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Starting from the study of the Shepard nonlinear operator of max-prod type by Bede et al. (2006, 2008),
in the book by Gal (2008), Open Problem 5.5.4, pages 324–326, the Bernstein max-prod-type operator
is introduced and the question of the approximation order by this operator is raised. In recent
paper, Bede and Gal by using a very complicated method to this open question an answer is given
by obtaining an upper estimate of the approximation error of the form Cω1(f ; 1/

√
n) (with an

unexplicit absolute constant C > 0) and the question of improving the order of approximation
ω1(f ; 1/

√
n) is raised. The first aim of this note is to obtain this order of approximation but by

a simpler method, which in addition presents, at least, two advantages: it produces an explicit
constant in front of ω1(f ; 1/

√
n) and it can easily be extended to other max-prod operators of

Bernstein type. However, for subclasses of functions f including, for example, that of concave
functions, we find the order of approximationω1(f ; 1/n), which for many functions f is essentially
better than the order of approximation obtained by the linear Bernstein operators. Finally, some
shape-preserving properties are obtained.

Copyright q 2009 Barnabás Bede et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

Starting from the study of the Shepard nonlinear operator of max-prod-type in [1, 2], by the Open
Problem in a recent monograph [3, pages 324–326, 5.5.4], the following nonlinear Bernstein
operator of max-prod type is introduced (here

∨
means maximum):

B
(M)
n

(
f
)
(x) =

∨n
k=0pn,k(x)f(k/n)∨n

k=0pn,k(x)
, (1.1)
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where pn,k(x) =
(

n

k

)
xk(1 − x)n−k, for which by a very complicated method in [4, Theorem

6], an upper estimate of the approximation error of the form Cω1(f ; 1/
√
n) (with C > 0

unexplicit absolute constant) is obtained. Also, by Remark 7, 2 in the same paper [4], the
question if this order of approximation could be improved is raised.

The first aim of this note is to obtain the same order of approximation but by a
simpler method, which in addition presents, at least, two advantages: it produces an explicit
constant in front of ω1(f ; 1/

√
n), and it can easily be extended to other max-prod operators

of Bernstein type. Then, one proves by a counterexample that in a sense, for arbitrary f,
this order of approximation with respect to ω1(f ; ·) cannot be improved, giving thus a
negative answer to a question raised in [4, Remark 7, 2]. However, for subclasses of functions
f including, for example, that of concave functions, we find the order of approximation
ω1(f ; 1/n), which for many functions, f is essentially better than the order of approximation
obtained by the linear Bernstein operators. Finally, some shape-preserving properties are
presented.

Section 2 presents some general results on nonlinear operators, in Section 3 we prove
several auxiliary lemmas, Section 4 contains the approximation results, while in Section 5 we
present some shape-preserving properties. The paper ends with Section 6 containing some
conclusions concerning the comparisons between the max-product and the linear Bernstein
operators.

2. Preliminaries

For the proof of the main results, we need some general considerations on the so-called
nonlinear operators of max-prod kind. Over the set of positive reals, R+, we consider the
operations ∨ (maximum) and “·” product. Then (R+,∨, ·) has a semiring structure and we call
it as Max-Product algebra.

Let I ⊂ R be a bounded or unbounded interval, and

CB+(I) =
{
f : I −→ R+; f continuous and bounded on I

}
. (2.1)

The general form of Ln : CB+(I) → CB+(I), (called here a discrete max-product-type
approximation operator) studied in the paper will be

Ln

(
f
)
(x) =

n∨

i=0

Kn(x, xi) · f(xi), (2.2)

or

Ln

(
f
)
(x) =

∞∨

i=0

Kn(x, xi) · f(xi), (2.3)

where n ∈ N, f ∈ CB+(I), Kn(·, xi) ∈ CB+(I), and xi ∈ I, for all i. These operators are
nonlinear, positive operators and moreover they satisfy a pseudolinearity condition of the
form

Ln

(
α · f ∨ β · g)(x) = α · Ln

(
f
)
(x) ∨ β · Ln

(
g
)
(x), ∀α, β ∈ R+, f, g : I −→ R+. (2.4)
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In this section we present some general results on these kinds of operators which
will be useful later in the study of the Bernstein max-product-type operator considered in
Section 1.

Lemma 2.1 (see [4]). Let I ⊂ R be a bounded or unbounded interval:

CB+(I) =
{
f : I −→ R+; f continuous and bounded on I

}
, (2.5)

and let Ln : CB+(I) → CB+(I), n ∈ N, be a sequence of operators satisfying the following properties:

(i) if f, g ∈ CB+(I) satisfy f ≤ g, then Ln(f) ≤ Ln(g) for all n ∈ N;

(ii) Ln(f + g) ≤ Ln(f) + Ln(g) for all f, g ∈ CB+(I).

Then for all f, g ∈ CB+(I), n ∈ N, and x ∈ I, we have

∣
∣Ln

(
f
)
(x) − Ln

(
g
)
(x)

∣
∣ ≤ Ln

(∣
∣f − g

∣
∣
)
(x). (2.6)

Proof. Since it is very simple, we reproduce here the proof in [4]. Let f, g ∈ CB+(I). We have
f = f − g + g ≤ |f − g| + g, which by conditions (i)-(ii) successively implies Ln(f)(x) ≤
Ln(|f − g|)(x) + Ln(g)(x), that is, Ln(f)(x) − Ln(g)(x) ≤ Ln(|f − g|)(x).

Writing now g = g − f + f ≤ |f − g| + f and applying the above reasonings, it follows
that Ln(g)(x) − Ln(f)(x) ≤ Ln(|f − g|)(x), which, combined with the above inequality, gives
|Ln(f)(x) − Ln(g)(x)| ≤ Ln(|f − g|)(x).

Remark 2.2. (1) It is easy to see that the Bernstein max-product operator satisfies the
conditions in Lemma 2.1, (i), (ii). In fact, instead of (i), it satisfies the stronger condition:

Ln

(
f ∨ g

)
(x) = Ln

(
f
)
(x) ∨ Ln

(
g
)
(x), f, g ∈ CB+(I). (2.7)

Indeed, taking in the above equality f ≤ g, f, g ∈ CB+(I), it easily follows that Ln(f)(x) ≤
Ln(g)(x).

(2) In addition, it is immediate that the Bernstein max-product operator is positive
homogenous, that is, Ln(λf) = λLn(f) for all λ ≥ 0.

Corollary 2.3 (see [4]). Let Ln : CB+(I) → CB+(I), n ∈ N, be a sequence of operators satisfying
conditions (i)-(ii) in Lemma 2.1 and in addition being positive homogenous. Then for all f ∈ CB+(I),
n ∈ N, and x ∈ I, one has

∣
∣f(x) − Ln

(
f
)
(x)

∣
∣ ≤

[
1
δ
Ln

(
ϕx

)
(x) + Ln(e0)(x)

]

ω1
(
f ; δ

)
I + f(x) · |Ln(e0)(x) − 1|, (2.8)

where δ > 0, e0(t) = 1 for all t ∈ I, ϕx(t) = |t − x| for all t ∈ I, x ∈ I, ω1(f ; δ)I = max{|f(x) −
f(y)|;x, y ∈ I, |x − y| ≤ δ}, and if I is unbounded, then we suppose that there exists Ln(ϕx)(x) ∈
R+

⋃{+∞}, for any x ∈ I, n ∈ N.
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Proof. The proof is identical with that for positive linear operators and because of its
simplicity, we reproduce it what follows. Indeed, from the identity

Ln

(
f
)
(x) − f(x) =

[
Ln

(
f
)
(x) − f(x) · Ln(e0)(x)

]
+ f(x)[Ln(e0)(x) − 1], (2.9)

it follows (by the positive homogeneity and by Lemma 2.1) that

∣
∣f(x) − Ln

(
f
)
(x)

∣
∣ ≤ ∣

∣Ln

(
f(x)

)
(x) − Ln

(
f(t)

)
(x)

∣
∣ +

∣
∣f(x)

∣
∣ · |Ln(e0)(x) − 1|

≤ Ln

(∣
∣f(t) − f(x)

∣
∣
)
(x) +

∣
∣f(x)

∣
∣ · |Ln(e0)(x) − 1|.

