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Viscosity approximation methods for nonexpansive nonself-mappings are studied. Let
C be a nonempty closed convex subset of Hilbert space H , P a metric projection of
H onto C and let T be a nonexpansive nonself-mapping from C into H . For a con-
traction f on C and {tn} ⊆ (0,1), let xn be the unique fixed point of the contraction
x �→ tn f (x) + (1− tn)(1/n)

∑n
j=1(PT) jx. Consider also the iterative processes {yn} and

{zn} generated by yn+1 = αn f (yn) + (1− αn)(1/(n + 1))
∑n

j=0(PT)
j
yn,n ≥ 0, and zn+1 =

(1/(n+ 1))
∑n

j=0P(αn f (zn) + (1− αn)(TP) j zn),n ≥ 0, where y0,z0 ∈ C,{αn} is a real se-
quence in an interval [0,1]. Strong convergence of the sequences {xn},{yn}, and {zn} to
a fixed point of T which solves some variational inequalities is obtained under certain
appropriate conditions on the real sequences {αn} and {tn}.

Copyright © 2007 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

Throughout this paper, we denote the set of all nonnegative integers byN. Let H be a real
Hilbert space with norm ‖ · ‖ and inner product 〈·,·〉. Let C be a closed convex subset of
H , and T a nonself-mapping from C into H . We denote the set of all fixed points of T by
F(T), that is, F(T)= {x ∈ C : x = Tx}. T is said to be nonexpansive mapping if

‖Tx−Ty‖ ≤ ‖x− y‖ (1.1)

for all x, y ∈ C. From condition on C, there is a mapping P from H onto C which satisfies

∥
∥x−PCx

∥
∥=min

y∈C
‖x− y‖ (1.2)
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for all x ∈ C. This mapping P is said to be the metric projection from H onto C. We know
that the metric projection is nonexpansive. Recall that a self-mapping f : C→ C is a con-
traction on C if there exists a constant α∈ (0,1) such that

∥
∥ f (x)− f (y)

∥
∥≤ α‖x− y‖ ∀x, y ∈ C. (1.3)

We use ΠC to denote the collection of all contractions on C. That is,

ΠC = { f : f : C −→ C a contraction}. (1.4)

Note that each f ∈ΠC has a unique fixed point in C.
Given a real sequence {tn} ⊆ (0,1) and a contraction f ∈ΠC, define another mapping

Tn : C→ C by

Tnx = tn f (x) +
(
1− tn

)1
n

n∑

j=1

(PT) jx ∀n≥ 1. (1.5)

It is not hard to see that Tn is a contraction on C. Indeed, for x, y ∈ C, we have

∥
∥Tnx−Tny

∥
∥=

∥
∥
∥
∥
∥
tn
(
f (x)− f (y)

)
+
(
1− tn

)1
n

( n∑

j=1

(PT) jx−
n∑

j=1

(PT) j y

)∥
∥
∥
∥
∥

≤ tn
∥
∥ f (x)− f (y)

∥
∥+

(
1− tn

)1
n

n∑

j=1

∥
∥(PT) jx− (PT) j y

∥
∥

≤ tnα‖x− y‖+
(
1− tn

)‖x− y‖
= (1− tn(1−α)

)‖x− y‖.

(1.6)

For each n, let xn ∈ C be the unique fixed point of Tn. Thus xn is the unique solution of
fixed point equation

xn = tn f
(
xn
)

+
(
1− tn

)1
n

n∑

j=1

(PT) jxn ∀n≥ 1. (1.7)

One of the purposes of this paper is to study the convergence of {xn} when tn → 0 as
n→∞ in Hilbert spaces. Fix u∈ C and define a contraction Sn on C by

Snx = tnu+
(
1− tn

)1
n

n∑

j=1

(PT) jx ∀n≥ 1. (1.8)

Let sn ∈ C be the unique fixed point of Sn. Thus

sn = tnu+
(
1− tn

)1
n

n∑

j=1

(PT) j sn ∀n≥ 1. (1.9)

Shimizu and Takahashi [1] studied the strong convergence of the sequence {sn} defined
by (1.9) for asymptotically nonexpansive mappings in Hilbert spaces.
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We also study the convergence of the following iteration schemes: for y0,z0 ∈ C, com-
pute the sequences {yn} and {zn} by the iterative schemes

yn+1 = αn f
(
yn
)

+
(
1−αn

) 1
n+ 1

n∑

j=0

(PT) j yn, n≥ 0, (1.10)

zn+1 = 1
n+ 1

n∑

j=0

P
(
αn f

(
zn
)

+
(
1−αn

)
(TP) jzn

)
, n≥ 0, (1.11)

where {αn} is a real sequence in [0,1], f : C→ C is a contraction mapping on C, and P
is the metric projection of H onto C. The first special case of (1.10) was considered by
Shimizu and Takahashi [2] who introduced the following iterative process:

yn+1 = αny +
(
1−αn

) 1
n+ 1

n∑

j=0

T j yn, n≥ 0, (1.12)

where y, y0 are arbitrary (but fixed) and {αn} ⊆ [0,1] and then they proved the following
theorem.

