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We extend Akemann, Anderson, and Weaver’s Spectral Scale definition to include selfadjoint
operators from semifinite von Neumann algebras. New illustrations of spectral scales in both the
finite and semifinite von Neumann settings are presented. A counterexample to a conjecture made
by Akemann concerning normal operators and the geometry of the their perspective spectral scales
(in the finite setting) is offered.

1. Introduction

The notion of a “joint spectrum” for an n-tuple of operators was created and developed
through the 1970s and work continues today. For an account of the various approaches taken
and the achievements made see [1, page 3]. One attempt at a geometric interpretation of the
“joint spectrum” of an n-tuple of self-adjoint operators is developed in spectral scale [2–6].

Definition 1.1. LetM be a finite vonNeumann algebra equippedwith a finite, faithful, normal,
trace τ such that τ(1) = 1, and let b = b1 + ib2 ∈ M with b1 and b2 self-adjoint. Define

Ψ : M −→ �3 (1.1)

by Ψ(c) = (τ(c), τ(b1c), τ(b2c)) for all c ∈ M. The spectral scale of b with respect to τ is the set

B(b) = Ψ
(M+

1

)
= {(τ(c), τ(b1c), τ(b2c)) : 0 ≤ c ≤ 1}. (1.2)
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The spectral scale of an n-tuple of self-adjoint operators is defined analogously (in the
canonical fashion), becoming a subset of �n+1 .

The set B(b) has proven useful in gaining insight on problems in operator theory and
operator algebras. In 2006, for a self-adjoint operator b in a finite factorM (i.e., τ(1) < ∞ and
M has trivial center), Akemann and Sherman [7] were able to use B(b) to characterize the
w∗-closure of the unitary orbit U(b) = {ubu∗ : u is unitary in M} of b. More precisely, they

showed that U(b)
w∗

= C(b) = {d ∈ M : B(d) ⊂ B(b)}. Unfortunately, the spectral scale has
only been developed for finite von Neumann algebras. In 2010, Wills [6] was able to extend
the definition of B(b) to include the class of unbounded operators.

The purpose of the work that follows to develop B(b) for b = b∗ ∈ M, where M is
a semifinite von Neumann algebra, equipped with a semifinite, faithful, normal trace τ such
that τ(1) = ∞. We will show that B(b) is an unbounded subset of �2 which may or may not
be closed, and that B(b) gives a complete description of elements in the spectrum σ(b) of b
that lie outside the open interval determined by the minimum andmaximum elements of the
essential spectrum E of b.

We begin with a summary of “how to read” B(b) in the finite von Neumann algebra
setting.

2. Geometric Interpretations of B(b) When M Is
a Finite von Neumann Algebra

The following is a summary of the main results concerning the geometry of B(b) [2–5].

Theorem 2.1. LetM, τ , b, Ψ, and B(b) be as given in Definition 1.1. Then the following hold.

(i) B(b) is a compact, convex subset of �3 which is symmetric about the point (1/2, b1/2,
b2/2). If b = b∗, then B(b) can be identified with a subset of �2 .

(ii) B(b) gives a complete description of σ(t1b1 + t2b2) for all t1, t2 ∈ �.

(iii) τ(b) can be read from the point Ψ(1).

(iv) If b = b∗, then the set of all slopes of lines tangent to the boundary of B(b) is equal to σ(b).

(v) If b = b∗, then corners in the boundary of B(b) correspond to gaps in σ(b).

(vi) If b = b∗, then the extreme points of B(b) are images under Ψ of spectral projections of b.

(vii) If b /= b∗, then the extreme points of B(b) are images under Ψ of spectral projections of the
operators t1b1 + t2b2 for various t1, t2 ∈ �.

(viii) If b is normal, then the set of all complex slopes of 1-dimensional faces of B(b) (i.e., all the
1-dimensional “edges” in the boundary) is equal to σp(b).

(ix) The Numerical Range W(b) is equal to the set of all slopes (complex when b /= b∗) of line
segments emanating from the origin to points in B(b).

(x) If dim(M) = n, then for each 1 ≤ k ≤ n the cross-section of B(b) taken at x = k/n is
isomorphic to the k-numerical range

Wk(b) =

{
1
k

k∑

i=1
〈bxi, xi〉 : {xi} is an orthonormal set

}

, 1 ≤ k ≤ dim(M). (2.1)
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Figure 1: B(b)—Example 2.2.

We finish this section with a few examples of spectral scales in the finite setting.

Example 2.2. Let M = M5(� ) with τ(x) = (1/5) tr(x) for all x ∈ M, where tr is the canonical
trace on M5(� ). Let

b =

⎛

⎜⎜
⎜⎜⎜
⎜⎜⎜
⎝

1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 −1 0

0 0 0 0 −10

⎞

⎟⎟
⎟⎟⎟
⎟⎟⎟
⎠

. (2.2)

B(b) is given in Figure 1. The MATLAB program SpecGUI [8] was used to generate Figure 1,
and by Theorem 2.1 one can see that σ(b) = {−10,−1, 0, 1}, ‖b‖ = 10, 1 has multiplicity 2,
W(b) = [−10, 1], and τ(b) = −9/5.

Example 2.3. Let M = L∞([0, 1], m), where m is Lebesgue measure on the interval [0, 1], let
τ(c) =

∫1
0 c dm for all c ∈ M, and let b ∈ M be defined by b(x) = x for all x ∈ [0, 1]. Then b is

positive, with no eigenvalues, and σ(b) = [0, 1]. B(b) is given in Figure 2.

Example 2.4. LetM = M3(� ) with τ(c) = (1/3) tr(c) for all c ∈ M, and let

b =

⎛

⎜⎜
⎝

1 0 0

0 i 0

0 0 2i

⎞

⎟⎟
⎠. (2.3)

B(b) is given in Figure 3 [8].