(2.10)

Now, since for all t, x ∈ I, we have

∣
∣f(t) − f(x)

∣
∣ ≤ ω1

(
f ; |t − x|)I ≤

[
1
δ
|t − x| + 1

]

ω1
(
f ; δ

)
I , (2.11)

replacing the above, we immediately obtain the estimate in the statement.

An immediate consequence of Corollary 2.3 is as follows.

Corollary 2.4 (see [4]). Suppose that in addition to the conditions in Corollary 2.3, the sequence
(Ln)n satisfies Ln(e0) = e0, for all n ∈ N. Then for all f ∈ CB+(I), n ∈ N, and x ∈ I, one has

∣
∣f(x) − Ln

(
f
)
(x)

∣
∣ ≤

[

1 +
1
δ
Ln

(
ϕx

)
(x)

]

ω1
(
f ; δ

)
I . (2.12)

3. Auxiliary Results

Since it is easy to check that B(M)
n (f)(0) − f(0) = B

(M)
n (f)(1) − f(1) = 0 for all n, notice that

in the notations, proofs and statements of the all approximation results, that is, in Lemmas
3.1–3.3, Theorem 4.1, Lemmas 4.2–4.4, Corollaries 4.6, 4.7, in fact we always may suppose that
0 < x < 1. For the proofs of the main results, we need some notations and auxiliary results, as
follows.

For each k, j ∈ {0, 1, 2, . . . n} and x ∈ [j/(n + 1), (j + 1)/(n + 1)], let us denote

Mk,n,j(x) =
pn,k(x)|k/n − x|

pn,j(x)
, mk,n,j(x) =

pn,k(x)
pn,j(x)

. (3.1)

It is clear that if k ≥ j + 1, then

Mk,n,j(x) =
pn,k(x)(k/n − x)

pn,j(x)
, (3.2)
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and if k ≤ j − 1, then

Mk,n,j(x) =
pn,k(x)(x − k/n)

pn,j(x)
. (3.3)

Also, for each k, j ∈ {0, 1, 2, . . . n}, k ≥ j + 2, and x ∈ [j/(n + 1), (j + 1)/(n + 1)] let us
denote

Mk,n,j(x) =
pn,k(x)(k/(n + 1) − x)

pn,j(x)
, (3.4)

and for each k, j ∈ {0, 1, 2, . . . n}, k ≤ j − 2, and x ∈ [j/(n + 1), (j + 1)/(n + 1)] let us denote

Mk,n,j(x) =
pn,k(x)(x − k/(n + 1))

pn,j(x)
. (3.5)

Lemma 3.1. Let x ∈ [j/(n + 1), (j + 1)/(n + 1)]:

(i) for all k, j ∈ {0, 1, 2, . . . n}, k ≥ j + 2, one has

Mk,n,j(x) ≤ Mk,n,j(x) ≤ 3Mk,n,j(x); (3.6)

(ii) for all k, j ∈ {0, 1, 2, . . . n}, k ≤ j − 2, one has

Mk,n,j(x) ≤ Mk,n,j(x) ≤ 6Mk,n,j(x). (3.7)

Proof. (i) The inequality Mk,n,j(x) ≤ Mk,n,j(x) is immediate.
On the other hand,

Mk,n,j(x)

Mk,n,j(x)
=

k/n − x

k/(n + 1) − x
≤ k/n − j/(n + 1)

k/(n + 1) − (j + 1
)
/(n + 1)

≤ kn + k − nj

n
(
k − j − 1

) =
k − j

k − j − 1
+

k

n
(
k − j − 1

) ≤ 3,

(3.8)

which proves (i).
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(ii) The inequality Mk,n,j(x) ≤ Mk,n,j(x) is immediate.
On the other hand,

Mk,n,j(x)

Mk,n,j(x)
=

x − k/(n + 1)
x − k/n

≤
(
j + 1

)
/(n + 1) − k/(n + 1)

j/(n + 1) − k/n

=
(n + 1)

(
j + 1 − k

)

nj − nk − k
≤ (n + 1)

(
j + 1 − k

)

nj − nk − n
=

n + 1
n

· j + 1 − k

j − k − 1

≤ 2 · j + 1 − k

j − k − 1
= 2

(

1 +
2

j − k − 1

)

≤ 6,

(3.9)

which proves (ii) and the lemma.

Lemma 3.2. For all k, j ∈ {0, 1, 2, . . . , n} and x ∈ [j/(n + 1), (j + 1)/(n + 1)], one has

mk,n,j(x) ≤ 1. (3.10)

Proof. We have two cases: 1) k ≥ j, 2) k ≤ j.

Case 1. Since clearly the function h(x) = (1−x)/x is nonincreasing on [j/(n+1), (j+1)/(n+1)],
it follows that

mk,n,j(x)
mk+1,n,j(x)

=
k + 1
n − k

· 1 − x

x
≥ k + 1

n − k
· 1 −

(
j + 1

)
/(n + 1)

(
j + 1

)
/(n + 1)

=
k + 1
n − k

· n − j

j + 1
≥ 1, (3.11)

which implies mj,n,j(x) ≥ mj+1,n,j(x) ≥ mj+2,n,j(x) ≥ · · · ≥ mn,n,j(x).

Case 2. We get

mk,n,j(x)
mk−1,n,j(x)

=
n − k + 1

k
· x

1 − x
≥ n − k + 1

k
· j/(n + 1)
1 − j/(n + 1)

=
n − k + 1

k
· j

n + 1 − j
≥ 1,

(3.12)

which immediately implies that

mj,n,j(x) ≥ mj−1,n,j(x) ≥ mj−2,n,j(x) ≥ · · · ≥ m0,n,j(x). (3.13)

Since mj,n,j(x) = 1, the conclusion of the lemma is immediate.

Lemma 3.3. Let x ∈ [j/(n + 1), (j + 1)/(n + 1)].

(i) If k ∈ {j + 2, j + 3, . . . , n − 1} is such that k −
√
k + 1 ≥ j, thenMk,n,j(x) ≥ Mk+1,n,j(x).

(ii) If k ∈ {1, 2, . . . j − 2} is such that k +
√
k ≤ j, thenMk,n,j(x) ≥ Mk−1,n,j(x).
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Proof. (i)We observe that

Mk,n,j(x)

Mk+1,n,j(x)
=

k + 1
n − k

· 1 − x

x
· k/(n + 1) − x

(k + 1)/(n + 1) − x
. (3.14)

Since the function g(x) = ((1−x)/x)(k/(n+1)−x)/((k+1)/(n+1)−x) clearly is nonincreasing,
it follows that g(x) ≥ g((j + 1)/(n + 1)) = ((n − j)/(j + 1)) · ((k − j − 1)/(k − j)) for all
x ∈ [j/(n+1), (j+1)/(n+1)]. Then, since the condition k−

√
k + 1 ≥ j implies (k+1)(k−j−1) ≥

(j + 1)(k − j), we obtain

Mk,n,j(x)

Mk+1,n,j(x)
≥ k + 1

n − k
· n − j

j + 1
· k − j − 1

k − j
≥ 1. (3.15)

(ii)We observe that

Mk,n,j(x)

Mk−1,n,j(x)
=

n − k + 1
k

· x

1 − x
· x − k/(n + 1)
x − (k − 1)/(n + 1)

. (3.16)

Since the function h(x) = (x/(1−x)) · (x−k/(n+ 1))/(x− (k − 1)/(n+ 1)) is nondecreasing, it
follows that h(x) ≥ h(j/(n+ 1)) = (j/(n+ 1− j)) · ((j −k)/(j −k + 1)) for all x ∈ [j/(n+ 1), (j +
1)/(n + 1)]. Then, since the condition k +

√
k ≤ j implies j(j − k) ≥ k(j − k + 1), we obtain

Mk,n,j(x)

Mk−1,n,j(x)
≥ n − k + 1

k
· j

n + 1 − j
· j − k

j − k + 1
≥ 1, (3.17)

which proves the lemma.

Also, a key result in the proof of the main result is the following.

