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We study the Iwasawa-type decomposition of an open subset of SL(n, � ) as SU(p, q)AN. We show
that the dressing action of SU(p, q) is globally defined on the space of admissible elements in AN.
We also show that the space of admissible elements is a multiplicative subset ofAN. We establish
a geometric criterion: the symmetrization of an admissible element maps the positive cone in � n

into itself.

1. Introduction

In Poisson geometry, the groups SU(p, q) andAN (the upper-triangular subgroup of SL(n, � )
with real positive diagonal entries) are naturally dual to each other [1]. Therefore, it is
important to know the geometry of the orbits of the dressing action. We show that the right
dressing action of SU(p, q) is globally defined on the open subset of the so-called admissible
elements of AN (see Section 2).

We also show that the admissible elements can be characterized as follows: these are
exactly those elements of AN whose symmetrization maps the closure of the positive cone
in � n into the positive cone. In addition, we establish a useful fact that the set of admissible
elements is a multiplicative subset of AN.

2. Admissible Elements

Let p and q be positive integers and let n = p + q. Consider the space � n and the group
G0 = SU(p, q), the group G0 is the subgroup of G = SL(n, � ), which preserves the following
sesquilinear pairing on �

n :
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〈x, y〉 =
p∑

i=1

xiyi −
n∑

j=p+1

xjyj . (2.1)

Denote the corresponding norm by ‖x‖. A vector x ∈ � n is said to be timelike if the square of
its norm is positive, and spacelike, if it is negative.

Let A ⊂ G be the subgroup of positive real diagonal matrices and N be the unipotent
upper triangular subgroup. Denote by �, �, �, and �0 the Lie algebras of G, A,N, and G0. The
Iwasawa-type decomposition for G states that for an open dense subset G∨ of G one has [2,
page 167]:

G∨ =
∐

w∈W/W0

G0ẇAN, (2.2)

where W = W(�, �) is the Weyl group, W0 is the subgroup of W with representatives in
K = SU(n) ∩G0, and ẇ is a representative of w ∈ W/W0 in SU(n).

An important question is to determine which elements of G allow such a decomposi-
tion for a given choice ofw. The case of particular interest is when w = 1, since it is related to
the dressing action in Poisson geometry.

Let Jp,q be the diagonal matrix Jp,q = diag(1, 1, . . . , 1︸ ︷︷ ︸
p

,−1,−1, . . . ,−1︸ ︷︷ ︸
q

). Introduce the

following involution on the space of n × nmatrices:

A† = Jp,qA
∗Jp,q, (2.3)

where A∗ is the usual conjugate transpose. The Lie algebra � splits, as a vector space, into the
direct sum of ±1-eigenspaces of †: � = � + �0. Let also Q ⊂ G be the submanifold of elements
satisfying A† = A. Clearly, exp(�) ⊂ Q.

The next definition is quintessential for this paper. We say that

�λ = diag
(
λ1, . . . , λp, μ1, . . . , μq

) ⊂ � (2.4)

is admissible if λi > μj for all i, j. Clearly, using the action ofW0, one can arrange λi’s and μj ’s in
the nonincreasing order, and the condition of admissibility will become simply λp > μ1. Same
definition applies forA. Next, we say that an elementX ∈ � is admissible, if it isG0-conjugate
to an admissible element in �. The set of admissible elements in � form an open cone. Define
the admissible elements in Q as the exponents of those in �. Finally, an element b ∈ AN is
called admissible, if it obtained from an admissible element of A by the right dressing action.

The above definition stems from the work of Hilgert, Neeb and others, see, for
example, [3]. Recall the definition of the right dressing action of G0 on AN. Let b ∈ AN
and g ∈ G0. Assume there exist b′ ∈ AN and g ′ ∈ G0 such that bg = g ′b′. In this case we write
b′ = bg .

One of the important properties of the set of admissible elements can be observed in
the following result, which asserts that admissible elements map the timelike cone into itself.

Lemma 2.1. Let s ∈ Q be admissible and let x ∈ � n be timelike. Then, sx is timelike as well.
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Proof. Decompose s = g−1e�λg, where g ∈ G0 and �λ = diag(λ1, . . . , λp, μ1, . . . , μq) ⊂ � is
admissible, so that we have λi > μ1 ≥ μj for all 1 ≤ i ≤ p and 2 ≤ j ≤ q.

