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It is well known in the work of Kadison and Ringrose (1983) that if A and B are maximal abelian
von Neumann subalgebras of von Neumann algebras M and N, respectively, then A⊗B is a
maximal abelian von Neumann subalgebra of M⊗N. It is then natural to ask whether a similar
result holds in the context of JW-algebras and the JW-tensor product. Guided to some extent by
the close relationship between a JW-algebraM and its universal enveloping vonNeumann algebra
W∗(M), we seek in this article to investigate the answer to this question.
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1. Introduction

A JC-algebra A is a norm (uniformly) closed Jordan subalgebra of the Jordan algebra B(H)s.a
of all bounded self adjoint operators on a Hilbert space H. The Jordan product is given by
a ◦ b = (ab + ba)/2. A subspace I of a JC-algebra A is called a Jordan ideal if a ◦ b ∈ I
for every a ∈ A and every b ∈ I. A JC-algebra is said to be simple if it has no nontrivial
norm closed Jordan ideals. A JW-algebraM ⊆ B(H)s.a is a weakly closed JC-algebra. If M
is a JC-algebra (resp., JW-algebra), let C∗(M) (resp., W∗(M)) be the universal enveloping
C∗-algebra (resp., von Neumann algebra) of M, and let θM (resp., ΦM) be the canonical
involutive ∗-antiautomorphism of C∗(M) (resp., W∗(M)). Usually we will regard M as a
generating Jordan subalgebra of C∗(M)) andW∗(M) so that θM andΦM fix each point ofM.
The real C∗-algebra R∗(M) = {x ∈ C∗(M) : θM(x) = x∗} satisfies

R∗(M) ∩ iR∗(M) = 0, C∗(M) = R∗(M) ⊕ iR∗(M), (1.1)

and the real von Neumann algebra RW∗(M) = {x ∈ W∗(M) : ΦM(x) = x∗} satisfies

RW∗(M) ∩ iRW∗(M) = 0, W∗(M) = RW∗(M) ⊕ iRW∗(M). (1.2)
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The reader is refered to [1–5] for a detailed account of the theory of JC-algebras and JW-
algebras. The relevant background on the theory of C∗-algebras and von Neumann algebras
can be found in [6–8].

A projection e of a JW-algebra M is said to be abelian if eMe is associative, and it is
calledminimal if it is nonzero and contains no other nonzero projections ofM, or equivalently,
e is minimal if and only if eMe = Re. A JW-factor is a JW-algebra with trivial centre; a Type
I JW-factor is a JW-factor which contains a minimal projection. A JW-algebra is said to be of
Type In if there is a family of abelian projections (eα)α∈J such that the central support cM(eα)
of eα inM equals the unit 1M of M,

∑
α∈J eα = 1M and card J = n (see [1, Section 5.3]). A spin

factor V = H ⊕ R1V is a real Jordan algebra with identity 1V , where H is a real Hilbert space
of dimension at least two. The Jordan product on V is defined by

(a + λ1V ) ◦
(
b + μ1V

)
=
(
μa + λb

)
+
(〈a, b〉 + λμ

)
1V , a, b ∈ V, λ, μ ∈ R, (1.3)

and the norm on V is given by

‖a + λ1V ‖ = 〈a, a〉1/2 + |λ|. (1.4)

A spin factor V is universally reversible when dimV = 3 or 4, nonreversible when dimV /= 3, 4
or 6, and it can be either reversible or nonreversible when dimV = 6. A spin factor is a simple
reflexive JW-algebra and constitutes the Type I2 JW-factor (see [2, Section 6.1]).

A linear map ϕ : A → B between JC-algebras A and B is called a (Jordan)
homomorphism if it preserves the Jordan product. A Jordan homomorphism which is one
to one is called a Jordan isomorphism. A factor representation of a JC-algebra A is a (Jordan)
homomorphism of A onto a weakly dense subalgebra of a JW-factor M. Type I factor
representations are defined accordingly.