Lemma 3.4. One has

n∨

k=0

pn,k(x) = pn,j(x), ∀x ∈
[

j

n + 1
,
j + 1
n + 1

]

, j = 0, 1, . . . , n, (3.18)

where pn,k(x) =
(

n

k

)
xk(1 − x)n−k.

Proof. First we show that for fixed n ∈ N and 0 ≤ k < k + 1 ≤ n,we have

0 ≤ pn,k+1(x) ≤ pn,k(x), iff x ∈
[

0,
k + 1
n + 1

]

. (3.19)
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Indeed, the inequality one reduces to

0 ≤
(

n

k + 1

)

xk+1(1 − x)n−(k+1) ≤
(
n

k

)

xk(1 − x)n−k (3.20)

after simplifications is equivalent to

0 ≤ x

[(
n

k + 1

)

+

(
n

k

)]

≤
(
n

k

)

. (3.21)

However, since
(

n

k+1

)
+
(

n

k

)
=
(

n+1

k+1

)
, the above inequality immediately becomes equivalent

to

0 ≤ x ≤ k + 1
n + 1

. (3.22)

By taking k = 0, 1, . . . , in the inequality just proved above, we get

pn,1(x) ≤ pn,0(x), iff x ∈
[

0,
1

n + 1

]

,

pn,2(x) ≤ pn,1(x), iff x ∈
[

0,
2

n + 1

]

,

pn,3(x) ≤ pn,2(x), iff x ∈
[

0,
3

n + 1

]

,

(3.23)

and so on,

pn,k+1(x) ≤ pn,k(x), iff x ∈
[

0,
k + 1
n + 1

]

, (3.24)

and so on,

pn,n−2(x) ≤ pn,n−3(x), iff x ∈
[

0,
n − 2
n + 1

]

,

pn,n−1(x) ≤ pn,n−2(x), iff x ∈
[

0,
n − 1
n + 1

]

,

pn,n(x) ≤ pn,n−1(x), iff x ∈
[

0,
n

n + 1

]

.

(3.25)
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From all these inequalities, reasoning by recurrence we easily obtain

if x ∈
[

0,
1

n + 1

]

, then pn,k(x) ≤ pn,0(x), ∀k = 0, 1, . . . , n,

if x ∈
[

1
n + 1

,
2

n + 1

]

, then pn,k(x) ≤ pn,1(x), ∀k = 0, 1, . . . , n,

if x ∈
[

2
n + 1

,
3

n + 1

]

, then pn,k(x) ≤ pn,2(x), ∀k = 0, 1, . . . , n,

(3.26)

and so on, finally

if x ∈
[

n

n + 1
, 1
]

, then pn,k(x) ≤ pn,n(x), ∀k = 0, 1, . . . , n, (3.27)

which proves the lemma.

4. Approximation Results

If B(M)
n (f)(x) represents the nonlinear Bernstein operator of max-product type defined in

Section 1, then the first main result of this section is the following.

Theorem 4.1. If f : [0, 1] → R+ is continuous, then one has the estimate

∣
∣
∣B

(M)
n

(
f
)
(x) − f(x)

∣
∣
∣ ≤ 12ω1

(

f ;
1√
n + 1

)

, ∀n ∈ N, x ∈ [0, 1], (4.1)

where

ω1
(
f ; δ

)
= sup

{∣
∣f(x) − f

(
y
)∣
∣;x, y ∈ [0, 1],

∣
∣x − y

∣
∣ ≤ δ

}
. (4.2)

Proof. It is easy to check that the max-product Bernstein operators fulfill the conditions in
Corollary 2.4 and we have

∣
∣
∣B

(M)
n

(
f
)
(x) − f(x)

∣
∣
∣ ≤

(

1 +
1
δn

B
(M)
n

(
ϕx

)
(x)

)

ω1
(
f ; δn

)
, (4.3)

where ϕx(t) = |t − x|. So, it is enough to estimate

En(x) := B
(M)
n

(
ϕx

)
(x) =

∨n
k=0pn,k(x)|k/n − x|
∨n

k=0pn,k(x)
. (4.4)
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Let x ∈ [j/(n+1), (j +1)/(n+1)], where j ∈ {0, . . . , n} is fixed, arbitrary. By Lemma 3.4
we easily obtain

En(x) = max
k=0,...,n

{
Mk,n,j(x)

}
, x ∈

[
j

n + 1
,
j + 1
n + 1

]

. (4.5)

In all what follows we may suppose that j ∈ {1, . . . , n}, because for j = 0, simple calculation
shows that in this case, we get En(x) ≤ 1/n, for all x ∈ [0, 1/(n + 1)]. So it remains to obtain
an upper estimate for eachMk,n,j(x)when j = 1, . . . , n is fixed, x ∈ [j/(n + 1), (j + 1)/(n + 1)]
and k = 0, . . . , n. In fact, we will prove that

Mk,n,j(x) ≤ 6√
n + 1

, ∀x ∈
[

j

n + 1
,
j + 1
n + 1

]

, k = 0, . . . , n, (4.6)

which immediately will implies that

En(x) ≤ 6√
n + 1

, ∀x ∈ [0, 1], n ∈ N, (4.7)

and taking δn = 6/
√
n + 1 in (4.3), we immediately obtain the estimate in the statement.

In order to prove (4.6) we distinguish the following cases: 1) k ∈ {j − 1, j, j + 1},
2) k ≥ j + 2 and, 3) k ≤ j − 2.

Case 1. If k = j, thenMj,n,j(x) = |j/n−x|. Since x ∈ [j/(n+1), (j +1)/(n+1)], it easily follows
that Mj,n,j(x) ≤ 1/(n + 1).

If k = j + 1, then Mj+1,n,j(x) = mj+1,n,j(x)((j + 1)/n − x). Since by Lemma 3.2 we have
mj+1,n,j(x) ≤ 1, we obtainMj+1,n,j(x) ≤ (j+1)/n−x ≤ (j+1)/n−j/(n+1) = (n+j+1)/n(n+1) ≤
3/(n + 1).

If k = j − 1, then Mj−1,n,j(x) = mj−1,n,j(x)(x − (j − 1)/n) ≤ (j + 1)/(n + 1) − (j − 1)/n =
(2n − (j + 1))/n(n + 1) ≤ 2/(n + 1).

Case 2. Subcase a

Suppose first that k −
√
k + 1 < j. We get

Mk,n,j(x) = mk,n,j(x)
(

k

n + 1
− x

)

≤ k

n + 1
− x ≤ k

n + 1
− j

n + 1

≤ k

n + 1
− k −

√
k + 1

n + 1
=

√
k + 1
n + 1

≤ 1√
n + 1

.

(4.8)



International Journal of Mathematics and Mathematical Sciences 11

Subcase b

Suppose now that k −
√
k + 1 ≥ j. Since the function g(x) = x − √

x + 1 is nondecreasing on
the interval [0,∞), it follows that there exists k ∈ {0, 1, 2, . . . n}, of maximum value, such that

k −
√

k + 1 < j. Then, for k1 = k + 1, we get k1 −
√
k1 + 1 ≥ j and

Mk+1,n,j(x) = mk+1,n,j(x)

(
k + 1
n + 1

− x

)

≤ k + 1
n + 1

− x

≤ k + 1
n + 1

− j

n + 1
≤ k + 1

n + 1
− k −

√

k + 1
n + 1

=

√

k + 1 + 1
n + 1

≤ 2√
n + 1

.

(4.9)

Also, we have k1 ≥ j + 2. Indeed, this is a consequence of the fact that g is nondecreasing on
the interval [0,∞) and because it is easy to see that g(j + 1) < j. By Lemma 3.3, (i) it follows
that Mk+1,n,j(x) ≥ Mk+2,n,j(x) ≥ · · · ≥ Mn,n,j(x). We thus obtain Mk,n,j(x) ≤ 2/

√
n + 1 for any

k ∈ {k + 1, k + 2, . . . n}.

Therefore, in both subcases, by Lemma 3.1, (i) too, we get Mk,n,j(x) ≤ 6/
√
n + 1.