Let y = gx. Since the group G0 preserves the cone of timelike elements, y is timelike as
well and, denoting its coordinates

y =
(
z1, . . . , zp,w1, . . . , wq

)
, (2.5)

we see that

‖y‖2 =
p∑

i=1

|zi|2 −
q∑

j=1

∣∣wj

∣∣2 = r, r ∈ �, r > 0. (2.6)

Now, let us show that e�λy is timelike, by using the above equation and expressing |w1|2
in terms of the other coordinates:

p∑

i=1

e2λi |zi|2 −
q∑

j=1

e2μj
∣∣wj

∣∣2 =
p∑

i=1

(
e2λi − e2μ1

)
|zi|2 +

q∑

j=2

(
e2μ1 − e2μj

)∣∣wj

∣∣2 + re2μ1 > 0. (2.7)

The last step in the proof is to notice that g−1 preserves the timelike cone, and thus sx = g−1e�λy
is timelike.

Later on, in Proposition 4.4, we will show that conversely, admissible elements can be
characterized by this property.

3. Gram-Schmidt Orthogonalization and Admissible Elements

Here we will give an explicit computational indication that if �λ ∈ � is admissible, then the
whole orbit exp(�λ)G0 admits a global decomposition, that is, exp(�λ)G0 ⊂ G0AN. Therefore,
the right dressing action is globally defined on the set of admissible elements in AN. Note
that this is not true for the left dressing action, as a simple 2 × 2 example can show.

Next, we will use the Gram-Schmidt orthogonalization process to show that for any
g ∈ G0 and admissible �λ, we have exp(�λ)g ⊂ G0AN. A short proof of this will be given
in Section 4. Let us denote the columns of g by w1, . . . ,wn. The columns of g are (pseudo-)
orthonormal with respect to 〈·, ·〉, and the first p columns are timelike, and the last q are
spacelike.

Denote the columns of exp(�λ)g by v1, . . . , vn. This element of G is obtained from g by
multiplying the first row by eλ1 , . . ., the pth row by eλp , the (p + 1)st row by eμ1 , . . ., and the
last row by eμq .

An important observation is that due to the admissibility of �λ, the first p columns of
exp(�λ)g will remain timelike, however nothing definite can be said about the last q.

The decomposition exp(�λ)g = sb with s ∈ G0 and b ∈ AN is an analogue of the
Gram-Schmidt orthogonalization process for the pseudometric 〈·, ·〉.

Denote the columns of s by u1, . . . ,un. Proving the existence of such decomposition
amounts to showing that if we follow the Gram-Schmidt process, the first p columns of swill
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be timelike, and the last q will be spacelike, and that the diagonal entries of b will be positive
real numbers. Let us denote the diagonal entries of b by (r1, . . . , rn) and the off-diagonal by
mij , wheremij = 0 for i > j.

Consider the first step of the Gram-Schmidt process, namely that r1 = ‖v1‖ and u1 =
v1/r1. Since v1 is timelike, we see that r1 is real positive and that u1 is timelike.

Nowwemove to the second step, (obviously, under the assumption that p > 1), which
we consider in detail, because it lays the foundation for the other columns:

v2 = m12u1 + r2u2. (3.1)

Here m12 = 〈v2,u1〉 and r2 = ‖v2 − m12u1‖. In order to complete this step we need to show
that the vector v2 −m12u1 is timelike.

Note that

‖v2 −m12u1‖2 = ‖v2‖2 − |〈v2,u1〉|2, (3.2)

so we just need to show that this number is positive. Since ‖u1‖2 = 1, this is equivalent to
showing that

‖v2‖2 · ‖u1‖2 > |〈v2,u1〉|2, (3.3)

or, after multiplying both sides by r21 , that

‖v2‖2 · ‖v1‖2 > |〈v2, v1〉|2. (3.4)

Denote the coordinates of the vector w1 by (a1, . . . , ap, b1, . . . , bq), and the coordinates
of w2 by (c1, . . . , cp, d1, . . . , dq). We have

p∑

i=1

|ai|2 −
q∑

j=1

∣∣bj
∣∣2 =

p∑

i=1

|ci|2 −
q∑

j=1

∣∣dj

∣∣2 = 1, (3.5)

p∑

i=1

aici −
q∑

j=1

bjdj = 0. (3.6)