Since b is normal, by Theorem 2.1 we know that the eigenvalues of b can be read from
B(b) as the slopes (complex) of 1-dimensional faces of B(b) (i.e., slopes of 1-dimensional
“edges” in the boundary of B(b)). Alternatively, if we were given B(b) without knowing
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Figure 2: B(b)—Example 2.3.
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Figure 3: B(b)—Example 2.4.

what b actually was, we could conclude by [3, Theorem 6.1] that b is normal. The numerical
range W(b) of b can be seen as the slopes (complex) of secant lines between the origin and
points in B(b).

Our last example is a counterexample to conjecture made by Akemann in 2005 which
stated: b is normal if the cross-section of B(b) taken at x = 1/2 is a polygon. The following is
a spectral scale that has no 1-dimensional faces, and the cross-section taken x = 1/2 is not a
polygon, yet the operator it corresponds to is normal.

Example 2.5. Let C be the unit circle, and let m denote Lebesgue measure on C. Put M =
L∞(C), and note that M is a finite von Neumann algebra equipped with the finite, faithful,
normal trace τ : L∞(C) → R defined by τ(c) = (1/2π)

∫
C c dm for all c ∈ L∞(C).

Consider the function b(z) = z on C. The spectral scale of b with respect to τ is the
collection of points

B(b) =
{
(τ(c), τ(bc)) : c ∈ (L∞(C))+1

}
(2.4)

in �3 . From [2, Theorem 2.3]we know that Ψ applied to spectral projections of the operators
bt = t1 Re(b) + t2 Im(b) for various t = (t1, t2) ∈ �2 are extreme points of B(b).
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Let μ ∈ [0, 2π), and let θ ∈ [0, π]. If χCμ,θ is the characteristic function on the arc Cμ,θ

from ei(μ−θ) to ei(μ+θ), then,

χCμ,θ(z) = χ[cos(θ),∞)

(
Re
(
e−iμz

))

= χ[cos(θ),∞)
((
cos
(
μ
))
x − (sin(μ))y)

(2.5)

for every z = x + iy ∈ � (to see this think of the case where μ = 0). But

χ[cos(θ),∞)
((
cos
(
μ
))
x − (sin(μ))y) = χ[cos(θ),∞)(t1 Re(b) + t2 Im(b))

= χ[cos(θ),∞)(bt)
(2.6)

for t = (t1, t2) = (cos(μ),− sin(μ)). Therefore, every χCμ,θ is a spectral projection of some bt.

Conversely, if t = (t1, t2) ∈ �2 and s ∈ �, then for if μ is chosen so that cos(μ) = t1/
√
t21 + t22

and sin(μ) = −t2/
√
t21 + t22 and θ is chosen so that ‖t‖ cos(θ) = s, then we have

χ[s,∞)(bt) = χ[‖t‖ cos(θ),∞)
(‖t‖ cos(μ)Re(b) − ‖t‖ sin(μ) Im(b)

)

= χ[cos(θ),∞)
(
cos
(
μ
)
Re(b) − sin

(
μ
)
Im(b)

)

= χCμ,θ .

(2.7)

Since the extreme points of B(b) come from the spectral projections described above,
we can calculate the extreme points of B(b) explicitly:

(
τ
(
χCμ,θ

)
, τ
(
bχCμ,θ

))
=

(∫

Cμ,θ

1dm,

∫

Cμ,θ

bdm

)

=

(
θ

π
,

∫

Cμ,θ

eizdz

)

=
(
θ

π
,

1
2πi

(
ei(μ+θ) − ei(μ−θ)

))

=
(
θ

π
,
1
π
eiμ sin(θ)

)
.

(2.8)

Since B(b) is the convex hull of its extreme points, we see that B(b) can be recovered by
rotating the function f(x) = (1/π) sin(πx) 0 ≤ x ≤ 1 about the x-axis (see Figure 4).

3. The Spectral Scale of a Self-Adjoint Operator in
a Semifinite von Neumann Algebra

For the remainder of what follows, let M be a semifinite von Neumann algebra, equipped
with a faithful, semifinite, normal trace τ , and let b ∈ M be self-adjoint. In order to avoid
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Figure 4: B(b)—Example 2.5.

the finite setting (for which the spectral scale has already been developed), we also assume
that τ(1) = ∞.

Define �τ = {x ∈ M : τ(x∗x) < +∞} and �τ = {∑n
i=1 xiyi : xi, yi ∈ �τ}. The by [9,

Lemma 2.16, page 318], we can define the function Ψ : �τ → �2 by

Ψ(c) = (τ(c), τ(bc)) for every c ∈ �τ . (3.1)

Definition 3.1. The spectral scale of b (with respect to τ) is the set

B(b) = Ψ
(
(�τ)+1

)
=
{
(τ(c), τ(bc)) : c ∈ (�τ)+1

}
. (3.2)

Since (�τ)+1 is convex, Ψ is linear, and τ is positive, we have that B(b) is a convex
subset of �2 contained in the right half-plane. Since τ is semifinite and τ(1) = ∞, B(b) is an
unbounded subset of �2 . We will see that B(b) may or may not be closed.

Note 1. If p and q are projections in M and p ≤ q then we write

[
p, q
]
=
{
a : p ≤ a ≤ q

}
(3.3)

for the order interval determined by p and q. Given a real number s, we let p+s denote the
spectral projection of b corresponding to the interval (−∞, s]. Similarly, we let p−s denote the
spectral projection of b corresponding to the interval (−∞, s). We use p±s to indicate either
of these projections and we write ps when p+s = p−s . We let q+s and q−s denote the spectral
projections corresponding to the intervals [s,∞) and (s,∞), respectively. We also use q±s to
indicate either of these projections and we write qs when q+s = q−s . Note that q±s = 1 − p∓s for
every s ∈ �. The spectral projections p±s and q±s will be used throughout the remainder of this
text, and will be instrumental in deciphering B(b).