Case 3. Subcase a

Suppose first that k +
√
k ≥ j. Then we obtain

Mk,n,j(x) = mk,n,j(x)
(

x − k

n + 1

)

≤ j + 1
n + 1

− k

n + 1

≤ k +
√
k + 1

n + 1
− k

n + 1
=

√
k + 1
n + 1

≤
√
n + 1
n + 1

≤ 2√
n + 1

.

(4.10)

Subcase b

Suppose now that k+
√
k < j. Let k̃ ∈ {0, 1, 2, . . . n} be theminimum value such that k̃+

√

k̃ ≥ j.
Then k2 = k̃ − 1 satisfies k2 +

√
k2 < j and

Mk−1,n,j(x) = mk−1,n,j(x)

(

x − k̃ − 1
n + 1

)

≤ j + 1
n + 1

− k̃ − 1
n + 1

≤ k̃ +
√

k̃ + 1
n + 1

− k̃ − 1
n + 1

=

√

k̃ + 2
n + 1

≤ 3√
n + 1

.

(4.11)
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Also, because in this case we have j ≥ 2, it is immediate that k2 ≤ j − 2. By Lemma 3.3, (ii),
it follows that Mk−1,n,j(x) ≥ Mk−2,n,j(x) ≥ · · · ≥ M0,n,j(x). We obtain Mk,n,j(x) ≤ 3/

√
n + 1 for

any k ≤ j − 2 and x ∈ [j/(n + 1), (j + 1)/(n + 1)].

In both subcases, by Lemma 3.1, (ii) too, we get Mk,n,j(x) ≤ 3/
√
n + 1.

In conclusion, collecting all the estimates in the above cases and subcases we easily get
the relationship (4.6), which completes the proof.

Remarks. (1) The order of approximation in terms of ω1(f ;
√
n) in Theorem 4.1 cannot be

improved, in the sense that the order of maxx∈[0,1]{En(x)} is exactly 1/
√
n (here En(x) is

defined in the proof of Theorem 4.1). Indeed, for n ∈ N, let us take jn = [n/2], kn = jn + [
√
n],

xn = (jn + 1)/(n + 1) and denote ñ = n − [n/2]. Then, we can write

Mkn,n,jn(xn) =

( n

kn

)
xkn
n (1 − xn)n−kn

( n

jn

)
x
jn
n (1 − xn)n−jn

(
kn

n + 1
− xn

)

=

(
ñ − [√n

]
+ 1

)(
ñ − [√n

]
+ 2

) · · · ñ
([n/2] + 1)([n/2] + 2) · · · ([n/2] + [√n

])

(
[n/2] + 1

ñ

)[
√
n]

·
[√

n
] − 1

n + 1
.

(4.12)

Since 2[n/2] ≥ n−1, we easily get [n/2]+1 ≥ ñ, which implies (([n/2] + 1)/ñ )[
√
n] ≥ 1

for all n ∈ N. On the other hand,

(
ñ − [√n

]
+ 1

)(
ñ − [√n

]
+ 2

) · · · ñ
([n/2] + 1)([n/2] + 2) · · · ([n/2] + [√n

]) ≥
(

ñ − [
√
n] + 1

[n/2] + [
√
n]

)[
√
n]

≥
(
n/2 − √

n + 1
n/2 +

√
n

)√
n

.

(4.13)

Because limn→∞((n/2 −
√
n + 1)/(n/2 +

√
n))

√
n = e−4, there exists n0 ∈ N such that

(
ñ − [√n

]
+ 1

)(
ñ − [√n

]
+ 2

) · · · ñ
([n/2] + 1)([n/2] + 2) · · · ([n/2] + [√n

]) ≥ e−5 (4.14)

for all n ≥ n0. It follows

Mkn,n,jn(xn) ≥
e−5

([√
n
] − 1

)

n + 1
≥ e−5

6
√
n
, (4.15)

for all n ≥ max{n0, 4}. Taking into account Lemma 3.1, (i) too, it follows that for all n ≥
max{n0, 4}, we have Mkn,n,jn(xn) ≥ e−5/6

√
n, which implies the desired conclusion.

(2) With respect to the method of the proof in [4], the method in this paper presents,
at least, two advantages: it produces the explicit constant 12 in front of ω1(f ; 1/

√
n + 1) and

its ideas can be easily used for other max-prod Bernstein operators too, which will be done
in several forthcoming papers.

In what follows, we will prove that for large subclasses of functions f , the order of
approximation ω1(f ; 1/

√
n + 1) in Theorem 4.1 can essentially be improved to ω1(f ; 1/n).
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For this purpose, for any k, j ∈ {0, 1, . . . , n}, let us define the functions fk,n,j : [j/(n +
1), (j + 1)/(n + 1)] → R :

fk,n,j(x) = mk,n,j(x)f
(
k

n

)

=

(
n

k

)

( n

j

)

(
x

1 − x

)k−j
f

(
k

n

)

. (4.16)

Then it is clear that for any j ∈ {0, 1, . . . , n} and x ∈ [j/(n + 1), (j + 1)/(n + 1)], we can write

B
(M)
n

(
f
)
(x) =

n∨

k=0

fk,n,j(x). (4.17)

Also we need the following four auxiliary lemmas.

Lemma 4.2. Let f : [0, 1] → [0,∞) be such that

B
(M)
n

(
f
)
(x) = max

{
fj,n,j(x), fj+1,n,j(x)

} ∀x ∈
[

j

n + 1
,
j + 1
n + 1

]

. (4.18)

Then

∣
∣
∣B

(M)
n

(
f
)
(x) − f(x)

∣
∣
∣ ≤ 2ω1

(

f ;
1
n

)

, ∀x ∈
[

j

n + 1
,
j + 1
n + 1

]

, (4.19)

where ω1(f ; δ) = max{|f(x) − f(y)|;x, y ∈ [0, 1], |x − y| ≤ δ}.

Proof. We distinguish the two following cases.

Case (i). Let x ∈ [j/(n + 1), (j + 1)/(n + 1)] be fixed such that B(M)
n (f)(x) = fj,n,j(x). Because

by simple calculation we have −1/(n+1) ≤ x−j/n ≤ 1/(n+1) and fj,n,j(x) = f(j/n),
it follows that

∣
∣
∣B

(M)
n

(
f
)
(x) − f(x)

∣
∣
∣ ≤ ω1

(

f ;
1

n + 1

)

. (4.20)

Case (ii). Let x ∈ [j/(n+ 1), (j + 1)/(n+ 1)] be such that B(M)
n (f)(x) = fj+1,n,j(x).We have two

subcases:

(a) B(M)
n (f)(x) ≤ f(x), when evidently fj,n,j(x) ≤ fj+1,n,j(x) ≤ f(x) andwe immediately

get

∣
∣
∣B

(M)
n

(
f
)
(x) − f(x)

∣
∣
∣ =

∣
∣fj+1,n,j(x) − f(x)

∣
∣

= f(x) − fj+1,n,j(x) ≤ f(x) − f

(
j

n

)

≤ ω1

(

f ;
1

n + 1

)

;
(4.21)
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(b) B(M)
n (f)(x) > f(x), when

∣
∣
∣B

(M)
n

(
f
)
(x) − f(x)

∣
∣
∣ = fj+1,n,j(x) − f(x) = mj+1,n,j(x)f

(
j + 1
n

)

− f(x)

≤ f

(
j + 1
n

)

− f(x).

(4.22)

Because 0 ≤ (j + 1)/n− x ≤ (j + 1)/n− j/(n+ 1) = j/n(n+ 1) + 1/n < 2/n, it follows
f((j + 1)/n) − f(x) ≤ 2ω1(f ; 1/n), which proves the lemma.

