n-Gell-Mann matrices are the traceless Hermitian n× n matrices Λ1, Λ2, . . . ,Λn2−1

which satisfy the relation Tr(ΛiΛ j)= 2δi j , for all i, j ∈ {1,2, . . . ,n2− 1}, where δi j = δi j =
δij is the Kronecker symbol [7].

However, for the demonstration of Theorem 4.3, denote, for 1 ≤ i < j ≤ n, the C2
n =

(n!/2!(n− 2)!) n×n-Gell-Mann matrices which are symmetric with all elements 0 except
the ith row jth column and the jth row ith column which are equal to 1, by Λ(i j); the
C2
n = (n!/2!(n− 2)!) n×n-Gell-Mann matrices which are antisymmetric with all elements

are 0 except the ith row jth column which is equal to−i and the jth row ith column which
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is equal to i, by Λ[i j] and by Λ(d), 1 ≤ d ≤ n− 1, the following (n− 1) n× n-Gell-Mann
matrices are diagonal:

Λ(1)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0
0 −1

0
...

...
. . .

. . .
0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Λ(2)= 1√
3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0
0 1

−2
...

... 0
. . .

0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, . . . ,Λ(n−1)= 1√
C2
n

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0
0 1

1
...

...
. . .

1
0 . . . −(n−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(3.1)

For n= 2, we have the Pauli matrices.

4. Tensor commutation matrices

Definition 4.1. For p, q ∈N, p ≥ 2, q ≥ 2, call the tensor commutation matrix p⊗ q the
permutation matrix Up⊗q ∈�pq×pq(C) formed by 0 and 1, verifying the property

Up⊗q · (a⊗ b)= b⊗ a (4.1)

for all a∈�p×1(C), b ∈�q×1(C).

Considering Up⊗q as a matrix of a second-order tensor, one can construct it by using
the following rule [6].

Rule 4.2. Let us start in putting 1 at first row and first column, after that let us pass into
second column in going down at the rate of p rows and put 1 at this place, then pass into
third column in going down at the rate of p rows and put 1, and so on until there are only
for us p− 1 rows for going down (then we have obtained number of 1 : q). Then pass into
the next column which is the (q+ 1)th column, put 1 at the second row of this column and
repeat the process until we have only p− 2 rows for going down (then we have obtained
number of 1 : 2q). After that pass into the next column which is the (2q + 1)th column,
put 1 at the third row of this column and repeat the process until we have only p− 3 rows
for going down (then we have obtained number of 1 : 3q). Continuing in this way, we will
have that the element at p× qth row and p× qth column is 1. The other elements are 0.
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Theorem 4.3. One has

Un⊗n = 1
n
In⊗ In +

1
2

n2−1∑

i=1

Λi⊗Λi. (4.2)

Proof. One has

In⊗ In =
(
δi1i2j1 j2

)= (δi1j1δi2j2
)
,

Un⊗n =
(
δi1j2δ

i2
j1

)
,

(4.3)

where, i1i2 are row indices and j1 j2 are column indices [3].
Consider at first the C2

n symmetric n×n Gell-Mann matrices which can be written as

Λ(i j) = (Λ(i j)l
k

)
1≤l≤n,1≤k≤n

= (δilδ j
k

)
1≤l≤n,1≤k≤n +

(
δ jlδik

)
1≤l≤n,1≤k≤n

= (δilδ j
k + δ jlδik

)
1≤l≤n,1≤k≤n.

(4.4)

Then

Λ(i j)⊗Λ(i j) =
((
Λ(i j)⊗Λ(i j))l1l2

k1k2

)
= (δil1δ j

k1
+ δ jl1δik1

)(
δil2δ

j
k2

+ δ jl2δik2

)
, (4.5)

where l1l2 are row indices and k1k2 are column indices.
That is,

(
Λ(i j)⊗Λ(i j))l1l2

k1k2
= δil1δ

j
k1
δil2δ

j
k2

+ δil1δ
j
k1
δ jl2δik2

+ δ jl1δik1
δil2δ

j
k2

+ δ jl1δik1
δ jl2δik2

. (4.6)

The C2
n antisymmetric n×n Gell-Mann matrices can be written as

Λ[i j] = (Λ[i j]l
k

)
1≤l≤n,1≤k≤n =

(− iδilδ
j
k + iδ jlδik

)
1≤l≤n,1≤k≤n. (4.7)

Then

Λ[i j]⊗Λ[i j] =
((
Λ[i j]⊗Λ[i j])l1l2

k1k2

)
,

(
Λ[i j]⊗Λ[i j])l1l2

k1k2
=−δil1δ j

k1
δil2δ

j
k2

+ δil1δ
j
k1
δ jl2δik2

+ δ jl1δik1
δil2δ

j
k2
− δ jl1δik1

δ jl2δik2
,

∑

1≤i< j≤n

(
Λ(i j)⊗Λ(i j))l1l2

k1k2
+

∑

1≤i< j≤n

(
Λ[i j]⊗Λ[i j])l1l2

k1k2

= 2
∑

1≤i< j≤n

(
δil1δ

j
k1
δ jl2δik2

+ δ jl1δik1
δil2δ

j
k2

)= 2
∑

i /= j

δil1δ
j
k1
δ jl2δik2

(4.8)

is the l1l2th row, k1k2th column of the matrix
∑

1≤i< j≤n
Λ(i j)⊗Λ(i j) +

∑

1≤i< j≤n
Λ[i j]⊗Λ[i j]. (4.9)
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Now, consider the diagonal n×n Gell-Mann matrices. Let d ∈N, 1≤ d ≤ n− 1,