Theorem 1.1 [2]. Let C be a nonempty closed convex subset of a Hilbert space H , let T
be a nonexpansive self-mapping of C such that F(T) is nonempty, and let PF(T) be the met-
ric projection from C onto F(T). Let {αn} be a real sequence which satisfies 0 ≤ αn ≤ 1,
limn→∞αn = 0, and

∑∞
n=0αn =∞. Let y and y0 be element of C and let {yn} be the sequence

defined by (1.12). Then {yn} converges strongly to PF(T)y.

The second special case of (1.10) and (1.11) was considered by Matsushita and Kuroiwa
[3] who introduced the following iterative process:

yn+1 = αny +
(
1−αn

) 1
n+ 1

n∑

j=0

(PT) j yn, n≥ 0,

zn+1 = 1
n+ 1

n∑

j=0

P
(
αnz+

(
1−αn

)
(TP) jzn

)
, n≥ 0,

(1.13)

where y, z, y0, z0 are arbitrary (but fixed) in C and {αn} ⊆ [0,1]. More precisely, they
proved the following theorem.

Theorem 1.2 [3]. Let H be a Hilbert space, C a closed convex subset of H , P the met-
ric projection of H onto C, and let T be a nonexpansive nonself-mapping from C into H
such that F(T) is nonempty, and {αn} a sequence of real numbers such that 0 ≤ αn ≤ 1,
limn→∞αn = 0, and

∑∞
n=0αn = ∞. Suppose that {yn} and {zn} are defined by (1.13), re-

spectively. Then {yn} and {zn} converge strongly to PF(T)y and PF(T)z in F(T), respectively,
where PF(T) is the metric projection from C onto F(T).

The purpose of this paper is twofold. First, we study the convergence of the sequence
{xn} defined by (1.7) in Hilbert spaces. Second, we prove the strong convergence of the
iteration schemes {yn} and {zn} defined by (1.10) and (1.11), respectively, in Hilbert
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spaces. Our results extend and improve the corresponding ones announced by Shimizu
and Takahashi [2], Matsushita and Kuroiwa [3], and others.

2. Preliminaries

For the sake of convenience, we restate the following concepts and results.

Lemma 2.1. Let H be a real Hilbert space, C a closed convex subset of H , and PC : H → C
the metric (nearest point) projection. Given x ∈H and y ∈ C, then y = PCx if and only if
there holds the inequality

〈x− y, y− z〉 ≥ 0 ∀z ∈ C. (2.1)

Definition 1. A mapping T : C → H is said to satisfy nowhere normal outward (NNO)
condition if and only if for each x ∈ C, Tx ∈ SCx , where Sx = {y ∈H : y 
= x, Py = x} and
P is the metric projection from H onto C.

The following results were proved by Matsushita and Kuroiwa [4].

Lemma 2.2 (see [4, Proposition 2, page 208]). Let H be a Hilbert space, C a nonempty
closed convex subset of H , P the metric projection of H onto C, and T : C→H a nonexpan-
sive nonself-mapping. If F(T) is nonempty, then T satisfies NNO condition.

Lemma 2.3 (see [4, Proposition 1, page 208]). Let H be a Hilbert space, C a nonempty
closed convex subset of H , P the metric projection of H onto C, and T : C → H a nonself-
mapping. Suppose that T satisfies NNO condition. Then F(PT)= F(T).

Lemma 2.4 (see [4]). Let H be a Hilbert space, C a closed convex subset of H , and T : C→ C
a nonexpansive self-mapping with F(T) 
= ∅. Let {xn} be a sequence in C such that {xn+1−
(1/(n+ 1))

∑n+1
i=1 T

ixn} converges strongly to 0 as n→∞ and let {xnj} be a subsequence of
{xn} such that {xnj} converges weakly to x. Then x is a fixed point of T .

Finally, the following two lemmas are useful for the proof of our main theorems.

Lemma 2.5 (see [5]). Let {αn} be a sequence in [0,1] that satisfies limn→∞αn = 0 and
∑∞

n=1αn =∞. Let {an} be a sequence of nonnegative real numbers such that for all ε > 0,
there exists an integer N ≥ 1 such that for all n≥N ,

an+1 ≤
(
1−αn

)
an +αnε. (2.2)

Then limn→∞ an = 0.