Lemma 4.3. Let f : [0, 1] → [0,∞) be such that

B
(M)
n

(
f
)
(x) = max

{
fj,n,j(x), fj−1,n,j(x)

} ∀x ∈
[

j

n + 1
,
j + 1
n + 1

]

. (4.23)

Then

∣
∣
∣B

(M)
n

(
f
)
(x) − f(x)

∣
∣
∣ ≤ 2ω1

(

f ;
1
n

)

, ∀x ∈
[

j

n + 1
,
j + 1
n + 1

]

. (4.24)

Proof. We distinguish the two following cases:

Case (i). B(M)
n (f)(x) = fj,n,j(x), when as in Lemma 4.2 we get

∣
∣
∣B

(M)
n

(
f
)
(x) − f(x)

∣
∣
∣ ≤ ω1

(

f ;
1

n + 1

)

, (4.25)

Case (ii). B(M)
n (f)(x) = fj−1,n,j(x), when we have two subcases:

(a) B(M)
n (f)(x) ≤ f(x), when as in the case of Lemma 4.2 we obtain

∣
∣
∣B

(M)
n

(
f
)
(x) − f(x)

∣
∣
∣ ≤ ω1

(

f ;
1

n + 1

)

. (4.26)

(b) B(M)
n (f)(x) > f(x), when by using the same idea as in the subcase (b) of Lemma 4.2

and taking into account that

0 ≤ x − j − 1
n

≤ j + 1
n + 1

− j − 1
n

=
−j

n(n + 1)
+

1
n + 1

+
1
n
<

2
n
, (4.27)

we obtain

∣
∣
∣B

(M)
n

(
f
)
(x) − f(x)

∣
∣
∣ ≤ 2ω1

(

f ;
1
n

)

, (4.28)

which proves the lemma.
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Lemma 4.4. Let f : [0, 1] → [0,∞) be such that

B
(M)
n

(
f
)
(x) = max

{
fj−1,n,j(x), fj,n,j(x), fj+1,n,j(x)

}
, (4.29)

for all x ∈ [j/(n + 1), (j + 1)/(n + 1)]. Then

∣
∣
∣B

(M)
n

(
f
)
(x) − f(x)

∣
∣
∣ ≤ 2ω1

(

f ;
1
n

)

, ∀x ∈
[

j

(n + 1)
,

(
j + 1

)

(n + 1)

]

. (4.30)

Proof. Let x ∈ [j/(n + 1), (j + 1)/(n + 1)]. If B(M)
n (f)(x) = fj,n,j(x) or B

(M)
n (f)(x) = fj+1,n,j(x),

then B
(M)
n (f)(x) = max{fj,n,j(x), fj+1,n,j(x)} and from Lemma 4.2, it follows that

∣
∣
∣B

(M)
n

(
f
)
(x) − f(x)

∣
∣
∣ ≤ 2ω1

(

f ;
1
n

)

. (4.31)

If B(M)
n (f)(x) = fj−1,n,j(x), then B

(M)
n (f)(x) = max{fj,n,j(x), fj−1,n,j(x)} and from Lemma 4.3,

we get

∣
∣
∣B

(M)
n

(
f
)
(x) − f(x)

∣
∣
∣ ≤ 2ω1

(

f ;
1
n

)

, (4.32)

which ends the proof.

Lemma 4.5. Let f : [0, 1] → [0,∞) be concave. Then the following two properties hold:

(i) the function g : (0, 1] → [0,∞), g(x) = f(x)/x is nonincreasing;

(ii) the function h : [0, 1) → [0,∞), h(x) = f(x)/(1 − x) is nondecreasing.

Proof. (i) Let x, y ∈ (0, 1] be with x ≤ y. Then

f(x) = f

(
x

y
y +

y − x

y
0
)

≥ x

y
f
(
y
)
+
y − x

y
f(0) ≥ x

y
f
(
y
)
, (4.33)

which implies that f(x)/x ≥ f(y)/y.
(ii) Let x, y ∈ [0, 1) be with x ≥ y. Then

f(x) = f

(
1 − x

1 − y
y +

x − y

1 − y
1
)

≥ 1 − x

1 − y
f
(
y
)
+
x − y

1 − y
f(1) ≥ 1 − x

1 − y
f
(
y
)
, (4.34)

which implies f(x)/(1 − x) ≥ f(y)/(1 − y).

Corollary 4.6. Let f : [0, 1] → [0,∞) be a concave function. Then

∣
∣
∣B

(M)
n

(
f
)
(x) − f(x)

∣
∣
∣ ≤ 2ω1

(

f ;
1
n

)

, ∀x ∈ [0, 1]. (4.35)
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Proof. Let x ∈ [0, 1] and j ∈ {0, 1, . . . n} such that x ∈ [j/(n + 1), (j + 1)/(n + 1)]. Let k ∈
{0, 1, . . . n} be with k ≥ j. Then

fk+1,n,j(x) =

(
n

k+1

)

( n

j

)

(
x

1 − x

)k+1−j
f

(
k + 1
n

)

=

(
n

k

)

( n

j

)
n − k

k + 1

(
x

1 − x

)k−j x

1 − x
f

(
k + 1
n

)

.

(4.36)

From Lemma 4.5, (i), we get f((k + 1)/n)/(k + 1)/n ≤ f(k/n)/k/n, that is, f((k + 1)/n) ≤
((k + 1)/k)(f(k/n)). Since x/(1 − x) ≤ (j + 1)/(n − j), we get

fk+1,n,j(x) ≤

(
n

k

)

( n

j

)
n − k

k + 1

(
x

1 − x

)k−j j + 1
n − j

· k + 1
k

f

(
k

n

)

= fk,n,j(x)
j + 1
k

· n − k

n − j
.

(4.37)

It is immediate that for k ≥ j + 1, it follows that fk,n,j(x) ≥ fk+1,n,j(x). Thus we obtain

fj+1,n,j(x) ≥ fj+2,n,j(x) ≥ · · · ≥ fn,j,n(x). (4.38)

Now let k ∈ {0, 1, . . . n} be with k ≤ j. Then

fk−1,n,j(x) =

(
n

k−1

)

( n

j

)

(
x

1 − x

)k−1−j
f

(
k − 1
n

)

=

(
n

k

)

( n

j

) · k

n − k + 1

(
x

1 − x

)k−j 1 − x

x
f

(
k − 1
n

)

.

(4.39)

From Lemma 4.5, (ii), we get f(k/n)/(1−k/n) ≥ f((k−1)/n)/(1−(k−1)/n), that is, f(k/n) ≥
((n − k)/(n − k + 1))(f((k − 1)/n)). Because (1 − x)/x ≤ (n + 1 − j)/j, we get

fk−1,n,j(x) ≤

(
n

k

)

( n

j

)
k

n − k + 1

(
x

1 − x

)k−j n + 1 − j

j
· n − k + 1

n − k
f

(
k

n

)

= fk,n,j(x)
k

j
· n + 1 − j

n − k
.

(4.40)
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For k ≤ j − 1 it is immediate that fk,n,j(x) ≥ fk−1,n,j(x), which implies

fj−1,n.j(x) ≥ fj−2,n.j(x) ≥ · · · ≥ f0,n,j(x). (4.41)

From (4.38) and (4.42), we obtain

B
(M)
n

(
f
)
(x) = max

{
fj−1,n,j(x), fj,n,j(x), fj+1,n,j(x)

}
, (4.42)

which combined with Lemma 4.4 implies

∣
∣
∣B

(M)
n

(
f
)
(x) − f(x)

∣
∣
∣ ≤ 2ω1

(

f ;
1
n

)

, (4.43)

and proves the corollary.