International Journal of Mathematics and Mathematical Sciences 7

The following lemma was proven in [2, Lemma 1.2] for any type of von Neumann
algebra.

Lemma 3.2. Let b be a self-adjoint element in M, s ∈ �, c ∈ [p−s , p+s ], and a ∈ M+
1 . Then the

following statements hold:

(1) (b−s1)(1−c) = (b−s1)(1−p+s ) ≥ 0 and the range projection of (b−s1)(1−p+s ) is 1−p+s ;
(2) if a1/2(b − s1)(1 − c)a1/2 = 0, then a ≤ p+s ;

(3) (s1 − b)c = (s1 − b)p−s ≥ 0 and the range projection of (s1 − b)p−s is p−s ;

(4) if (1 − a)1/2(s1 − b)c(1 − a)1/2 = 0 then a ≥ p−s .

The following two lemmas tell us that points of the form (τ(c), τ(cb)) lie on the
boundary when c ∈ [p−s , p

+
s ] (or c ∈ [q−s , q

+
s ]) for some s ∈ �. A slight variation of these

lemmas was proved in [2, Lemma 1.3].

Lemma 3.3. If b ∈ M is self-adjoint and s ∈ �, then the following statements hold for each c ∈
[p−s , p+s ] ∩�τ and a ∈ (�τ)+1 .

(1) If τ(a) = τ(c), then τ(ba) ≥ τ(bc).

(2) If τ(a) = τ(c) and τ(ba) = τ(bc), then a ∈ [p−s , p+s ]; moreover, if = p±s , then equality in
the second equation obtains only for = c.

Proof. (1) From the previous lemma we have that

(b − s1)(1 − c) = (b − s1)
(
1 − p+s

) ≥ 0, so that b(1 − c) ≥ s(1 − c). (3.4)

Therefore

a1/2b(1 − c)a1/2 ≥ a1/2s(1 − c)a1/2. (3.5)

Note that τ(b(1 − c)a) < ∞ since a ∈ �τ and �τ is an ideal. Since a1/2 ∈ �τ and τ is order
preserving on �τ [6], we have that

τ(b(1 − c)a) = τ
(
a1/2b(1 − c)a1/2

)

≥ τ
(
a1/2s(1 − c)a1/2

)

= τ(s(1 − c)a).

(∗)

Since c ∈ �τ , an identical argument yields

τ(bc(1 − a)) ≤ τ(sc(1 − a)). (∗∗)



8 International Journal of Mathematics and Mathematical Sciences

It follows from (∗), (∗∗), and our hypothesis that

τ(ba) − τ(bc) = τ(ba − bca − bc + bca)

= τ(b(1 − c)a) − τ(bc(1 − a))

≥ τ(s(1 − c)a) − τ(sc(1 − a))

= τ(sa) − τ(sc)

= s(τ(a) − τ(c))

= 0,

(3.6)

and so τ(ba) ≥ τ(bc).
To prove (2), suppose that τ(a) = τ(c) and τ(ba) = τ(bc). Then

τ((1 − c)a) = τ(a − ca)

= τ(c − ca)

= τ(c(1 − a)),

τ(b(1 − c)a) = τ(ba − bca)

= τ(bc − bca)

= τ(bc(1 − a)).

(3.7)

Combining these two results with (∗) and (∗∗) we get that

τ(bc(1 − a)) = τ(b(1 − c)a) ≥ sτ((1 − c)a) = sτ(c(1 − a)) ≥ τ(bc(1 − a)). (3.8)

Therefore, all the above terms must be equal, and so

τ(b(1 − c)a) = sτ((1 − c)a),

τ(bc(1 − a)) = sτ(c(1 − a)).
(3.9)

From this it follows that

τ
(
a1/2(b − s1)(1 − c)a1/2

)
= 0,

τ
(
(1 − a)1/2(b − s1)c(1 − a)1/2

)
= 0.

(3.10)

Since τ is faithful we get that

a1/2(b − s1)(1 − c)a1/2 = 0,

(1 − a)1/2(b − s1)c(1 − a)1/2 = 0.
(3.11)

By parts (2) and (4) of the previous lemma, a ∈ [p−s , p
+
s ].
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If it is the case that c = p±s , τ(a) = τ(p±s ), and τ(ba) = τ(bc) then by what we just
showed, a ∈ [p−s , p

+
s ], so τ(p±s − a) = 0, which implies that a = p±s since τ is faithful.

Remark 3.4. Notice the importance of our choice of a and c as elements of ideal �τ in the
above proof. Without this assumption, many of the equalities and inequalities above would
have been either trivial or undefined because τ is not necessarily finite on all ofM.

Lemma 3.5. If b ∈ M is self-adjoint and t ∈ �, then the following statements hold for each d ∈
[q−t , q

+
t ] ∩�τ and a ∈ (�τ)+1 .

(1) If τ(a) = τ(d), then τ(ba) ≤ τ(bd).

(2) If τ(a) = τ(d) and τ(ba) = τ(bd), then a ∈ [q−t , q
+
t ]; moreover, if = q±t , then equality in

the second equation obtains only for a = d.