Lemma 2.6 (see [5]). Let H be a Hilbert space, C a nonempty closed convex subset of H ,
and f : C→ C a contraction with coefficient α < 1. Then

〈
x− y, (I − f )x− (I − f )y

〉≥ (1−α)‖x− y‖2, x, y ∈ C. (2.3)

Remark 2.7. As in Lemma 2.6, if f is a nonexpansive mapping, then

〈
x− y, (I − f )x− (I − f )y

〉≥ 0 ∀x, y ∈ C. (2.4)
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3. Main results

Theorem 3.1. Let H be a Hilbert space, C a nonempty closed convex subset of H , P the met-
ric projection of H onto C, and T : C→H a nonexpansive nonself-mapping with F(T) 
= ∅.
Let {tn} be sequence in (0,1) which satisfies limn→∞ tn = 0. Then for a contraction mapping
f : C→ C with coefficient α ∈ (0,1), the sequence {xn} defined by (1.7) converges strongly
to z, where z is the unique solution in F(T) to the variational inequality

〈
(I − f )z, x− z

〉≥ 0, x ∈ F(T), (3.1)

or equivalently z = PF(T) f (z), where PF(T) is a metric projection mapping from H onto F(T).

Proof. Since F(T) is nonempty, it follows that T satisfies NNO condition by Lemma 2.2.
We first show that {xn} is bounded. Let q ∈ F(T). We note that

∥
∥xn− q

∥
∥=

∥
∥
∥
∥tn f

(
xn
)

+
(
1− tn

)1
n

n∑

j=1

(PT) jxn− q
∥
∥
∥
∥

≤
∥
∥
∥
∥tn
(
f
(
xn
)− q

)
+
(
1− tn

)1
n

n∑

j=1

(
(PT) jxn− (PT) jq

)
∥
∥
∥
∥

≤ tn
∥
∥ f
(
xn
)− q

∥
∥+

(
1− tn

)∥
∥xn− q

∥
∥ ∀n≥ 1.

(3.2)

So we get

∥
∥xn− q

∥
∥≤ ∥∥ f (xn

)− q
∥
∥≤ ∥∥ f (xn

)− f (q)
∥
∥+

∥
∥ f (q)− q

∥
∥

≤ α
∥
∥xn− q

∥
∥+

∥
∥ f (q)− q

∥
∥ ∀n≥ 1.

(3.3)

Hence

∥
∥xn− q

∥
∥≤ 1

1−α

∥
∥ f (q)− q

∥
∥ ∀n≥ 1. (3.4)

This shows that {xn} is bounded, so are { f (xn)}, {(1/n)
∑n

j=1(PT) jxn}. Further, we note
that

∥
∥
∥
∥xn−

1
n

n∑

j=1

(PT) jxn

∥
∥
∥
∥=

∥
∥
∥
∥tn f

(
xn
)

+
(
1− tn

)1
n

n∑

j=1

(PT) jxn− 1
n

n∑

j=1

(PT) jxn

∥
∥
∥
∥

= tn

∥
∥
∥
∥ f
(
xn
)− 1

n

n∑

j=1

(PT) jxn

∥
∥
∥
∥

≤ tn

(
∥
∥ f
(
xn
)∥
∥+

∥
∥
∥
∥

1
n

n∑

j=1

(PT) jxn

∥
∥
∥
∥

)

−→ 0 as n−→∞.

(3.5)
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Thus {xn − (1/n)
∑n

j=1(PT) jxn} converges strongly to 0. Since {xn} is a bounded se-
quence, there is a subsequence {xnj} of {xn}which converges weakly to z ∈ C. By Lemmas
2.3 and 2.4, we have z ∈ F(T). For each n≥ 1, since

xn− z = tn
(
f
(
xn
)− z

)
+
(
1− tn

)1
n

n∑

j=1

(
(PT) jxn− z

)
, (3.6)

we get

∥
∥xn− z

∥
∥2 = (1− tn

)
〈

1
n

n∑

j=1

(
(PT) jxn− z

)
, xn− z

〉

+ tn
〈
f
(
xn
)− z, xn− z

〉

≤ (1− tn
)∥
∥xn− z

∥
∥2

+ tn
〈
f
(
xn
)− z, xn− z

〉
.