Corollary 4.7. (i) If f : [0, 1] → [0,∞) is nondecreasing and such that the function g : (0, 1] →
[0,∞), g(x) = f(x)/x is nonincreasing, then

∣
∣
∣B

(M)
n

(
f
)
(x) − f(x)

∣
∣
∣ ≤ 2ω1

(

f ;
1
n

)

, ∀x ∈ [0, 1]. (4.44)

(ii) If f : [0, 1] → [0,∞) is nonincreasing and such that the function h : [0, 1) →
[0,∞), h(x) = f(x)/(1 − x) is nondecreasing, then

∣
∣
∣B

(M)
n

(
f
)
(x) − f(x)

∣
∣
∣ ≤ 2ω1

(

f ;
1
n

)

, ∀x ∈ [0, 1]. (4.45)

Proof. (i) Since f is nondecreasing it follows (see the proof of Theorem 5.5 in Section 5) that

B
(M)
n

(
f
)
(x) =

n∨

k≥j
fk,n,j(x), ∀x ∈

[
j

n + 1
,
j + 1
n + 1

]

. (4.46)

Following the proof of Corollary 4.6, we get

B
(M)
n

(
f
)
(x) = max

{
fj,n,j(x), fj+1,n,j(x)

}
, ∀x ∈

[
j

n + 1
,
j + 1
n + 1

]

, (4.47)

and from Lemma 4.2, we obtain

∣
∣
∣B

(M)
n

(
f
)
(x) − f(x)

∣
∣
∣ ≤ 2ω1

(

f ;
1
n

)

. (4.48)
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(ii) Since f is nonincreasing, it follows (see the proof of Corollary 5.6 in Section 5) that

B
(M)
n

(
f
)
(x) =

j∨

k≥0
fk,n,j(x), ∀x ∈

[
j

n + 1
,
j + 1
n + 1

]

. (4.49)

Following the proof of Corollary 4.6, we get

B
(M)
n

(
f
)
(x) = max

{
fj−1,n,j(x), fj,n,j(x)

}
, (4.50)

and from Lemma 4.3 we obtain

∣
∣
∣B

(M)
n

(
f
)
(x) − f(x)

∣
∣
∣ ≤ 2ω1

(

f ;
1
n

)

. (4.51)

Remark 4.8. By simple reasonings, it follows that if f : [0, 1] → [0,∞) is a convex,
nondecreasing function satisfying f(x)/x ≥ f(1) for all x ∈ [0, 1], then the function
g : (0, 1] → [0,∞), g(x) = f(x)/x is nonincreasing and as a consequence for f is valid
the conclusion of Corollary 4.7, (i). Indeed, for simplicity, let us suppose that f ∈ C1[0, 1] and
denote F(x) = xf ′(x) − f(x), x ∈ [0, 1]. Then g ′(x) = F(x)/x2, for all x ∈ (0, 1]. Since the
inequality f(x)/x ≥ f(1) can be written as (f(1) − f(x))/(1 − x) ≤ f(1), for all x ∈ [0, 1),
passing to limit with x → 1, it follows f ′(1) ≤ f(1), which implies (since f ′ is nondecreasing)

F(x) ≤ xf ′(1) − f(x) ≤ xf ′(1) − xf(1) = x
[
f ′(1) − f(1)

] ≤ 0, ∀x ∈ (0, 1], (4.52)

which means that g(x) is nonincreasing.

An example of function satisfying the above conditions is f(x) = ex, x ∈ [0, 1].
Analogously, if f : [0, 1] → [0,∞) is a convex, nonincreasing function satisfying

f(x)/(1 − x) ≥ f(0), then for f is valid the conclusion of Corollary 4.7, (ii). An example
of function satisfying these conditions is f(x) = e−x, x ∈ [0, 1].

5. Shape-Preserving Properties

In this section, we will present some shape preserving properties, by proving that the max-
product Bernstein operator preserves themonotonicity and the quasiconvexity. First, we have
the following simple result.

Lemma 5.1. For any arbitrary function f : [0, 1] → R+, B
(M)
n (f)(x) is positive, continuous on

[0, 1], and satisfies B(M)
n (f)(0) = f(0), B

(M)
n (f)(1) = f(1).

Proof. Since pn,k(x) > 0 for all x ∈ (0, 1), n ∈ N, k ∈ {0, . . . , n}, it follows that the denominator
∨n

k=0pn,k(x) > 0 for all x ∈ (0, 1) and n ∈ N. However, the numerator is a maximum of
continuous functions on [0, 1], so it is a continuous function on [0, 1], and this implies that
B
(M)
n (f)(x) is continuous on (0, 1). To prove now the continuity of B(M)

n (f)(x) at x = 0 and
x = 1, we observe that pn,k(0) = 0 for all k ∈ {1, 2, . . . , n}, pn,k(0) = 1 for k = 0 and pn,k(1) = 0
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for all k ∈ {0, 1, . . . , n − 1}, pn,k(1) = 1 for k = n, which implies that
∨n

k=0pn,k(x) = 1 in the

case of x = 0 and x = 1. The fact that B(M)
n (f)(x) coincides with f(x) at x = 0 and x = 1

immediately follows from the above considerations, which proves the theorem.

Remark 5.2. Note that because of the continuity of B(M)
n (f)(x) on [0, 1], it will suffice to prove

the shape properties of B(M)
n (f)(x) on (0, 1) only. As a consequence, in the notations and

proofs below, we always may suppose that 0 < x < 1.
As in Section 4, for any k, j ∈ {0, 1, . . . , n}, let us consider the functions fk,n,j : [j/(n +

1), (j + 1)/(n + 1)] → R,

fk,n,j(x) = mk,n,j(x)f
(
k

n

)

=

(
n

k

)

( n

j

)

(
x

1 − x

)k−j
f

(
k

n

)

. (5.1)

For any j ∈ {0, 1, . . . , n} and x ∈ [j/(n + 1), (j + 1)/(n + 1)], we can write

B
(M)
n

(
f
)
(x) =

n∨

k=0

fk,n,j(x). (5.2)

Lemma 5.3. If f : [0, 1] → R+ is a nondecreasing function, then for any k, j ∈ {0, 1, . . . n}, k ≤ j
and x ∈ [j/(n + 1), (j + 1)/(n + 1)], one has fk,n,j(x) ≥ fk−1,n,j(x).

Proof. Because k ≤ j, by the proof of Lemma 3.2, Case 2, it follows thatmk,n,j(x) ≥ mk−1,n,j(x).
From the monotonicity of f,we get f(k/n) ≥ f((k − 1)/n). Thus, we obtain

mk,n,j(x)f
(
k

n

)

≥ mk−1,n,j(x)f
(
k − 1
n

)

, (5.3)

which proves the lemma.

Corollary 5.4. If f : [0, 1] → R+ is nonincreasing, then fk,n,j(x) ≥ fk+1,n,j(x) for any k, j ∈
{0, 1, . . . n}, k ≥ j, and x ∈ [j/(n + 1), (j + 1)/(n + 1)].

Proof. Because k ≥ j, by the proof of Lemma 3.2, Case 1, it follows thatmk,n,j(x) ≥ mk+1,n,j(x).
From the monotonicity of f,we get f(k/n) ≥ f((k + 1)/n). Thus we obtain

mk,n,j(x)f
(
k

n

)

≥ mk+1,n,j(x)f
(
k + 1
n

)

, (5.4)

which proves the corollary.

Theorem 5.5. If f : [0, 1] → R+ is nondecreasing, then B
(M)
n (f) is nondecreasing.
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Proof. Because B(M)
n (f) is continuous on [0, 1], it suffices to prove that on each subinterval of

the form [j/(n + 1), (j + 1)/(n + 1)],with j ∈ {0, 1, . . . n}, B(M)
n (f) is nondecreasing.

So let j ∈ {0, 1, . . . n} and x ∈ [j/(n + 1), (j + 1)/(n + 1)]. Because f is nondecreasing,
from Lemma 5.3 it follows that

fj,n,j(x) ≥ fj−1,n,j(x) ≥ fj−2,n,j(x) ≥ · · · ≥ f0,n,j(x), (5.5)

but then it is immediate that

B
(M)
n

(
f
)
(x) =

n∨

k≥j
fk,n,j(x), (5.6)

for all x ∈ [j/(n+1), (j +1)/(n+1)]. Clearly that for k ≥ j, the function fk,n,j is nondecreasing
and since B(M)

n (f) is defined as the maximum of nondecreasing functions, it follows that it is
nondecreasing.

Corollary 5.6. If f : [0, 1] → R+ is nonincreasing, then B
(M)
n (f) is nonincreasing.

Proof. Because B(M)
n (f) is continuous on [0, 1], it suffices to prove that on each subinterval of

the form [j/(n + 1), (j + 1)/(n + 1)],with j ∈ {0, 1, . . . n}, B(M)
n (f) is nonincreasing.