Proof. (1) Similarly, by Lemma 3.2 (since 1 − d ∈ [p−t , p
+
t ]), we have that

bd ≥ td,

t(1 − d) ≥ b(1 − d).
(3.12)

Therefore

(1 − a)1/2bd(1 − a)1/2 ≥ (1 − a)1/2td(1 − a)1/2, (∗)

a1/2t(1 − d)a1/2 ≥ a1/2b(1 − d)a1/2. (∗∗)

Using the fact that the trace is faithful and finite on �τ , we get that

τ(bd(1 − a)) = τ
(
(1 − a)1/2bd(1 − a)1/2

)
≥ τ
(
(1 − a)1/2td(1 − a)1/2

)
= τ(td(1 − a)),

τ(t(1 − d)a) = τ
(
a1/2t(1 − d)a1/2

)
≥ τ
(
a1/2b(1 − d)a1/2

)
= τ(b(1 − d)a).

(3.13)

It follows that

τ(bd) − τ(ba) = τ(bd(1 − a)) − τ(b(1 − d)a)

≥ τ(td(1 − a)) − τ(t(1 − d)a)

= τ(td) − τ(ta)

= 0.

(3.14)
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To prove (2), suppose that τ(a) = τ(d) and τ(ba) = τ(bd). Then

τ((1 − d)a) = τ(a − da)

= τ(d − da)

= τ(d(1 − a)),

τ(b(1 − d)a) = τ(ba − bda)

= τ(bd − bda)

= τ(bd(1 − a)).

(3.15)

From these two observations, (∗), and (∗∗) we get that

τ(bd(1 − a)) = τ(b(1 − d)a) ≤ tτ((1 − d)a) = tτ(d(1 − a)) ≤ τ(bd(1 − a)). (3.16)

But then all these termsmust be equal. Therefore τ(b(1−d)a) = tτ((1−d)a) and τ(bd(1−a)) =
tτ(d(1 − a)). It follows that

τ
(
a1/2(b − t1)(1 − d)a1/2

)
= 0,

τ
(
(1 − a)1/2(b − t1)d(1 − a)1/2

)
= 0.

(3.17)

But since (b − t1)(1 − d) ≥ 0 and (b − t1)d ≥ 0 we get

a1/2(b − t1)(1 − d)a1/2 = 0,

(1 − a)1/2(b − t1)d(1 − a)1/2 = 0.
(3.18)

By Lemma 3.2 we get a ∈ [q−t , q
+
t ]. If d = q±t , then since τ is faithful we must have a = d =

q±t .

Notice that this is one major difference between B(b) in the case whereM is finite, and
B(b)whenM is semifinite. In the finite setting B(b)was convex and compact. Next, we define
the boundary of B(b), and then study some of its properties.

Definition 3.6. Let B(b) denote the closure of B(b) in �2 . The lower boundary of B(b) is defined
as

∂LB(b) =
{(

x, y
) ∈ B(b) :

(
x, y′) ∈ B(b) =⇒ y′ ≥ y

}
. (3.19)

The upper boundary of B(b) is defined analogously as

∂UB(b) =
{(

x, y
) ∈ B(b) :

(
x, y′) ∈ B(b) =⇒ y′ ≤ y

}
. (3.20)
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Since B(b) is a closed convex set, and τ takes on every value in [0,∞], we let

f : [0,∞) −→ � (3.21)

defined by f(x) = y for each (x, y) ∈ ∂LB(b) denote the lower boundary function determined by
b. Similarly, let

g : [0,∞) −→ � (3.22)

defined by g(x) = y for all (x, y) ∈ ∂UB(b) denote the upper boundary function determined by b.
It is clear that f is a convex function and g is a concave function since B(b) is convex.

Theorems 3.7 and 3.8 describe the possibilities for the boundary of B(b). These
theorems describe the extreme points B(b), the line segments in ∂LB(b) ∩ B(b) and ∂UB(b) ∩
B(b), respectively, and the rays in ∂LB(b) ∩ B(b) and ∂UB(b) ∩ B(b) (resp.). Rays contained
in ∂LB(b) \ B(b) and ∂UB(b) \ B(b) will be described in Theorems 3.9 and 3.10 (resp.).
Differentiability of the functions f and g will be discussed in Theorems 3.12 and 3.13 (resp.).

Note 2. For a convex set C we let Ext(C) denote the set of extreme points of C.

Theorem 3.7. Let a ∈ (�τ)+1 . Then one has the following.

(1) If s ∈ σ(b) with p±s ∈ �τ , then Ψ(p±s ) ∈ Ext(B(b)) ∩ ∂LB(b).

(2) If s ∈ σp(b) with p+s ∈ �τ , then Ψ([p−s , p
+
s ]) is a line segment in ∂LB(b) ∩ B(b) having

slope s.

(3) If Ψ(a) ∈ ∂LB(b) ∩ B(b) and Ψ(a)/=Ψ(p±s ) for all s ∈ �, then a ∈ [p−s , p+s ] for some
s ∈ σ(b) with τ(p−s ) < ∞.

(4) If Ψ(a) ∈ Ext(B(b)) ∩ ∂LB(b), then a = p±s for some s ∈ σp(b) with p±s ∈ �τ .

(5) R is a ray in ∂LB(b) ∩ B(b) having slope s if and only if R = Ψ([p−s , p
+
s ]) and s ∈ σp(b)

with τ(p−s ) < τ(p+s ) = ∞.