A JC-algebra A is said to be reversible if a1a2 · · ·an + anan−1 · · ·a1 ∈ A whenever
a1, a2, . . . , an ∈ A and is said to be universally reversible if π(A) is reversible for every
representation π of A [2, page 5]. The only universally reversible spin factors are V2 =
M2(R)s.a and V3 = M2(C)s.a [2, Theorem 2.1]. A JC-algebra A is universally reversible if
and only if it has no spin factor representations other than onto V2 and V3 [2, Theorems 2.2].
Every JW-algebra without a direct summand of Type I2 is universally reversible [1, 5.1.5,
5.3.5, 6.2.3].

Two elements a and b of a JC-algebra A are said to operator commute if TaTb = TbTa,
where Ta : A → A is the multiplication operator defined by Ta(x) = a ◦ x, for all x ∈ A. A
JW-algebraM is called associative if all its elements operators commute. A JW-subalgebraA
of a JW-algebra M is called maximal associative if it is not contained in any larger associative
JW-subalgebra of M. If A is a JW-subalgebra of a JW-algebra M ⊆ B(H)s.a and A′ is the
set of all elements of B(H)s.a which operator commutes with all elements of A, then A is
a maximal associative JW-subalgebra of M if and only if A = A′ ∩ M. Indeed, since A is
associative, A ⊆ A′ ∩M and A together with any element of A′ ∩M generates an associative
JW-subalgebra ofMwhich implies thatA′ ∩M ⊆ A sinceA is maximal abelian. In particular,
if A ⊆ B(H)s.a is an associative JW-algebra, then A is maximal associative if and only if
A = A′.

This article aims to study the relationship between the maximality of an associative
JW-subalgebra B of a JW-algebraM and that ofW∗(B) inW∗(M). We give a counterexample
which rules out the establishing of a result in the theory of JW-tensor products analog to that
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given in [6, Theorem 11.2.18] for von Neumann tensor products (cf. Example 2.2). Then we
prove that a Jordan analog of Theorem 11.2.18 in [6] can be established in some particular
cases.

Theorem 1.1 (see [9, Proposition 1]). LetM ⊆ B(H)s.a be a JW-algebra, and let a, b ∈ M. Then
the following are equivalent:

(i) ab = ba;

(ii) TaTb = TbTa;

(iii) a2 ◦ b = aba.

That is, a and b operators commute if and only if they commute under ordinary operator
multiplication.

Definition 1.2. Let M and N be a pair of JW-algebras canonically embedded in their
respective universal enveloping von Neumann algebras W∗(M) and W∗(N).Then the JW-
tensor product JW(M ⊗ N) of M and N is the JW-algebra generated by M ⊗ N in
W∗(M) ⊗ W∗(N). The reader is referred to [10] for the properties of the JW-tensor product
of JW-algebras.

Theorem 1.3 (see [10, Theorem 2.9]). Let M andN be JW- algebras. If JW(M ⊗ N) is
universally reversible, then

W∗(JW
(
M ⊗ N

))
= W∗(M)⊗W∗(N). (1.5)

2. Maximal Abelian JW-algebras

Let A and B be maximal abelian von Neumann subalgebras of von Neumann algebras M

and N, respectively, then A ⊗ B is a maximal abelian von Neumann algebra of M ⊗ N (see
[6, 11.2.18]). In Example 2.2, we show that the Jordan analog of this result, in the context
of JW-algebras and the JW-tensor product, is not true in general. However, it is shown in
Theorem 2.11 that the result does hold in special circumstances.

Remark 2.1. (i) Note that any JW-subalgebra of a spin factor which is not a spin factor is
of dimension at most 2. Indeed, let A be a JW-subalgebra of a spin factor V ⊆ B(H)s.a.
If 1A /= 1V ,then 1A is the only projection inA, since every projection in V is minimal, and
hence dimA = 1. If 1A = 1V , then any family of orthogonal central projections of A contains
at most two projections. Indeed if e1 + e2 + e3 = 1A, ei ∈ Z(A), i = 1, 2, 3, then e2 + e3 ≤ 1A − e1.
Since 1A − e1 is a minimal projection, we see that one of ei, i = 1, 2, 3 must be zero. It is
clear that if A is a factor, then it is of Type I2, and hence it is a spin factor. (ii)Recall that
W∗(V ) = M2(C) ⊕M2(C), where V is the 4-dimensional spin factor M2(C)s.a [1, 6.2.1]:

M2(C) = span

{(
1 0

0 1

)

,

(
1 0

0 −1

)

,

(
0 1

1 0

)

,

(
0 i

−i 0

)}

= C ⊗
R

M2(R), (2.1)

which is an 8-dimensional real C∗-algebra.
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Example 2.2. Let A be a maximal abelian JW-subalgebra of V = M2(C)s.a. Then JW(A ⊗A)
is not a maximal abelian subalgebra of JW(V ⊗ V ).