So let j ∈ {0, 1, . . . n} and x ∈ [j/(n + 1), (j + 1)/(n + 1)]. Because f is nonincreasing,
from Corollary 5.4, it follows that

fj,n,j(x) ≥ fj+1,n,j(x) ≥ fj+2,n,j(x) ≥ · · · ≥ fn,n,j(x), (5.7)

but then it is immediate that

B
(M)
n

(
f
)
(x) =

j∨

k≥0
fk,n,j(x), (5.8)

for all x ∈ [j/(n + 1), (j + 1)/(n + 1)]. Clearly that for k ≤ j the function fk,n,j is nonincreasing
and since B(M)

n (f) is defined as the maximum of nonincreasing functions, it follows that it is
nonincreasing.

In what follows, let us consider the following concept generalizing the monotonicity
and convexity.

Definition 5.7. Let f : [0, 1] → R be continuous on [0, 1]. One says that the function f :
[0, 1] → R is quasiconvex on [0, 1] if it satisfies the inequality

f
(
λx + (1 − λ)y

) ≤ max
{
f(x), f

(
y
)}

, ∀x, y, λ ∈ [0, 1], (5.9)

(see, e.g., [3, page 4, (iv)]).
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Remark 5.8. By [5], the continuous function f is quasiconvex on [0, 1] equivalently means
that there exists a point c ∈ [0, 1] such that f is nonincreasing on [0, c] and nondecreasing on
[c, 1]. The class of quasiconvex functions includes the class of nondecreasing functions and
the class of nonincreasing functions. Also, it obviously includes the class of convex functions
on [0, 1].

Corollary 5.9. If f : [0, 1] → R+ is continuous and quasiconvex on [0, 1], then for all n ∈ N,
B
(M)
n (f) is quasiconvex on [0, 1].

Proof. If f is nonincreasing (or nondecreasing) on [0, 1] (i.e., the point c = 1 (or c = 0) in
Remark 5.8), then by the Corollary 5.6 (or Theorem 5.5, resp.), it follows that for all n ∈ N,
B
(M)
n (f) is nonincreasing (or nondecreasing) on [0, 1].

Suppose now that there exists c ∈ (0, 1), such that f is nonincreasing on [0, c] and
nondecreasing on [c, 1]. Define the functions F,G : [0, 1] → R+ by F(x) = f(x) for all x ∈
[0, c], F(x) = f(c) for all x ∈ [c, 1] and G(x) = f(c) for all x ∈ [0, c], G(x) = f(x) for all
x ∈ [c, 1].

It is clear that F is nonincreasing and continuous on [0, 1], G is nondecreasing and
continuous on [0, 1], and f(x) = max{F(x), G(x)}, for all x ∈ [0, 1].

However, it is easy to show (see also Remark 2.2 after the proof of Lemma 2.1) that

B
(M)
n

(
f
)
(x) = max

{
B
(M)
n (F)(x), B(M)

n (G)(x)
}
, ∀x ∈ [0, 1], (5.10)

where by Corollary 5.6 and Theorem 5.5, B(M)
n (F)(x) is nonincreasing and continuous on

[0, 1] and B
(M)
n (G)(x) is nondecreasing and continuous on [0, 1]. We have two cases: 1)

B
(M)
n (F)(x) and B

(M)
n (G)(x) do not intersect each other; 2) B

(M)
n (F)(x) and B

(M)
n (G)(x)

intersect each other.

Case 1. We have max{B(M)
n (F)(x), B(M)

n (G)(x)} = B
(M)
n (F)(x) for all x ∈ [0, 1] or

max{B(M)
n (F)(x), B(M)

n (G)(x)} = B
(M)
n (G)(x) for all x ∈ [0, 1], which obviously proves that

B
(M)
n (f)(x) is quasiconvex on [0, 1].

Case 2. In this case, it is clear that there exists a point c′ ∈ [0, 1] such that B(M)
n (f)(x) is

nonincreasing on [0, c′] and nondecreasing on [c′, 1], which by the result in [5] implies that
B
(M)
n (f)(x) is quasiconvex on [0, 1] and proves the corollary.

Remark 5.10. The preservation of the quasiconvexity by the linear Bernstein operators was
proved in [6].

It is of interest to exactly calculate B
(M)
n (f)(x) for f(x) = e0(x) = 1 and for f(x) =

e1(x) = x. In this sense, we can state the following.
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Lemma 5.11. For all x ∈ [0, 1] and n ∈ N, one has B(M)
n (e0)(x) = 1 and

B
(M)
n (e1)(x) = x · pn−1,0(x)

pn,0(x)
=

x

1 − x
, if x ∈

[

0,
1

n + 1

]

,

B
(M)
n (e1)(x) = x · pn−1,0(x)

pn,1(x)
=

1
n
, if x ∈

[
1

n + 1
,
1
n

]

,

B
(M)
n (e1)(x) = x · pn−1,1(x)

pn,1(x)
=

x

1 − x
· n − 1

n
, if x ∈

[
1
n
,

2
n + 1

]

,

B
(M)
n (e1)(x) = x · pn−1,1(x)

pn,2(x)
=

2
n
, if x ∈

[
2

n + 1
,
2
n

]

,

B
(M)
n (e1)(x) = x · pn−1,2(x)

pn,2(x)
=

x

1 − x
· n − 2

n
, if x ∈

[
2
n
,

3
n + 1

]

,

B
(M)
n (e1)(x) = x · pn−1,2(x)

pn,3(x)
=

3
n
, if x ∈

[
3

n + 1
,
3
n

]

,

(5.11)

and so on, in general one has

B
(M)
n (e1)(x) =

x

1 − x
· n − j

n
, if x ∈

[
j

n
,
j + 1
n + 1

]

,

B
(M)
n (e1)(x) =

j + 1
n

, if x ∈
[
j + 1
n + 1

,

(
j + 1

)

n

]

,

(5.12)

for j ∈ {0, 1, . . . , n − 1}.

Proof. The formula B
(M)
n (e0)(x) = 1 is immediate by the definition of B(M)

n (f)(x).
To find the formula for B

(M)
n (e1)(x), we will use the explicit formula in Lemma 3.4

which says that

n∨

k=0

pn,k(x) = pn,j(x), ∀x ∈
[

j

n + 1
,
j + 1
n + 1

]

, j = 0, 1, . . . , n, (5.13)

where pn,k(x) =
(

n

k

)
xk(1 − x)n−k.

Indeed, since

max
k=0,...,n

{

pn,k(x)
k

n

}

= max
k=1,...,n

{

pn,k(x)
k

n

}

= x · max
k=0,...,n−1

{
pn−1,k(x)

}
, (5.14)



International Journal of Mathematics and Mathematical Sciences 23

this follows by applying Lemma 3.4 to both expressions maxk=0,...,n{pn,k(x)},
maxk=0,...,n−1{pn−1,k(x)}, taking into account that we get the following division of the
interval [0, 1]

0 <
1

n + 1
≤ 1

n
≤ 2

n + 1
≤ 2

n
≤ 3

n + 1
≤ 3

n
≤ 4

n + 1
≤ 4

n
· · · . (5.15)

Remarks. (1) The convexity of f on [0, 1] is not preserved by B
(M)
n (f) as can be seen from

Lemma 5.11. Indeed, while f(x) = e1(x) = x is obviously convex on [0, 1], it is easy to see
that B(M)

n (e1) is not convex on [0, 1].
(2) Also, if f is supposed to be starshaped on [0, 1] (i.e., f(λx) ≤ λf(x) for all x, λ ∈

[0, 1]), then again by Lemma 5.11, it follows that B(M)
n (f) for f(x) = e1(x) is not starshaped

on [0, 1], although e1(x) obviously is starshaped on [0, 1].

Despite of the absence of the preservation of the convexity, we can prove the
interesting property that for any arbitrary function f , the max-product Bernstein operator
B
(M)
n (f) is piecewise convex on [0, 1]. We present the following.

Theorem 5.12. For any function f : [0, 1] → [0,∞), B(M)
n (f) is convex on any interval of the form

[j/(n + 1), (j + 1)/(n + 1)], j = 0, 1, . . . , n.