(3.7)

Hence

∥
∥xn− z

∥
∥2 ≤ 〈 f (xn

)− z, xn− z
〉

= 〈 f (xn
)− f (z), xn− z

〉
+
〈
f (z)− z, xn− z

〉

≤ α
∥
∥xn− z

∥
∥2

+
〈
f (z)− z, xn− z

〉
.

(3.8)

This implies that

∥
∥xn− z

∥
∥2 ≤ 1

1−α

〈
xn− z, f (z)− z

〉
. (3.9)

In particular, we have

∥
∥xnj − z

∥
∥2 ≤ 1

1−α

〈
xnj − z, f (z)− z

〉
. (3.10)

Since xnj ⇀ z, it follows that

xnj −→ z as j −→∞. (3.11)

Next we show that z ∈ C solves the variational inequality (3.1). Indeed, we note that

xn = tn f
(
xn
)

+
(
1− tn

)1
n

n∑

j=1

(PT) jxn ∀n≥ 1, (3.12)

we have

(I − f )xn =−1− tn
tn

(

xn− 1
n

n∑

j=1

(PT) jxn

)

. (3.13)
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Thus for any q ∈ F(T), we infer by Remark 2.7 that

〈
(I − f )xn, xn− q

〉=−1− tn
tn

〈(

I − 1
n

n∑

j=1

(PT) j
)

xn, xn− q

〉

=−1− tn
tn

〈(

I − 1
n

n∑

j=1

(PT) j
)

xn−
(

I − 1
n

n∑

j=1

(PT) j
)

z, xn− q

〉

≤ 0 ∀n≥ 1.
(3.14)

In particular

〈
(I − f )xnj , xnj − q

〉≤ 0 ∀ j ≥ 1. (3.15)

Taking j →∞, we obtain

〈
(I − f )z, z− q

〉≤ 0 ∀q ∈ F(T), (3.16)

or equivalent to z = PF(T) f (z) as required. Finally, we will show that the whole sequence
{xn} converges strongly to z. Let another subsequence {xnk} of {xn} be such that xnk →
z′ ∈ C as k→∞. Then z′ ∈ F(T), it follows from the inequality (3.16) that

〈
(I − f )z, z− z′

〉≤ 0. (3.17)

Interchange z and z′ to obtain

〈
(I − f )z′, z′ − z

〉≤ 0. (3.18)

Adding (3.17) and (3.18) and by Lemma 2.6, we get

(1−α)‖z− z′‖2 ≤ 〈z− z′, (I − f )z− (I − f )z′
〉≤ 0. (3.19)

This implies that z = z′. Hence {xn} converges strongly to z. This completes the proof.
�

Theorem 3.2. Let C be a nonempty closed convex subset of a Hilbert space H , P the metric
projection of H onto C, and T : C → H a nonexpansive nonself-mapping with F(T) 
= ∅.
Let {αn} be a sequence in [0,1] which satisfies limn→∞αn = 0 and

∑∞
n=1αn =∞. Then for

a contraction mapping f : C → C with coefficient α ∈ (0,1), the sequence {yn} defined by
(1.10) converges strongly to z, where z is the unique solution in F(T) of the variational
inequality (3.1).
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Proof. Since F(T) is nonempty, it follows that T satisfies NNO condition by Lemma 2.2.
We first show that {yn} is bounded. Let q ∈ F(T). We note that

∥
∥yn+1− q

∥
∥=

∥
∥
∥
∥
∥
αn f

(
yn
)

+
(
1−αn

) 1
n+ 1

n∑

j=0

(PT) j yn− q

∥
∥
∥
∥
∥

≤ αn
∥
∥ f
(
yn
)− q

∥
∥+

(
1−αn

) 1
n+ 1

n∑

j=0

∥
∥(PT) j yn− q

∥
∥

≤ αn
∥
∥ f
(
yn
)− f (q)

∥
∥+αn

∥
∥ f (q)− q

∥
∥+

(
1−αn

)∥
∥yn− q

∥
∥

≤ αnα
∥
∥yn− q

∥
∥+αn

∥
∥ f (q)− q

∥
∥+

(
1−αn

)∥
∥yn− q

∥
∥

= (1−αn(1−α)
)∥
∥yn− q

∥
∥+αn

∥
∥ f (q)− q

∥
∥

≤max
{
∥
∥yn− q

∥
∥,

1
1−α

∥
∥ f (q)− q

∥
∥
}

∀n≥ 1.

