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Several results concerning ideals of a compact topological semigroup S with S? = S can be found in
the literature. In this paper, we further investigate in a compact connected topological semigroup
S how the conditions S? = S and S # S affect the structure of ideals of S, especially the maximal
ideals.

1. Introduction
First, we list some standard definitions which can be found in [1-3].

Definition 1.1. A topological semigroup is a topological space S together with a continuous
functionm : Sx S — Ssuch that S is Hausdorff and m is associative.

A subsemigroup of a semigroup S is a nonvoid set A C S such that A> C A, and A is
called a subgroup of S if it is a group with respect to m.

An element e of a topological semigroup S is called an idempotent if e* = e. Similarly,
an element e of S is called a left identity (right identity) if ea = a (ae = a) for all a € 5. An
element of S is called an identity of S if it is both a left and a right identity of S.

The set of all idempotents of S will be denoted by E throughout this paper. For each
e € E, let H(e) be the union of all subgroups of S containing e. It is shown in [3] that H(e) is
the maximal subgroup of S containing e.

Definition 1.2. A nonempty subset A of a semigroup S is called a left ideal (right ideal) of S if
SA C A (AS C A) and an ideal if it is both a left and a right ideal. A left ideal (right ideal,
ideal) is said to be proper if it is not S itself.
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An (left, right) ideal M of a semigroup S is called minimal if it does not properly contain
any (left, right) ideal of S. It follows that there can be at most one minimal ideal of S. If S has
a minimal ideal K, then K is called the kernel of S.

A maximal (left, right) ideal of a semigroup S is a proper (left, right) ideal of S that is
not properly contained in any other (left, right) ideal.

Definition 1.3. Let A be a subset of a topological semigroup S, then Jy(A) is defined as
follows:

¢ if A contains no ideal of S,
Jo(A) = (1.1)

U {I:Iis an ideal of S and I C A}.

Theorem 1.4. Let S be a compact connected topological semigroup without zero, and let K be the
kernel of S. Then, either K N E is infinite or K is a topological subgroup of S.

Proof. Since S is a compact topological semigroup, K = U{H(e) : e € KNE}, and H(e) = eSe
by [3, Theorem1.2.6]. Suppose that K N E is finite and K is not a topological subgroup of S.
Let ex € KNE. Then, K \ H(ex) # 0. Otherwise, K = H(ek) is both the kernel and a maximal
subgroup of S by [3, Theorem 1.3.14], and hence K is topological subgroup of S with the
relative topology, which contradicts our assumption.

Furthermore, since K N E is finite and K \ H(ex) = U{H(e) : e € KNE,e#ex}, it
follows that K \ H(ex) and H (ex) form a separation of K. Hence, K is disconnected, which
contradicts [1, Theorem 1.28]. Therefore, we can deduce that either K N E is infinite or K is a
maximal subgroup of S. O

2. Maximal Ideals of Compact Connected Topological Semigroups

The following theorem is a summary of the results found in [1]. It lists necessary and
sufficient conditions for S> = S in a compact topological semigroup S. In this section, we
characterize maximal ideals in a compact connected topological semigroup S with S? = S
and S%#8S.

Theorem 2.1. Let S be a compact connected topological semigroup. The following are equivalent:
(a) S =5,
(b) EN(S\ I) #® for each proper ideal I of S,
(c) S=SES.
The following theorem and corollary are results from [3], which are useful for our discussion.

Theorem 2.2. Let S be a compact topological semigroup. Then, any proper (left, right) ideal of S is
contained in a maximal (left, right) ideal of S, and each maximal (left, right) ideal is open.

Corollary 2.3. If S is a compact connected topological semigroup and | a maximal ideal of S, then |
is dense in S.

Theorem 2.4. Suppose that S is a compact topological semigroup and S*# S.
(a) Foreach a € S\ S?, S\ {a} is a maximal ideal of S.