Proof. For any k, j ∈ {0, 1, . . . , n}, let us consider the functions fk,n,j : [j/(n + 1), (j + 1)/(n +
1)] → R,

fk,n,j(x) = mk,n,j(x)f
(
k

n

)

=

(
n

k

)

( n

j

)

(
x

1 − x

)k−j
f

(
k

n

)

. (5.16)

Clearly, we have

B
(M)
n

(
f
)
(x) =

n∨

k=0

fk,n,j(x), (5.17)

for any j ∈ {0, 1, . . . , n} and x ∈ [j/(n + 1), (j + 1)/(n + 1)].
We will prove that for any fixed j, each function fk,n,j(x) is convex on [j/(n + 1), (j +

1)/(n + 1)], which will imply that B(M)
n (f) can be written as a maximum of some convex

functions on [j/(n + 1), (j + 1)/(n + 1)].
Since f ≥ 0, it suffices to prove that the functions gk,j : [0, 1] → R, gk,j(x) =

(x/(1 − x))k−j are convex on [j/(n + 1), (j + 1)/(n + 1)].
For k = j, gj,j is constant so is convex.
For k = j + 1, we get gj+1,j(x) = x/(1 − x) for any x ∈ [j/(n + 1), (j + 1)/(n + 1)]. Then

g ′′
j+1,j(x) = 2/(1 − x)3 > 0 for any x ∈ [j/(n + 1), (j + 1)/(n + 1)].

For k = j − 1, it follows that gj−1,j(x) = (1− x)/x for any x ∈ [j/(n+ 1), (j + 1)/(n+ 1)].
Then g ′′

j−1,j(x) = 2/x3 > 0 for any x ∈ [j/(n + 1), (j + 1)/(n + 1)].
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If k ≥ j + 2, then g ′′
k,j(x) = ((k − j)/(1 − x)4)(x/(1 − x))k−j−2(k − j − 1 + 2x) > 0 for any

x ∈ [j/(n + 1), (j + 1)/(n + 1)].
If k ≤ j −2, then g ′′

k,j(x) = ((k− j)/(1−x)4)(x/(1 − x))k−j−2(k− j −1+2x). Sice (k− j −1+
2x) ≤ k−j+1 ≤ −1 for any x ∈ [j/(n+1), (j+1)/(n+1)], it follows that (k−j)(k−j−1+2x) > 0,
which implies g ′′

k,j(x) > 0 for any x ∈ [j/(n + 1), (j + 1)/(n + 1)].

Since all the functions gk,j are convex on [j/(n+1), (j +1)/(n+1)], we get that B(M)
n (f)

is convex on [j/(n + 1), (j + 1)/(n + 1)] as maximum of these functions, which proves the
theorem.

At the end of this section, let us note that although B
(M)
n (f) does not preserve the

convexity too, by using B
(M)
n (f) it easily can be constructed new nonlinear operators which

converge to the function and preserve the convexity too.
Indeed, in this sense, for example, we present the following.

Theorem 5.13. For f belonging to the set

S[0, 1] =
{
f : [0, 1] −→ R; f ∈ C1[0, 1], f(0) = 0, f is nondecreasing on [0, 1]

}
, (5.18)

let us define the following subadditive and positive homogenous operators (as function of f):

Ln

(
f
)
(x) =

∫x

0
B
(M)
n

(
f ′)(t)dt, x ∈ [0, 1], n ∈ N. (5.19)

If f ∈ S[0, 1] is convex, then Ln(f)(x) is nondecreasing and convex on [0, 1]. In addition, if f ′ is
concave on [0, 1], then the order of approximation of f through Ln(f) is ω1(f ′; 1/n).

Proof. Indeed, since f is convex, it follows that f ′(x) is nondecreasing on [0, 1], which by
Theorem 5.5 implies that B(M)

n (f ′)(x) is nondecreasing and, therefore, we get the convexity of
Ln(f)(x) on [0, 1]. The monotonicity of Ln(f)(x) is immediate by f ′ ≥ 0 on [0, 1] and by the
relationship L′

n(f)(x) = B
(M)
n (f ′)(x) ≥ 0 for all x ∈ [0, 1].

Also, writing f(x) =
∫x
0f

′(t)dt and supposing that f ′ is concave, by Corollary 4.6,
we get that the order of approximation of f by Ln(f) is ω1(f ′; 1/n). In addition, Ln(f)(x)
obviously is of C1-class (which is not the case of original operator B(M)

n (f)(x)) and L′
n(f)(x)

converges uniformly to f ′ on [0, 1] with the same order of approximation ω1(f ′; 1/n).

Remarks. (1) A simple example of function f verifying the statement of Theorem 5.13 is
f(x) = 1 − cosx, because in this case, we easily get that f(0) = 0, f ′(x) = sinx ≥ 0,
f ′′(x) = cosx ≥ 0 and f ′′′(x) = − sinx ≤ 0, for all x ∈ [0, 1].

(2) In the definition of Ln(f)(x) in the above Theorem 5.13, obviously that the values
f ′(k/n) are involved. To involve values of f only but without to loose the properties
mentioned in Theorem 5.13, we can replace there f ′(k/n) by, for example, (f((k + 1)/n) −
f(k/n))/((k+1)/n−k/n) = n[f((k+1)/n)−f(k/n)] or by (f((k+1)/(n+1))−f(k/n))/((k+
1)/(n + 1) − k/n).
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6. Comparisons with the Linear Bernstein Operator

In this section, we compare the max-product Bernstein operator B
(M)
n (f) with the linear

Bernstein operator Bn(f)(x) =
∑n

k=0 pn,k(x)f(k/n). First, it is known that for the linear
Bernstein operator, the best possible uniform approximation result is given by the
equivalence: (see [7, 8])

∥
∥Bn

(
f
) − f

∥
∥ ∼ ω

ϕ

2

(

f ;
1√
n

)

, (6.1)

where ‖f‖ = sup{|f(x)|;x ∈ [0, 1]} and ω
ϕ

2 (f ; δ) is the Ditzian-Totik second-order modulus
of smoothness given by

ω
ϕ

2

(
f ; δ

)
= sup

{
sup

{∣
∣f
(
x + hϕ(x)

) − 2f(x) + f
(
x − hϕ(x)

)∣
∣;x ∈ Ih

}
, h ∈ [0, δ]

}
, (6.2)

with ϕ(x) =
√
x(1 − x), δ ≤ 1 and Ih = [h2/(1 + h2), 1/(1 + h2)].

Now, if f is, for example, a nondecreasing concave polygonal line on [0, 1], then
by simple reasonings we get that ωϕ

2 (f ; δ) ∼ δ for δ ≤ 1, which shows that the order of
approximation obtained in this case by the linear Bernstein operator is exactly 1/

√
n. On

the other hand, since such of function f obviously is a Lipschitz function on [0, 1] (as having
bounded all the derivative numbers) by Corollary 4.6, we get that the order of approximation
by the max-product Bernstein operator is less than 1/n, which is essentially better than
1/

√
n. In a similar manner, by Corollary 4.7 and by the Remark 4.8 after this corollary, we

can produce many subclasses of functions for which the order of approximation given by the
max-product Bernstein operator is essentially better than the order of approximation given
by the linear Bernstein operator. In fact, the Corollaries 4.6 and 4.7 have no corespondent in
the case of linear Bernstein operator. All these prove the advantages we may have in some
cases, by using the max-product Bernstein operator. Intuitively, the max-product Bernstein
operator has better approximation properties than its linear counterpart, for nondifferentiable
functions in a finite number of points (with the graphs having some ”corners”), as an example
for functions defined as a maximum of a finite number of continuous functions on [0, 1].

On the other hand, in other cases (e.g., for differentiable functions), the linear Bernstein
operator has better approximation properties than themax-product Bernstein operator, as can
be seen from the formula for B(M)

n (e1)(x) in Lemma 5.11. Indeed, by direct calculation can be
easily proved that ‖B(M)

n (e1) − e1‖ ∼ 1/n, while it is well known that ‖Bn(e1) − e1‖ = 0.
Concerning now the shape-preserving properties, it is clear from Section 5 that the

linear Bernstein operator has better properties. However, for some particular classes of
functions, the type of construction in Theorem 5.13, combined with Corollaries 4.6 and 4.7,
can produce max-product Bernstein-type operators with good preservation properties (e.g.,
preserving monotonicity and convexity) and giving in some cases (supposing, e.g., that f ′ is
a concave polygonal line), the same order of approximation as the linear Bernstein operator.
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