Λ(d) = 1√
C2
d+1

(
δlk

d∑

p=1

δ
p
k −dδlkδ

d+1
k

)
(4.10)

and the l1l2th row, k1k2th of the matrix Λ(d)⊗Λ(d) is

(
Λ(d)⊗Λ(d))l1l2

k1k2
= 1

C2
d+1

δl1k1
δl2k2

( d∑

q=1

d∑

p=1

δ
q
k1
δ
p
k2

)
− 1
C2
d+1

δl1k1
δl2k2

(
dδd+1

k2

d∑

p=1

δ
p
k1

)

− 1
C2
d+1

δl1k1
δl2k2

(
dδd+1

k1

d∑

p=1

δ
p
k2

)
+

1
C2
d+1

δl1k1
δl2k2

(
d2δd+1

k1
δd+1
k2

)
,

(4.11)

Λ(d)⊗Λ(d) is a diagonal matrix, so all that we have to do is to calculate the elements on
the diagonal where l1 = k1 and l2 = k2. Then,

n−1∑

d=1

(
Λ(d)⊗Λ(d))l1l2

k1k2
=

n−1∑

d=1

1
C2
d+1

( d∑

q=1

δ
q
k1

)( d∑

p=1

δ
p
k2

)
−

n−1∑

d=1

1
C2
d+1

dδd+1
k2

d∑

p=1

δ
p
k1

−
n−1∑

d=1

1
C2
d+1

dδd+1
k1

d∑

p=1

δ
p
k2

+
n−1∑

d=1

1
C2
d+1

d2δd+1
k1

δd+1
k2

(4.12)

is the l1l2th row, k1k2th column of the diagonal matrix
∑n−1

d=1Λ
(d)⊗Λ(d) with l1 = k1 and

l2 = k2.
Let us distinguish two cases.

Case 1. k1 /= 1 or k2 /= 1.

Case 1.1. k1 /= k2.
If k1 < k2,

n−1∑

d=1

(
Λ(d)⊗Λ(d))l1l2

k1k2
=

n−1∑

d=k2

1
C2
d+1

− k2− 1
C2
k2

= 2

[ n−1∑

d=k2

(
1
d
− 1
d+ 1

)
− 1
k2

]
=−2

n
.

(4.13)

Similarly, if k1 > k2,

n−1∑

d=1

(
Λ(d)⊗Λ(d))l1l2

k1k2
=−2

n
. (4.14)

Case 1.2. k1 = k2 /= 1:

n−1∑

d=1

(
Λ(d)⊗Λ(d))l1l2

k1k2
=

n−1∑

d=k2

1
C2
d+1

+

(
k2− 1

)2

C2
k2

= 2
k2
− 2
n

+

(
k2− 1

)2

C2
k2

= 2− 2
n
. (4.15)
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Case 2. k1 = k2 = 1:

n−1∑

d=1

(
Λ(d)⊗Λ(d))l1l2

k1k2
=

n−1∑

d=1

1
C2
d+1

= 2− 2
n
. (4.16)

We can condense these cases in one formula as

n−1∑

d=1

(
Λ(d)⊗Λ(d))l1l2

k1k2
=−2

n
δl1k1

δl2k2
+ 2

n∑

i=1

δil1δik1
δil2δik2

, (4.17)

which yields the diagonal of the diagonal matrix
∑n−1

d=1Λ
(d)⊗Λ(d).

For all the n×n Gell-Mann matrices, we have

∑

1≤i< j≤n

(
Λ(i j)⊗Λ(i j))l1l2

k1k2
+

∑

1≤i< j≤n

(
Λ[i j]⊗Λ[i j])l1l2

k1k2
+

n−1∑

d=1

(
Λ(d)⊗Λ(d))l1l2

k1k2

=−2
n
δl1k1

δl2k2
+ 2

n∑

i=1

δil1δik1
δil2δik2

+ 2
∑

i /= j

δil1δ
j
k1
δ jl2δik2

=−2
n
δl1k1

δl2k2
+ 2

n∑

j=1

n∑

i=1

δil1δ
j
k1
δ jl2δik2

=−2
n
δl1k1

δl2k2
+ 2δl1k2

δl2k1

(4.18)

for all l1, l2,k1,k2 ∈ {1,2, . . . ,n}.
Hence, by using (4.3),

n2−1∑

i=1

Λi⊗Λi =−2
n
In⊗ In + 2Un⊗n (4.19)

and the theorem is proved. �

5. Expression of U3⊗2 and U2⊗3

In this section, we derive formulas for U3⊗2 and U2⊗3, naturally in terms of the Pauli
matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(5.1)
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and the Gell-Mann matrices