The coordinates of the vector v1 are given by

(
eλ1a1, . . . , e

λpap, e
μ1b1, . . . , e

μqbq
)

(3.7)

and v2 by

(
eλ1c1, . . . , e

λpcp, e
μ1d1, . . . , e

μqdq

)
. (3.8)
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The RHS of (3.4) now becomes as follows, using (3.5):

⎛

⎝
p∑

i=1

e2λi |ai|2 −
q∑

j=1

e2μj
∣∣bj
∣∣2
⎞

⎠ ·
⎛

⎝
p∑

i=1

e2λi |ci|2 −
q∑

j=1

e2μj
∣∣dj

∣∣2
⎞

⎠

=

⎛

⎝
p∑

i=1

(
e2λi − e2μ1

)
|ai|2 +

q∑

j=2

(
e2μ1 − e2μj

)∣∣bj
∣∣2 + e2μ1

⎞

⎠

·
⎛

⎝
p∑

i=1

(
e2λi − e2μ1

)
|ci|2 +

q∑

j=2

(
e2μ1 − e2μj

)∣∣dj

∣∣2 + e2μ1

⎞

⎠,

(3.9)

which is strictly greater than

⎛
⎝

p∑

i=1

(
e2λi − e2μ1

)
|ai|2 +

q∑

j=2

(
e2μ1 − e2μj

)∣∣bj
∣∣2
⎞
⎠

·
⎛

⎝
p∑

i=1

(
e2λi − e2μ1

)
|ci|2 +

q∑

j=2

(
e2μ1 − e2μj

)∣∣dj

∣∣2
⎞

⎠,

(3.10)

which in turn, by Cauchy-Schwarz, is greater or equal than

∣∣∣∣∣∣

p∑

i=1

(
e2λi − e2μ1

)
aici +

q∑

j=2

(
e2μ1 − e2μj

)
bjdj

∣∣∣∣∣∣

2

, (3.11)

which is exactly |〈v1, v2〉|2, if we take into account (3.6).
Now, we will similarly show that uk is timelike for any k ≤ p. We have

vk =
k−1∑

�=1

m�ku� + rkuk, (3.12)

where m�k = 〈vk,u�〉.
This amounts to showing that

‖vk‖2 >
k−1∑

�=1

|〈vk,u�〉|2. (3.13)

Consider the subspace V ⊂ � n spanned by u1, . . . ,uk−1, which is the same subspace
that is spanned by v1, . . . , vk−1. It is isomorphic to the subspace W spanned by w1, . . . ,wk−1,
and the explicit isomorphism is given by multiplying the first coordinate by e−λ1 , . . ., the pth
by e−λp , the (p + 1)st by e−μ1 , . . ., and the last by e−μq .
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Denote by yk =
∑k−1

�=1 m�ku� If 〈vk, yk〉 = 0, then by definition of yk andm�k this would
imply that vk is orthogonal to all the ui for 1 ≤ i ≤ k − 1, and thus all m�k = 0 and, similar to
the case k = 1, the vector uk = vk/|vk| is timelike as desired.

Thus, we can assume that

αk = 〈vk, yk〉 =
k−1∑

�=1

|m�k|2 > 0. (3.14)

Define

u =
yk√
αk

. (3.15)

This is an essentially unique element of V (up to a circle factor)with the property that:

〈vk,u〉 · u =
k−1∑

�=1

m�ku�. (3.16)

Let w also be the unit vector in W , which is the rescaled image of u under the above
homomorphism. The previous proof for the case k = 2 now applies verbatim, with the role of
w1 played byw and the role of v2 played by vk.

Thus we have established that the first p columns of s are timelike vectors, and that
r1, . . . , rp are positive real numbers. Due to the Sylvester’s law of inertia for quadratic forms,
the only way to complete this to a (pseudo-) orthonormal basis with respect to 〈·, ·〉 is to add
q spacelike vectors—therefore if we continue the Gram-Schmidt orthogonalization process,
then the last q columns of swill be spacelike as required.

4. Iwasawa-Type Decomposition

Let us introduce more notation. Denote by Qadm and �adm the sets of admissible elements in
Q and �, respectively. Recall that Qadm = exp(�adm). The following result is straightforward.