Proof. By the above remark, dimA = 2, and hence A = Re + Rf for some minimal projections
e, f . Therefore,

JW
(
A ⊗ A

)
= A ⊗

R

A = R(e ⊗ e) ⊕ R
(
e ⊗ f

) ⊕ R
(
f ⊗ e

) ⊕ R
(
f ⊗ f

)
, (2.2)

and hence dim JW(A ⊗ A) = 4, since dimA⊗
R

A = dimA ·dimA (see [11, Corollary 7.5]). On

the other hand, JW(V ⊗ V ) is universally reversible, by [10, Proposition 2.7] which implies
that

JW
(
V ⊗ V

)
= RW∗(JW(V ⊗ V )

)
s.a

=
(

RW∗(V ) ⊗
R

RW∗(V )
)

s.a

=
(

M2(C) ⊗
R

M2(C)
)

s.a

= M22(C)s.a ⊕M22(C)s.a,

(2.3)

since RW∗(M2(C)s.a) = M2(C) [3, page 385]. It can be seen that a maximal abelian JW-
subalgebra of JW(V ⊗ V ) is of dimension 8, which implies that JW(A ⊗ A) is not maximal
abelian in JW(V ⊗ V ).

Remark 2.3. Note that if B is an associative JW-subalgebra of a JW-algebra M such that
W∗(B) is a maximal abelian subalgebra of W∗(M), then B is a maximal associativeJW-
subalgebra ofM, since B = W∗(B) ∩M.

Lemma 2.4. Let B be an associative JW-subalgebra of a JW-algebraM. Then,

W∗(B) = [B] = B ⊕ iB, (2.4)

is an abelian von Neumann algebra, where [B] is the weak∗-closure of the C∗-subalgebra [B] of
W∗(M) generated by B.

Proof. Being associative, B has no representation into a spin factor of the form V4n+1 and is,
therefore, universally reversible. It follows from [3, page 383] that

B = RW∗(B)s.a. (2.5)

Therefore, by [3, Corollary 3.2], RW∗(B) is isomorphic to the weak∗-closure R(B) of the real
C∗-subalgebra R(B) of W∗(M) generated by B, and the result follows.

Recall that if M is a JW-algebra isomorphic to the self adjoint part Ns.a of a
von Neumann algebra N and has no one-dimensional representations, then W∗(M) is ∗-
isomorphic toN⊕N◦, whereN◦ is the opposite algebra ofN [2, 7.4.15]. A real C∗-algebra A
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can be realized as a complex C∗-algebra if there is a C∗-algebra isomorphism φ : B → A of a
complex C∗-algebra B onto A. In this case, the real linear isometry j on A defined, for each a
in B, by

jφ(a) = φ(ia) (2.6)

is such that j2 and −idA coincide.

Lemma 2.5. Let B be a maximal associative JW-subalgebra of a JW-algebra M. Suppose that M
is isomorphic to the self adjoint part Ns.a of a von Neumann algebra N and has no one-dimensional
representations. Then W∗(B) is not a maximal abelian on Neumann subalgebra of W∗(M).

Proof. Identifying M with Ns.a, [B] is a von Neumann subalgebra of both N and N◦, and
hence, the von Neumann subalgebra [B] ⊕ [B] of N ⊕N◦ ∼= W∗(M) is abelian and contains
W∗(B) = [B] ∼= [B] ⊕ {0}, which implies that W∗(B) is not maximal abelian in W∗(M).

Lemma 2.6. Let B be a maximal associative JW-subalgebra of a JW-algebra M. If RW∗(M) is ∗-
isomorphic to a complex C∗-algebra, then W∗(B) is not a maximal abelian von Neumann subalgebra
of W∗(M).