λ1 =
⎛
⎜⎝

0 1 0
1 0 0
0 0 0

⎞
⎟⎠ , λ2 =

⎛
⎜⎝

0 −i 0
i 0 0
0 0 0

⎞
⎟⎠ , λ3 =

⎛
⎜⎝

1 0 0
0 −1 0
0 0 0

⎞
⎟⎠ ,

λ4 =
⎛
⎜⎝

0 0 1
0 0 0
1 0 0

⎞
⎟⎠ , λ5 =

⎛
⎜⎝

0 0 −i
0 0 0
i 0 0

⎞
⎟⎠ , λ6 =

⎛
⎜⎝

0 0 0
0 0 1
0 1 0

⎞
⎟⎠ ,

λ7 =
⎛
⎜⎝

0 0 0
0 0 −i
0 i 0

⎞
⎟⎠ , λ8 = 1√

3

⎛
⎜⎝

1 0 0
0 1 0
0 0 −2

⎞
⎟⎠ .

(5.2)

For r ∈N∗, define E(r)
i j as the elementary r× r matrix whose elements are zeros except

the ith row and jth column which is equal to 1. We construct U3⊗2 by using Rule 4.2, and
then we have

U3⊗2 = E(6)
11 +E(6)

23 +E(6)
35 +E(6)

42 +E(6)
54 +E(6)

66 . (5.3)

Take

E(6)
11 = E(3)

11 ⊗E(2)
11 . (5.4)

Let

E(3)
11 = α0I3 +α3λ3 +α8λ8 (5.5)

with α0, α3, α8 ∈ C, then

α0 = 1
3

, α3 = 1
2

, α8 =
√

3
6

,

E(3)
11 =

1
3
I3 +

1
2
λ3 +

√
3

6
λ8.

(5.6)

Let

E(2)
11 = β0I2 +β3σ3 (5.7)

with β0, β3 ∈ C, then

β0 = 1
2

, β3 = 1
2

,

E(2)
11 =

1
2
I2 +

1
2
σ3.

(5.8)

So we have

E(6)
11 =

(
1
3
I3 +

1
2
λ3 +

√
3

6
λ8

)
⊗
(

1
2
I2 +

1
2
σ3

)
. (5.9)



Rakotonirina Christian 9

In a similar way, we have

E(6)
23 =

(
1
2
λ1 +

i

2
λ2

)
⊗
(

1
2
σ1− i

2
σ2

)
,

E(6)
35 =

(
1
2
λ6 +

i

2
λ7

)
⊗
(

1
2
I2 +

1
2
σ3

)
,

E(6)
42 =

(
1
2
λ1− i

2
λ2

)
⊗
(

1
2
I2− 1

2
σ3

)
,

E(6)
54 =

(
1
2
λ6− i

2
λ7

)
⊗
(

1
2
σ1 +

i

2
σ2

)
,

E(6)
66 =

(
1
3
I3−

√
3

3
λ8

)
⊗
(

1
2
I2− 1

2
σ3

)
.

(5.10)

Hence

U3⊗2 =
(

1
3
I3 +

1
2
λ3 +

√
3

6
λ8

)
⊗
(

1
2
I2 +

1
2
σ3

)
+
(

1
2
λ1 +

i

2
λ2

)
⊗
(

1
2
σ1− i

2
σ2

)

+
(

1
2
λ6 +

i

2
λ7

)
⊗
(

1
2
I2 +

1
2
σ3

)
+
(

1
2
λ1− i

2
λ2

)
⊗
(

1
2
I2− 1

2
σ3

)

+
(

1
2
λ6− i

2
λ7

)
⊗
(

1
2
σ1 +

i

2
σ2

)
+
(

1
3
I3−

√
3

3
λ8

)
⊗
(

1
2
I2− 1

2
σ3

)
.

(5.11)

In an analogous way,

U2⊗3 =
(

1
2
I2 +

1
2
σ3

)
⊗
(

1
3
I3 +

1
2
λ3 +

√
3

6
λ8

)
+
(

1
2
σ1 +

i

2
σ2

)
⊗
(

1
2
λ1− i

2
λ2

)

+
(

1
2
I2 +

1
2
σ3

)
⊗
(

1
2
λ6− i

2
λ7

)
+
(

1
2
I2− 1

2
σ3

)
⊗
(

1
2
λ1 +

i

2
λ2

)

+
(

1
2
σ1− i

2
σ2

)
⊗
(

1
2
λ6 +

i

2
λ7

)
+
(

1
2
I2− 1

2
σ3

)
⊗
(

1
3
I3−

√
3

3
λ8

)
.

(5.12)

One can develop these formulas in employing the distributivity of the tensor product.
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Katholieke Universiteit, Leuven, Belgium, 2002.

[6] C. Rakotonirina, “Tensor permutation matrices in finite dimensions,” http://arxiv.org/abs/
math.GM/0508053.

[7] S. Narison, Spectral Sum Rules, vol. 26 of World Scientific Lecture Notes in Physics, World Scien-
tific, Singapore, 1989.
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