(3.20)

So by induction, we get

∥
∥yn− q

∥
∥≤max

{
∥
∥y0− q

∥
∥,

1
1−α

∥
∥ f (q)− q

∥
∥
}

, n≥ 0. (3.21)

This shows that {yn} is bounded, so are { f (yn)} and {(1/(n+ 1))
∑n

j=0(PT) j yn}. We ob-
serve that
∥
∥
∥
∥
∥
yn+1− 1

n+ 1

n∑

j=0

(PT) j yn

∥
∥
∥
∥
∥
=
∥
∥
∥
∥
∥
αn f

(
yn
)

+
(
1−αn

) 1
n+ 1

n∑

j=0

(PT) j yn− 1
n+ 1

n∑

j=0

(PT) j yn

∥
∥
∥
∥
∥

= αn

∥
∥
∥
∥
∥
f
(
yn
)− 1

n+ 1

n∑

j=0

(PT) j yn

∥
∥
∥
∥
∥

≤ αn

(
∥
∥ f
(
yn
)∥
∥+

∥
∥
∥
∥
∥

1
n+ 1

n∑

j=0

(PT) j yn

∥
∥
∥
∥
∥

)

.

(3.22)

Hence {yn+1− (1/(n+ 1))
∑n

j=0(PT) j yn} converges strongly to 0. We next show that

limsup
n→∞

〈
z− yn, z− f (z)

〉≤ 0. (3.23)

Let {ynj} be a subsequence of {yn} such that

lim
j→∞

〈
z− ynj , z− f (z)

〉= limsup
n→∞

〈
z− yn, z− f (z)

〉
, (3.24)

and ynj ⇀ q ∈ C. It follows by Lemmas 2.3 and 2.4 that q ∈ F(PT) = F(T). By the in-
equality (3.1), we get

limsup
n→∞

〈
z− yn, z− f (z)

〉= 〈z− q, z− f (z)
〉≤ 0 (3.25)
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as required. Finally, we will show that yn→ z. For each n≥ 0, we have

∥
∥yn+1− z

∥
∥2 = ∥∥yn+1− z+αn

(
z− f (z)

)−αn
(
z− f (z)

)∥
∥2

≤ ∥∥yn+1− z+αn
(
z− f (z)

)∥
∥2

+ 2αn
〈
yn+1− z, f (z)− z

〉

=
∥
∥
∥
∥
∥
αn f

(
yn
)

+
(
1−αn

) 1
n+ 1

n∑

j=0

(PT) j yn−
(
αn f (z) +

(
1−αn

)
z
)
∥
∥
∥
∥
∥

2

+ 2αn
〈
yn+1− z, f (z)− z

〉

=
∥
∥
∥
∥
∥
αn
(
f
(
yn
)− f (z)

)
+
(
1−αn

) 1
n+ 1

n∑

j=0

(
(PT) j yn− z

)
∥
∥
∥
∥
∥

2

+ 2αn
〈
yn+1− z, f (z)− z

〉

≤
[

αn
∥
∥ f
(
yn
)− f (z)

∥
∥+

(
1−αn

) 1
n+ 1

n∑

j=0

∥
∥(PT) j yn− z

∥
∥

]2

+ 2αn
〈
yn+1− z, f (z)− z

〉

≤
[

αnα
∥
∥yn− z

∥
∥+

(
1−αn

) 1
n+ 1

n∑

j=0

∥
∥yn− z

∥
∥

]2

+ 2αn
〈
yn+1− z, f (z)− z

〉

= (1−αn(1−α)
)2∥∥yn− z

∥
∥2

+ 2αn
〈
yn+1− z, f (z)− z

〉

≤ (1−αn(1−α)
)∥
∥yn− z

∥
∥2

+ 2αn
〈
yn+1− z, f (z)− z

〉
.

(3.26)

Now, let ε > 0 be arbitrary. Then, by the fact (3.23), there exists a natural number N such
that

〈
z− yn, z− f (z)

〉≤ ε
2

∀n≥N. (3.27)

From (3.26), we get

∥
∥yn+1− z

∥
∥2 ≤ (1−αn(1−α)

)∥
∥yn− z

∥
∥2

+αnε. (3.28)

By Lemma 2.5, the sequence {yn} converges strongly to a fixed point z of T . This com-
pletes the proof. �

By using the same arguments and techniques as those of Theorem 3.2, we have also
the following main theorem.

Theorem 3.3. Let C be a nonempty closed convex subset of a Hilbert space H , P the metric
projection of H onto C, and T : C → H a nonexpansive nonself-mapping with F(T) 
= ∅.
Let {αn} be sequence in [0,1] which satisfies limn→∞αn = 0 and

∑∞
n=1αn = ∞. Then for

a contraction mapping f : C → C with coefficient α ∈ (0,1), the sequence {zn} defined by
(1.11) converges strongly to z, where z is the unique solution in F(T) of the variational
inequality (3.1).
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