Proof. Since C∗(M) is the complex C∗-algebra [M] generated by M in W∗(M) [12, Theorem
2.7], RW∗(M) is the weak∗-closure of R∗(M) in W∗(M). Therefore, R∗(M) is a complex C∗-
algebra, which implies that C∗(M) = I ⊕ ΦM(I) for some norm closed ideal I of C∗(M)
isomorphic to R∗(M) [13, Lemma 1], so that W∗(M) = J ⊕ ΦM(J), where J is the weak∗-
closure I of I in W∗(M). Hence, J is isomorphic to RW∗(M). Let φ be the isomorphism
of J onto RW∗(M), and let j be the corresponding real linear operator on RW∗(M), defind
above. Then, using Lemma 2.4, there exists an isomorphism π from the W∗-algebra B ⊕ iB
into RW∗(M) such that, for elements b1 and b2 in B,

π(b1 + ib2) = b1 + jb2. (2.7)

It follows that φ−1 ◦π andΦM ◦φ−1 ◦π are ∗-isomorphisms of [B] = B⊕ iB into J andΦM(J),
respectively. Since a ∗-isomorphism between C∗-algebras is an isometry [7, Corollary 1.5.4],
we may identify [B] with φ−1 ◦ π([B]) and ΦM ◦ φ−1 ◦ π([B]). It follows that [B] ⊕ [B] is an
abelian von Neumann subalgebra of W∗(M), proving that W∗(B) = [B] ∼= [B] ⊕ {0} is not
maximal abelian in W∗(M).

Proposition 2.7. Let M be a universally reversible JW-algebra not isomorphic to the self adjoint
part of a von Neumann algebra and without direct summands of type I1. If B is a maximal associative
subalgebra of M, thenW∗(B) is a maximal abelian von Neumann subalgebra of W∗(M).

Proof. By Lemma 2.4, W∗(B) = [B] = B ⊕ iB ↪→ W∗(M). If W∗(B) is not maximal abelian in
W∗(M), there exists an element z ∈ W∗(M) = RW∗(M) ⊕ iRW∗(M), z/∈W∗(B) such that
z together with W∗(B) generate an abelian von Neumann subalgebra Y ⊃

/=
W∗(B) ⊇ B of

W∗(M) ⊇ M. Let z = x + iy, x, y ∈ W∗(M)s.a. Since z/∈W∗(B), then either x or y (or both)
does not belong to W∗(B). Suppose that x /∈W∗(B), since W∗(M) = RW∗(M) ⊕ iRW∗(M),
then x = a + ib, for some a, b ∈ RW∗(M). Then either a or b (or both) does not belong to
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W∗(B). Since x ∈ W∗(M)s.a, we have a = a∗, and b = −b∗, and so a ∈ M = RW∗(M)s.a, since
M is a universally reversible [3, page 383]. Therefore, a must be the zero element, since it
obviously commutes with all elements in B. On the other hand, b2 = −bb∗ ∈ RW∗(M)s.a = M.
Since bu = ub for all u ∈ W∗(B), b2u = bub = ub2 for all u ∈ B, and so b2 and u operators
commute relative to the Jordan product in B [9, Proposition 1]. Hence b2 ∈ B ⊆ W∗(B),
since B is a maximal associative subalgebra of M, which implies that b ∈ W∗(B). Therefore,
x = ib ∈ W∗(B), a contradiction. This proves the result.

Lemma 2.8. Let M be a universally reversible JW-algebra not isomorphic to the self adjoint part of
a von Neumann algebra. If B is a maximal associative subalgebra of M, then W∗(B) is a maximal
abelian von Neumann subalgebra of W∗(M).

Proof. SplittingM = MI1 ⊕Mn.a as the direct sum of a JW-algebraMI1 of type I1 (the abelian
part) and a JW-algebra Mn.a without direct summands of type I1(the nonabelian part). It
is clear that B ⊇ MI1 , Bn.a = B ∩ Mn.a is a maximal associative subalgebra of Mn.a and B =
MI1 ⊕ Bn.a. By Proposition 2.7, W∗(Bn.a) is a maximal abelian von Neumann subalgebra of
W∗(Mn.a), and hence W∗(B) = W∗(MI1) ⊕ W∗(Bn.a) is a maximal abelian von Neumann
subalgebra of W∗(M), since W∗(M) = W∗(MI1) ⊕W∗(Mn.a) [12, Lemma 2.6].