Proof. (1) Fix s ∈ σ(b) such that τ(p±s ) < ∞. Then by part (1) of Lemma 3.3 we have that

Ψ
(
p±s
) ∈ ∂LB(b). (3.23)

By part (2) of Lemma 3.3 we have that

Ψ−1(Ψ
(
p±s
)) ∩ (�τ)+1 =

{
p±s
}
. (3.24)

To see that Ψ(p±s ) are extreme in B(b), suppose that

Ψ
(
p±s
)
= λΨ(a1) + (1 − λ)Ψ(a2) (3.25)

for some a1, a2 ∈ (�τ)+1 and 0 < λ < 1. But then

Ψ
(
p±s
)
= Ψ(λa1 + (1 − λ)a2), (3.26)
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and by part (2) of Lemma 3.3 we have that p±s = λa1 + (1 − λ)a2. Since projections are extreme
points of M+

1 , we must have a1 = a2 = p±s . Therefore,Ψ(p±s ) ∈ Ext(B(b)) ∩ ∂LB(b).
(2) Fix s ∈ σp(b) so that p+s ∈ �τ . Then we have that p−s < p+s , Ψ(p−s )/=Ψ(p+s ), and

b(p+s − p−s ) = s(p+s − p−s ). Note that if c ∈ [p−s , p+s ], thenΨ(c) ∈ ∂LB(b) by part (1) of Lemma 3.3,
so

Ψ
([
p−s , p

+
s

]) ⊂ ∂LB(b) ∩ B(b). (3.27)

For each λ ∈ (0, 1) let pλ = λp−s + (1 − λ)p+s . Then, each pλ is in [p−s , p+s ], and so Ψ(pλ) ∈
∂BL(b) ∩ B(b). Furthermore, Ψ(pλ) is a typical point on the line segment between Ψ(p−s ) and
Ψ(p+s ) and the slope of this line segment is

τ
(
bp+s
) − τ

(
bp−s
)

τ
(
p+s
) − τ

(
p−s
) =

τ
(
b
(
p+s − bp−s

))

τ
(
p+s − p−s

) =
τ
(
s
(
p+s − p−s

))

τ
(
p+s − p−s

) = s. (3.28)

ThereforeΨ([p−s , p
+
s ]) is a line segment in ∂LB(b)∩B(b)with slope s. Note that sinceΨ(p±s ) are

extreme points of B(b) contained in ∂LB(b), we know that the endpoints of any line segment
containing Ψ([p−s , p

+
s ]) must be Ψ(p−s ) and Ψ(p+s ).

(3) SupposeΨ(a) ∈ ∂LB(b)∩B(b) andΨ(a)/=Ψ(p±s ) for all s ∈ σ(b). We will show that
p−s < a < p+s for some s ∈ σ(b) with τ(p−s ) < ∞. Let

r1 = sup
{
s ∈ σ(b) : τ

(
p−s
) ≤ τ(a)

}
,

r2 = inf
{
s ∈ σ(b) : τ(a) ≤ τ

(
p+s
)}
.

(3.29)

We want to show that r1 = r2. Note that r1 and r2 are in σ(b) since σ(b) is closed, and τ(p−r1) ≤
τ(a) by lower semicontinuity of τ .

We first show that r1 ≤ r2. If s, t ∈ σ(b)with τ(p−s ) ≤ τ(a) ≤ τ(p+t ), and t < s, then by the
positivity of τ we must also have τ(p+t ) ≤ τ(p−s ), so τ(p−s ) = τ(a) = τ(p+t ). This fact, along with
Lemma 3.3, contradicts our assumption about Ψ(a). Thus, everything in {s ∈ σ(b) : τ(p−s ) ≤
τ(a)} is less than or equal to everything in {s ∈ σ(b) : τ(a) ≤ τ(p+s )}, hence r1 ≤ r2.

Now, either τ(a) ≤ τ(p+r2) or not. Suppose τ(p+r2) < τ(a). Since τ(p−r2) ≤ τ(p+r2) < τ(a),
and since r1 is an upper bound for {s ∈ σ(b) : τ(p−s ) ≤ τ(a)}, we must have r2 ≤ r1. But r1 ≤ r2.
Therefore r1 = r2 when τ(p+r2) < τ(a).

Assume that τ(a) ≤ τ(p+r2). Then, τ(p
−
r1) ≤ τ(a) ≤ τ(p+r2). But we are assuming that

Ψ(a)/=Ψ(p±s ) for all s ∈ σ(b), and that Ψ(a) ∈ ∂LB(b) ∩B(b). Therefore, by Lemma 3.3 we get

τ
(
p−r1
)
< τ(a) < τ

(
p+r2
)
. (3.30)

Observe that, since r2 is a lower bound for the set {s ∈ σ(b) : τ(a) ≤ τ(p+s )}, if s < r2 and
s ∈ σ(b) then

τ
(
p+s
)
< τ(a) < τ

(
p+r2
)
. (3.31)
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Similarly, if s ∈ σ(b) with r1 < s, then

τ
(
p−r1
)
< τ(a) < τ

(
p−s
)
. (3.32)

Suppose that r1 < r2. Then since r1, r2 ∈ σ(b) we have that

τ
(
p+r1
)
< τ(a) < τ

(
p−r2
)
. (3.33)

On the other hand if s ∈ (r1, r2) ∩ σ(b) then by (3.32) and (3.33) we would have τ(p+s ) <
τ(a) < τ(p−s ). This is not possible, so it must be that (r1, r2) ∩ σ(b) = ∅. Therefore p+r1 = p−r2 ,
and we have τ(p+r1) = τ(p−r2), contradicting (3.33). Hence, it must be that r1 = r2 = r and so
τ(p−r ) < τ(a) < τ(p+r ). Therefore r ∈ σp(b) and a ∈ [p−r , p

+
r ] by Lemma 3.3.

(4) Since B(b) is convex, every point in the boundary of B(b)must either be an extreme
point, or lie on a flat spot (face). Therefore, (1), and (2), (3), imply (4).

(5) (⇐) Suppose τ(p−s ) < τ(p+s ) = ∞ for some s ∈ σp(b). We claim that R = Ψ([p−s , p+s ])
is a ray in ∂LB(b) ∩ B(b) with slope s, emanating from the point Ψ(p−s ) = (τ(p−s ), τ(bp

−
s )). We

will first show that every point in Ψ([p−s , p
+
s ]) lies on the ray through Ψ(p−s ) with slope s.