(b) If S has more than one connected maximal ideal, then, S is connected.
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Proof. (a) Leta € S\ S®. Forevery x € S\ {a}and y € S, {xy,yx} C S*> C S\ {a} implies
that S \ {a} is a proper ideal of S. (b) Let M; and M, be two distinct connected maximal
ideals of S. Suppose that S is disconnected. Then, M; U M; = S = P U Q such that Pn
Q=0=Pn @ Since M; and M, are connected, M; C P and M, C P. It follows that
M1 N M, =0, and hence M1 C S\ M, = {ax} and M, ¢ S\ M = {a;}. On the other hand,
since M1 and M, are ideals, a1a; = axa; = ap and aja; = axa; = a1, and hence M1 = {ay} =
{a1} = M, contradicting M; and M, being distinct. Therefore, S is connected, and hence K is
connected.

The following example shows that the condition S having more than one connected
maximal ideal is a necessary condition for Theorem 2.4(b). O

Example 2.5. Let S = [0,1/4] U {1/2} with the usual topology and the usual multiplication.
Then, S* = [0,1/8] U {1/4}#S, K = {0} is connected, M = [0,1/4] is the only connected
maximal ideal of S, and S is disconnected.

The next theorem is Theorem 2.4.3 of [3], and hence the proof is omitted.

Theorem 2.6. If S is a connected topological semigroup and I an ideal of S, then one and only one
component of I is an ideal of S.
One will call the ideal in Theorem 2.6 the component ideal of I.

Theorem 2.7. Let S be a compact connected topological semigroup andC= \J{Mc : Mcis the ideal
component of a maximal proper ideal M}. Then either C = S or C is the maximal proper connected
ideal of S. Furthermore, if C # S, then C is the component ideal of a maximal ideal of S.

Proof. For each maximal ideal M of S, let Mc be its component ideal. Since K is the kernel
and K C Mc for each Mc, C=J{Mc : Mc is the ideal component of a maximal proper ideal
M} is a connected ideal.

Suppose that there is a connected ideal I such that C ¢ I C S, then I is
contained in a maximal ideal M of S. Since K ¢ I N Mc, I U M¢ is a connected ideal
of S and is contained in M, and hence I U M- C Mc C C, a contradiction. Thus, if
C#S, then C is the maximal connected proper ideal of S. Furthermore, there exists a
maximal ideal M of S such that C ¢ M. Let Mc be the component ideal of M. Then,

Mc =C. O

Lemma 2.8. Let S be a compact connected topological semigroup, M a maximal ideal of S, and Mc
the component ideal of M. If S?# S, then Mc is not closed in S.

Proof. If M = M, then the result follows from Theorem 2.4(b).

If Mc € M, then M = McUK y where K is the union of all components of M except
M. If Mc were closed in S, then Ky, is open in S because Ky = M N (S '\ Mc¢) and M are
both open. Therefore, fora e S\ M, S = M = McU(KpU{a}), and hence S is disconnected,
which is a contradiction. O

The next theorem provides a necessary and sufficient condition for a compact
connected topological semigroup S satisfying S* # S by means of the component ideals of
its maximal ideals.

Theorem 2.9. Let S be a compact connected topological semigroup. Then, S* # S if and only if there
exists a maximal ideal M of S with M = S\ {b}, b € S\ S? such that S> C Mc where Mc is a
component ideal of M.
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Proof. Suppose that S?# S. Tt follows from Theorem 2.1(a) that there exists a maximal ideal
M of S such that EN (S \ M) = . By [3, Theorem 1.3.8], S/M is either the zero semigroup of
order two or else completely 0-simple.

Suppose that S/M is the zero semigroup of order two. Then, S\ M = {b} for some
beS.Ifb e S% thenb = xy with x,y € S\ M. It is because if {x,y} "N M#0, then b € M
contradicting S \ M = {b}. It follows that x = y = b, and hence b € E. This contradicts
EN(S\ M) = . Therefore, b € S\ S? and S?> C Mc C M\ {b}. Note that the semigroup S/M
is not completely 0-simple because if S/M were completely O-simple, then S/M contains a
nonzero primitive idempotent, which contradicts EN (S \ M) = 0.