Lemma 4.1. On these sets of admissible elements the map exp is a diffeomorphism.

Now, consider the symmetrization map

Sym : AN −→ Q, Y �−→ Y †Y. (4.1)

This map sends the orbits of the dressing action to the conjugation orbits by the action of
G0 and therefore maps admissible elements to admissible. In fact, on the set of admissible
elements, this map is, again, bijective, and, moreover, a simple computation of the differential
can show that this is a diffeomorphism.

Let, as before, �λ ∈ � be admissible, let g0 ∈ G0, and let us find an explicit decomposition

exp
(
�λ
)
g0 = g ′

0an, (4.2)
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with g ′
0 ∈ G0, a ∈ A, and n ∈ N. Notice that the symmetrization map yields

g−1
0 exp

(
2�λ
)
g0 = n†a2n. (4.3)

The right hand side provides the Gauss decomposition (also known as the triangular or the
LDV-factorization) of the left hand side. It exists if and only if the leading principal minors
of the matrix on the left are nonzero. However, it was shown in [4, Proposition 4.1], that
the eigenvalues of the principal minors of an admissible element satisfy certain interlacing
conditions, similar to the Gelfand-Tsetlin conditions in the Hermitian symmetric case. In
particular, since all the eigenvalues of s ∈ Qadm are positive, then the eigenvalues of any
leading principal minor would be positive as well, and therefore the Gauss decomposition
exists.

The diagonal entries of a2 are the ratios of the leading principal minors:

(
a2
)

ii
=

Δi

Δi−1
. (4.4)

Thus we also see that the entries of a2 are positive, as required. Thus, we have
established the following.

Proposition 4.2. If �λ ∈ � is admissible, then the whole orbit exp(�λ)G0 admits a global decomposition,
that is, exp(�λ)G0 ⊂ G0AN.

Another interesting property of (AN)adm is that it is a multiplicative set.

Proposition 4.3. If two elements b1 and b2 from AN are admissible, b1, b2 ∈ (AN)adm, then their
product b1b2 is admissible as well.

Proof. Applying the dressing action, we can actually assume that b2 = a ∈ Aadm. This follows
from the fact that for g ∈ G0 and b1, b2 ∈ AN:

gb1b2 =
(
gb2
)b1

, (b1b2)g = b
(gb2 )
1 b

g

2
. (4.5)

Applying the symmetrization map to b1a, we obtain a new matrix f = ab†1b1a ∈ Q, which we
need to prove admissible.

Since the spaceAadm is clearly connected and a is admissible, consider a path a(t) such
that a(0) = Id, a(1) = a and a(t) ∈ Aadm for 0 < t ≤ 1. Also denote f(t) = a(t)b†1b1a(t).

Assume, on the contrary, that f(1) = f is not admissible and let E ⊂ [0, 1] be the
(nonempty) subset defined by the property that f(t) for t ∈ E is not admissible. Then consider
τ = inf E.

We recall [3] that the space �adm forms a convex cone in q, therefore a simple
infinitesimal computation can show that Qadm is a connected open subset of Q and any
element from the boundary of Qadm, such as f(τ), has the property that its eigenvalues
remain real and, moreover, the lowest eigenvalue λp corresponding to the timelike cone and
the highest eigenvalue μ1 corresponding to the spacelike cone collide: λp = μ1 = β. Thus, there



8 International Journal of Mathematics and Mathematical Sciences

exists a whole plane of eigenvectors containing vectors from both � n
+ and �

n
− . Thus it must

contain an eigenvector, which we denote by z, from the null cone.
For this eigenvector we have the following equation: f(τ)z = βz. Or, equivalently,

a(τ)
(
b†1b1

)
a(τ)z = βz. (4.6)

Note that both a(τ) and b†1b1, being admissible, map the timelike cone � n
+ into itself by

Lemma 2.1. Similar proof shows that they map the null cone minus the origin �
n
0 \ {0} inside

the timelike cone. Therefore, the element a(τ)(b†1b1)a(τ) also maps � n
0 \ {0} inside of � n

+ and
thus z cannot be its eigenvector.

In geometric terms, we have established the following characterization of the space of
admissible elements Qadm.