Let c ∈ [p−s , p
+
s ] ∩ �τ , and write c = p−s + d for some d ∈ (p+s − p−s )M(p+s − p−s ). Then

b(c − p−s ) = bd = sd = s(c − p−s ), so τ(b(c − p−s )) = τ(s(c − p−s )). This implies that

τ(bc) = τ
(
s
(
c − p−s

))
+ τ
(
bp−s
)
= s · τ(c) + τ

(
(b − s1)p−s

)
. (3.34)

Therefore Ψ(c) lies on the ray with slope s passing through the point (τ(p−s ), τ(bp
−
s )).

Furthermore, by the convexity of B(b), we know there can only be one ray having slope s
in the lower boundary of B(b), and so ifΨ(x) is any other point in B(b) that lies on a ray with
slope s in the lower boundary, then we must have Ψ(x) ∈ R = Ψ([p−s , p

+
s ]).

(5) (⇒) If R is a ray in ∂LB(b) ∩ B(b) with slope s, emanating from Ψ(x), then Ψ(x) is
an extreme point of B(b) (if not, then R does not emanate from Ψ(x) since Ψ(x) would then
lie on a flat portion of ∂LB(b) ∩ B(b)), so we must have x = p±r ∈ �τ for some r ∈ σ(b) by
part (4). But R is a ray, so R cannot contain any extreme points of B(b). So by part (3) we
know that if z ∈ (�τ)+1 with Ψ(z) ∈ R, then z ∈ [p−sz , p

+
sz
] for some sz ∈ σp(b) with τ(p−sz) < ∞.

Furthermore, since any such Ψ([p−sz , p
+
sz
]) is a line segment (or ray) with slope sz, and since

Ψ([p−sz , p
+
sz]) ⊂ R, we must have sz = s. Since there can only be one ray with slope s in the

lower boundary of B(b), we may conclude that r = s and R = Ψ([p−s , p+s ]).

Theorem 3.8. Let a ∈ (�τ)
+
1 . Then one has the following.

(1) If t ∈ σ(b) with q±t ∈ �τ , then Ψ(q±t ) ∈ Ext(B(b)) ∩ ∂UB(b).

(2) If t ∈ σp(b) with q+t ∈ �τ , then Ψ([q−t , q
+
t ]) is a line segment in ∂UB(b) ∩ B(b) having

slope t.

(3) If Ψ(a) ∈ ∂UB(b) ∩ B(b) and Ψ(a)/=Ψ(q±t ) for all t ∈ �, then a ∈ [q−t , q
+
t ] for some

t ∈ σ(b) with τ(q−t ) < ∞.

(4) If Ψ(a) ∈ Ext(B(b)) ∩ ∂UB(b) then a = q±t for some t ∈ σp(b) with q±t ∈ �τ .

(5) R is a ray in ∂UB(b) ∩ B(b) having slope t if and only if R = Ψ([q−t , q
+
t ]) and t ∈ σp(b)

with τ(q−t ) < τ(q+t ) = ∞.
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Proof. Note that for each s ∈ � we have that

q−s = χ(s,∞)(b) = χ(−∞,−s)(−b). (3.35)

Since −b is self-adjoint, the previous theorem applies. Alternatively, substitute Lemma 3.5 for
Lemma 3.3 in the proof of Theorem 3.7, the claim follows immediately.

Until this point we have focused on points that lie in B(b). Asmentioned earlier, it may
be the case that B(b) is not closed. The next four results describe this phenomenon, and tell
us exactly when B(b) is closed, when it is not, and, when we get a “dotted” (open) portion in
the boundary of B(b).

Theorem 3.9. Let EL = {s ∈ σ(b) : τ(p+s ) = ∞} and let λ = infEL. Then ∂LB(b) ∩ B(b) = ∂LB(b)
if and only if τ(p+

λ
) = ∞. Furthermore, if τ(p+

λ
) < ∞ then

y = λx + τ
(
(b − λ)p+λ

)
, x > τ

(
p+λ
)

(3.36)

is a ray in ∂LB(b) \ B(b) emanating from Ψ(p+λ).

Proof. Suppose that ∂LB(b) ∩ B(b) = ∂LB(b). Theorem 3.7 tells us that every Ψ(c) ∈ ∂LB(b)
has the property that either c ∈ [p−s , p

+
s ] for some s ∈ σp(b)with τ(p−s ) < ∞, or c = p±s for some

s ∈ σ(b) with p±s ∈ �τ . Note that by the definition of λ, τ(p+s ) = ∞ for all s > λ. Furthermore,
for every s > λ we can choose λ < s′ < s, so ∞ = τ(p+s′) ≤ τ(p−s ). Therefore, for every s > λ
we have τ(p−s ) = ∞. Suppose, for the sake of contradiction, that τ(p+

λ
) < ∞. Then, if d ∈ (�τ)+1

with Ψ(d) ∈ ∂LB(b) and τ(d) > τ(p+
λ
), then d ∈ [p−r , p

+
r ] for some r ∈ σ(b) with τ(p−r ) < ∞.

Therefore it must be that r ≤ λ. Clearly this is a contradiction since τ(d) > τ(p+
λ
). Hence, it

must be that τ(p+λ) = ∞.
Suppose τ(p+λ) = ∞, and let (x, y) ∈ ∂LB(b). We want to show that (x, y) ∈ B(b).