The converse is obviously true.The next example shows that the component ideal M¢
of a maximal ideal M can be M itself. O

Example 2.10. Let S = [0,1/2] with the usual multiplication and the usual topology. Then,
S is a compact connected topological semigroup, and S>#S. Let M = [0,1/2) and M* =
S\ {5/16}. Then, M and M* are maximal ideals of S, and Mc = [0,1/2) = M and M.
[0,5/16) C M*.

The next theorem is Theorem 1.40 of [1], and hence the proof is omitted.

Theorem 2.11. Let S be a compact connected topological semigroup. Then, S* = S if and only if each
dense (left, right) ideal (containing K) is connected.

When S* = S, it is possible that aS = S for some a € S. Existence of theset P = {a € S : aS =
S} and its relationship to maximal ideals have been discussed in [3]. The following theorem provides a
few additional properties of the set P of a compact topological semigroup S.

Theorem 2.12. Suppose that S is a compact topological semigroup such that aS = S for some a € S.
Let P={a €S :aS =S}. Then, the following is considered.

(a) P is aright group.
(b) IfP#S, Then S\ P is dense in S or S is disconnected.
(c) Jo(S\ {a}) isdensein S for each a € P if S is connected and P #S.

Proof. (a) According to [3, Theorem 1.4.6], P = U,cgnp H(e), and P is a subtopological
semigroup of S. Then, eS = S for all e € EN P, and hence e is a left identity of S. For each
a € P, a € H(e) for some e € EN P, and hence there exists a~! € H(e) such that aa™' = e. For
any x € P, x = (aa™')x = a(a”'x) € aP. It follows that P = aP for every a € P, and hence P is
right simple since S is compact and P is closed. The result follows from Theorem 1 of [4]. O

(b) Since P is a nonempty closed subtopological semigroup of S and the kernel K
exists, S \ P is nonempty. In fact, by [3, Theorem 1.4.7], S \ P is the only maximal ideal of S
because S#P#(.1f S\ P#S, then S\ P is both open and closed by the maximality, and hence
S is disconnected.

(c)The result follows immediately from part (b) and the fact that S\ P C Jo(S \ {a})
forevery a € P.

The following example shows that the condition S # P is necessary for Theorem 2.12(b)
and (c).

Example 2.13. Let S = [0, 1] with the usual topology and the multiplication xy = y forx,y € S.
Then, S =P = K.
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Definition 2.14. A topological semigroup S has the left maximal property (right maximal property)
if there exists a maximal left (right) ideal L* (R*) containing every proper left (right) ideal of
S.

In [3], Paalmande Miranda presented several results showing how a compact
connected topological semigroup S with the left or right maximal property is related to the
condition S = aS, where a € S. In the same spirit of these results and Theorem 2.11, the
following theorem characterizes a compact connected topological semigroup satisfying the
maximal property and the condition S = Sa U aS U SaS by means of its maximal ideals.

Theorem 2.15. Let S be a compact connected topological semigroup. Then, the following are
equivalent.

(a) There is an idempotent e such that e € S \ M for every maximal ideal M of S.
(b) The semigroup S has the maximal property and S = Sa U aS U SaS for some a € S.

Proof. (a) = (b) Since K € S\ {e} and I C Jo(S\ {e}) for every proper ideal I of S, S has the
maximal property with the maximal ideal Jo(S \ {e}).

Leta e S\ Jo(S\ {e}). Then, Jo(S\ {e}) is properly contained by the ideal SaU aS U
SaSu{a}. Hence, SauaSuUSaSu {a} = S. Since S is connected and Sa, aS, SaS, and {a} are
closed, a € SauaSuU SaS, and hence, S = Sau aSuU SaSs.

(b) = (a) Suppose that S has the maximal property with the maximal ideal M* and
S does not satisfy the condition in part (a). Then, E ¢ M?*, and hence it follows from
Theorem 2.9 that S? ¢ M*. On the other hand, S = SaUaSuUSaS ¢ S? ¢ M*, which contradicts
M* being the maximal ideal of S.

The following corollary to Theorem 1.4.12 of [3] implies that the maximal ideal M in
Theorem 2.9 is not unique. O

Corollary 2.16. A necessary and sufficient condition that a compact connected topological semigroup
S has the maximal ideal property is that S has at least one idempotent e with S = SeS and S is not
simple.
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