Proposition 4.4. An element s ∈ Q is admissible if and only if it has real positive eigenvalues and
maps the closure of the timelike cone � n

+ = � n
+ ∪ � n

0 into the timelike cone � n
+ (plus the origin).

Notice that since a from the above proof is admissible diagonal, the pseudohermitian
analogue of the Rayleigh-Ritz ratio

RA =
x†Ax
x†x

(4.7)

for the matrices f and s = b†1b1 will have the following properties. Let x ∈ � n
+ be timelike,

then, as we saw earlier, ax is timelike as well with a bigger norm by Lemma 2.1.
Thus, for x ∈ � n

+ , we have

Rasa(x) =
x†asax
x†x

>
(ax)†s(ax)†

(ax)†ax
= Rs(ax). (4.8)

It follows since amaps � n
+ to itself, that

min
x∈�n

+

Rs(x) ≤ min
x∈�n

+

Rs(ax) < min
x∈�n

+

Rasa(x). (4.9)

From [5, Theorem 2.1], it follows that λ1(asa) > λ1(s). Similar inequalities can be established
for other eigenvalues.

The notion of admissibility can be extended to the whole group G = SL(n, � ). We say
that g ∈ G is admissible, if it decomposes as g = hb, with h ∈ G0 and an admissible b ∈
(AN)adm. Such a decomposition, if exists, is clearly unique. Note, moreover, that g†g = b†b.
The singular admissible spectrum of g are the square roots of the spectrum of g†g. (Note of
warning: one should not defineQadm by inducing this definition fromG, but rather as we did
previously.)
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Suppose that g1, g2 are two admissible elements from G such that g1 = h1b1 and
g2 = h2b2. Then we have g1g2 = h1b1h2b2 = h1h

b1
2 b

h2
1 b2, where the powers mean the dressing

actions. This is possible, because b1 is admissible. Thus we have established that the product
g1g2 is admissible if and only if the product bh2

1 b2 is such.

5. Example of the Group SU(1,1)

The Poisson geometry related to the group SU(1, 1) was considered in detail in [6]. Here we
just recall several facts to illustrate the results of this paper. First of all, the space �adm is the
following convex cone of matrices

(
z x + iy

−x + iy −z

)
: x, y, z ∈ �, z2 − x2 − y2 > 0, z > 0. (5.1)

Next, we define Qadm = exp(�adm). Consider an element

(
t1 m

−m t2

)
∈ Q, (5.2)

where t1, t2 ∈ �, and m ∈ � satisfy the determinant condition t1t2 + |m|2 = 1. It is admissible
if and only if its eigenvalues are real and positive, and, moreover, the eigenvalue for the
timelike cone is greater than the other one. This translates into the following two conditions
on the coefficients of this matrix:

t1 + t2 > 2, t1 > 1. (5.3)

Next, an element

(
r n

0 r−1

)
∈ AN (5.4)

is admissible if and only if

r > 1, r2 + r−2 − |n|2 > 2. (5.5)

Now, let us write down the Iwasawa-type decomposition G ⊃ G0AN explicitly. Let us
consider a general element of SL(2, � ):

(
a b

c d

)
: a, b, c, d ∈ � , ad − bc = 1. (5.6)



10 International Journal of Mathematics and Mathematical Sciences

The condition that this general element admits such a decomposition is simply |a| > |c|:

(
a b

c d

)
=

⎛
⎜⎜⎜⎜⎜⎝

a
√
|a|2 − |c|2

c
√
|a|2 − |c|2

c
√
|a|2 − |c|2

a
√
|a|2 − |c|2

⎞
⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎝

√
|a|2 − |c|2

(
b − c

|a|2 − |c|2
)√|a|2 − |c|2

a

0
1

√
|a|2 − |c|2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(5.7)

Thus, it is quite easy to see that for any element g ∈ G and exp(�λ) ∈ Aadm, the element
exp(�λ)g ∈ G0AN. Explicitly, if

g =

(
u v

v u

)
, exp

(
�λ
)
=

(
eλ 0

0 e−λ

)
, λ > 0, (5.8)

then

exp
(
�λ
)
g =

(
eλu eλv

e−λv e−λu

)
(5.9)

is an admissible element of G.
The statemement that the admissibility of two elements b1 and b2 of AN ⊂ SL(2, � )

implies the admissibility of their product is also a short computational affair.
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