Now, either τ(p−
λ
) = ∞ or not. If τ(p−

λ
) = ∞ then since τ(p+s ) < ∞ for all s < λ, we get that

τ(χ(λ−ε,λ)(b)) = ∞ for every ε > 0. For each n ∈ � let λn = λ − 1/n. Then τ(p−
λn
) ≤ τ(p+

λn
) < ∞

for every n, and τ(p+
λn
) → ∞ as n → ∞. Therefore, we can find s ∈ σ(b) such that τ(p+s ) > x.

Let

r1 = sup
{
s ∈ σ(b) : τ

(
p−s
) ≤ x

}
,

r2 = inf
{
s ∈ σ(b) : x ≤ τ

(
p+s
)}
.

(3.37)

To show that (x, y) ∈ B(b), we will show that r1 = r2, which will force (x, y) = Ψ(c) for some
c ∈ [p−r1 , p

+
r1
] by Theorem 3.7. Note that τ(p−r1) ≤ x by lower semicontinuity of τ . We will first

show that r1 ≤ r2.
If s, t ∈ σ(b) with τ(p−s ) ≤ x ≤ τ(p+t ), and t < s, then by the positivity of τ we must also

have τ(p+t ) ≤ τ(p−s ), which implies τ(p−s ) = τ(p+t ). Thus, everything in {s ∈ σ(b) : τ(p−s ) ≤ x}
is less than or equal to everything in {s ∈ σ(b) : x ≤ τ(p+s )}, hence r1 ≤ r2.

Suppose r1 < r2. Either x ≤ τ(p+r2) or not. Suppose τ(p
+
r2
) < x. Since τ(p−r2) ≤ τ(p+r2) < x,

and since r1 is an upper bound for {s ∈ σ(b) : τ(p−s ) ≤ x}, we get r2 ≤ r1. But this can not be,
so it must be that x ≤ τ(p+r2). This implies τ(p−r1) ≤ x ≤ τ(p+r2). If equality holds on either side,
then we would get (x, y) ∈ B(b) (again, by Theorem 3.7).
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τ(bp+
λ
)

τ(d)

y = λx + τ((b − λ)p+
λ
)

τ(p+
λ
)

Figure 5: Ray in ∂LB(b) \ B(b)—Theorem 3.9.

Suppose τ(p−r1) < x < τ(p+r2). Observe that, since r2 is a lower bound for the set {s ∈
σ(b) : x ≤ τ(p+s )}, if s < r2 and s ∈ σ(b) then

τ
(
p+s
)
< x < τ

(
p+r2
)
. (3.38)

Similarly, if s ∈ σ(b) with r1 < s then

τ
(
p−r1
)
< x < τ

(
p−s
)
. (3.39)

Since r1 < r2, we have

τ
(
p+r1
)
< x < τ

(
p−r2
)
. (3.40)

Thus, if s ∈ (r1, r2) ∩ σ(b) then by (3.32) and (3.33) we would have τ(p+s ) < x < τ(p−s ). This
is not possible, so it must be that (r1, r2) ∩ σ(b) = ∅. Therefore p+r1 = p−r2 , and we have τ(p+r1) =
τ(p−r2), contradicting (3.33). Hence, it must be that r1 = r2 = r and so τ(p−r ) < x < τ(p+r ), and
our desired result holds. Therefore, in this case we have ∂LB(b) ∩ B(b) = ∂LB(b).

If τ(p−
λ
) < ∞ then by Theorem 3.7 Ψ([p−

λ
, p+

λ
]) will be a ray in ∂LB(b) ∩ B(b). In both

cases we have ∂LB(b) ∩ B(b) = ∂LB(b).
For the second conclusion of the theorem, suppose τ(p+

λ
) < ∞. Plugging x = τ(p+

λ
) into

y = λx+τ((b−λ)p+
λ
)we get y = τ(bp+

λ
), so the pointΨ(p+

λ
) lies on the line y = λx+τ((b−λ)p+

λ
).

We will now show that, for x > τ(p+
λ
), the ray y = λx+ τ((b−λ)p+

λ
) forms the lower boundary

of B(b), but no point on the ray lies in B(b).
Suppose d ∈ (�τ)

+
1 with τ(d) > τ(p+λ) (see Figure 5).

Wewill show thatΨ(d) lies above the line y = λx+τ((b−λ)p+
λ
), and, for any ε > 0 there

exists d′ ∈ (�τ)+1 such that τ(d′) = τ(d) and τ(bd′) is within ε of y = λτ(d′) + τ((b − λ)p+
λ
).

We will first show that Ψ(d) lies above y = λx + τ((b − λ)p+
λ
) when λ = 0, then prove

the general case (λ/= 0). Suppose λ = 0. We want to show that

τ(bd) > λτ(d) + τ
(
(b − λ)p+λ

)
= τ
(
bp+0
)
. (3.41)

Suppose for the sake of contradiction that τ(bd) ≤ τ(bp+0 ). Since B(b) is convex there must be
d′ ∈ (�τ)

+
1 such that τ(d′) = τ(d) and τ(bd′) = τ(bp+0 ) (see Figure 6).
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−τ(b−)

τ(p+0 ) τ(d′)

Figure 6: Ray with slope 0 in ∂LB(b) \ B(b)—Theorem 3.9.

Write b = b+ − b− with b+ and b− positive and b+b− = 0. Note that τ(bp+0 ) = −τ(b−), so
we have τ(bd′) = −τ(b−). On the other hand we have that

−τ(b−) = τ
(
bd′)

= τ
(
b+d′) − τ

(
b−d′)

= τ
(
b+d′) − τ

(
p−0b

−p−0d
′)

= τ
(
b+d′) − τ

((
b−
)1/2

p−0d
′p−0
(
b−
)1/2)

≥ τ
(
b+d′) − τ

((
b−
)1/2

p−0
(
b−
)1/2)

= τ
(
b+d′) − τ

(
b−
)
.