Proposition 2.9. Let Bi be a maximal associative subalgebra of a JW-algebra Mi, i = 1, 2, and
suppose that Mi is universally reversible JW-algebra not isomorphic to the self adjoint part of a
von Neumann algebra and without direct summands of type I1. Then JW(B1 ⊗ B2) is a maximal
associative JW-subalgebra of JW(M1 ⊗ M2).

Proof. Note first thatW∗(B1) ⊗W∗(B2) is a von Neumann ∗-subalgebra ofW∗(M1)⊗ W∗(M2)
[8, Theorem 11.2.10], and JW(B1 ⊗ B2) is a JW-subalgebra of JW(M1 ⊗ M2), since B1 ⊗
B2 ⊆ M1 ⊗ M2. By Proposition 5.2, W∗(Bi) is maximal abelian in W∗(Mi), and hence,
W∗(B1) ⊗ W∗(B2) is maximal abelian in W∗(M1) ⊗W∗(M2) [8, Corollary 11.2.18] and [10,
Theorem 2.9]. The result is now obvious, since W∗(JW(B1 ⊗ B2)) = W∗(B1) ⊗ W∗(B2), and
W∗(JW(M1 ⊗ M2)) = W∗(M1) ⊗W∗(M2) [10, Theorem 2.9].

Proposition 2.10. Let N be an associative JW-algebra, and let M be a universally reversible JW-
algebra not isomorphic to the self adjoint part of a von Neumann algebra and without direct summands
of type I1. If B is a maximal associative subalgebra of M, then JW(N ⊗ B) is a maximal associative
JW-subalgebra of JW(N ⊗ M).

Proof. Let M = MI1 ⊕Mn.a be the decomposition of M into abelian part MI1 and nonabelian
part Mn.a. Then B = MI1 ⊕ Bn.a, where Bn.a = B ∩ Mn.a is obviously a maximal associative
subalgebra of Mn.a. By [10, Remark 2.14],

JW
(
N ⊗ M

)
= JW

(
N ⊗(MI1 ⊕Mn.a)

)
= JW

(
A ⊗ MI1

) ⊕ JW
(
A ⊗ Mn.a

)
,

JW
(
N ⊗ B

)
= JW

(
N ⊗(MI1 ⊕ Bn.a)

)
= JW

(
N ⊗ MI1

) ⊕ JW
(
N ⊗ Bn.a

)
.

(2.8)

It is clear now that JW(N ⊗ B) is a maximal associative JW-subalgebra of JW(N ⊗
M), since JW(N ⊗ MI1) is obviously associative, and JW(N ⊗ Bn.a) is maximal
in JW(N ⊗ Mn.a), by Proposition 2.9.
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Theorem 2.11. Let M and N be universally reversible JW-algebras not isomorphic to the self
adjoint parts of von Neumann algebras. If A and B are maximal associative subalgebra of M and
N, respectively, then JW(A ⊗ B) is a maximal associative JW-subalgebra of JW(M ⊗ N).

Proof. Let M = MI1 ⊕Mn.a,N = NI1 ⊕Nn.a be the decomposition of M,N into abelian parts
(MI1 ,NI1), and nonabelian parts (Mn.a,Nn.a). ThenA = MI1 ⊕An.a and B = NI1 ⊕Bn.a, where
An.a = A ∩Mn.a and Bn.a = B ∩Nn.a. Therefore,

JW
(
M ⊗ N

)
= JW

(
MI1 ⊗ NI1

) ⊕ JW
(
MI1 ⊗ Nn.a

)

⊕ JW
(
Mn.a⊗NI1

) ⊕ JW
(
Mn.a ⊗ Nn.a

)
,

JW
(
A ⊗ B

)
= JW

(
MI1 ⊗ NI1

) ⊕ JW
(
MI1 ⊗ Bn.a

)

⊕ JW
(
An.a ⊗ NI1

) ⊕ JW
(
An.a ⊗ Bn.a

)
,

(2.9)

by [13, Remark 2.14]. The proof is complete, by Propositions 2.9 and 2.10.
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