(3.42)

Therefore, adding τ(b−) to both sides we get τ(b+d′) ≤ 0. This implies 0 = τ(b+d′) =
τ((d′)1/2b+(d′)1/2). Therefore, since τ is faithful,

0 =
(
d′)1/2b+

(
d′)1/2 =

(
d′)1/2b

(
1 − p+0

)(
d′)1/2. (3.43)

By part (2) of Lemma 3.2 we have

d′ ≤ p+0 . (3.44)

But our assumption is that τ(d′) = τ(d) > τ(p+
λ
) = τ(p+0 ). Therefore, we have reached a

contradiction to our assumption that τ(bd) ≤ τ(bp+0 ), so it must be that τ(bd) > τ(bp+0 ).
Now suppose that λ/= 0. As before, we want to show that

τ(bd) > λτ(d) + τ
(
(b − λ)p+λ

)
. (3.45)

Suppose that is not. Then as before we can find d′ ∈ (�τ)
+
1 such that

τ
(
bd′) = λτ

(
d′) + τ

(
(b − λ)p+λ

)
. (3.46)
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Note that for every s ∈ � we have that

p+s = χ(−∞,s](b) = χ(−∞,0](b − s1). (3.47)

Let a = b − λ1 and consider B(a). From (3.46) and (3.47) we have that

τ
(
ad′) = τ

(
aχ(−∞,0](a)

)
. (3.48)

Using (3.47) and the argument concluded at (3.44) we get d′ ≤ χ(−∞,0](a) = p+
λ
. But this is a

contradiction since τ(d′) = τ(d) > τ(p+
λ
). Therefore τ(bd) > λτ(d) + τ((b − λ)p+

λ
).

To prove B(b) comes arbitrarily close to the line y = λx + τ((b − λ)p+λ), let ε > 0. Using
the definition of λ and our assumption that τ(p+

λ
) < ∞ we have τ(p+

λ+ε/2 − p+
λ
) = ∞. Since τ is

semifinite we can find a nonzero, positive e < p+
λ+ε/2 − p+

λ
such that τ(e) < ∞. Furthermore,

we may scale e so that τ(p+
λ
+e) = τ(d). Let d′ = p+

λ
+e. Then since e < p+

λ+ε/2−p+λ ≤ 1−p+
λ
= q−

λ
,

we have that

τ
(
bd′) − (λτ(d′) + τ

(
(b − λ)p+λ

))
= τ
(
bd′) − λτ

(
d′) − τ

(
(b − λ)p+λ

)

= τ
(
b
(
p+λ + e

)) − λτ
(
p+λ + e

) − τ
(
(b − λ)p+λ

)

= τ((b − λ)e)

= τ
(
(b − λ)q−λeq

−
λ

)

= τ
(
q−λ(b − λ)q−λe

)

= τ
(
e1/2q−λ(b − λ)q−λe

1/2
)

≤ τ
(
e1/2q−λe

1/2
)

= τ
(
q−λe
)

= τ(e)

<
ε

2
.

(3.49)

Theorem 3.10. Let EU = {t ∈ σ(b) : τ(q+t ) = ∞} and let ρ = supEU. Then ∂UB(b) ∩ B(b) =
∂UB(b) if and only if τ(q+ρ) = ∞. Furthermore, if τ(q+ρ) < ∞ then

y = ρx + τ
((

b − ρ
)
q+ρ

)
, x > τ

(
q+ρ

)
(3.50)

is a ray in ∂UB(b) \ B(b) emanating from Ψ(q+ρ).

Proof. Substitute Theorem 3.8 for Theorem 3.7 in the proof of Theorem 3.9.

Corollary 3.11. Let λ and ρ be as in Theorems 3.9 and 3.10 (resp.). Then B(b) = B(b) if and only if
τ(p+λ) = τ(q+ρ) = ∞.
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Proof. Note that τ(1) = ∞ if and only if EU /= ∅ if and only if EL /= ∅ (since q±s = 1 − p∓s for each
s ∈ �). Thus, the claim follows immediately from Theorems 3.9 and 3.10.

Note that Theorems 3.7, 3.8, 3.9, and 3.10 tell us that the boundary of B(b) (which
contains information about σ(b)) is completely determined by spectral projections of the form
p±s and q±t = 1 − p∓t where s, t ∈ �. To summarize, the following information is contained in
the boundary of B(b).

(i) Extreme points contained in the lower boundary are of the form Ψ(p±s ) with s ∈ �.

(ii) Line segments having slope s in the lower boundary are of the form Ψ([p−s , p+s ])
with s ∈ � and τ(p+s ) < ∞.

(iii) Rays having slope s in the lower boundary are of the form Ψ([p−s , p
+
s ]) with s ∈ �

and τ(p−s ) < ∞ and τ(p+s ) = ∞.

(iv) A “dotted” ray in the lower boundary occurs if τ(p+
λ
) < ∞. Moreover, this ray

emanates fromΨ(p+λ) and has as its equation y = λx + τ((b − λ)p+λ).

(v) Extreme points contained in the upper boundary are of the form Ψ(q±t ) with t ∈ �.

(vi) Line segments having slope t in the upper boundary are sets of the formΨ([q−t , q
+
t ])

with t ∈ � and τ(q+t ) < ∞.

(vii) Rays having slope t in the upper boundary are sets of the form Ψ([q−t , q
+
t ]) with

t ∈ � and τ(q−t ) < ∞ and τ(q+t ) = ∞.

(viii) A “dotted” ray in the upper boundary occurs if τ(q+ρ) < ∞. Moreover, this ray
emanates fromΨ(q+ρ) and has as its equation y = ρx + τ((b − ρ)q+ρ).

Recall that for each (x, y) ∈ ∂LB(b) we let f : [0,∞) → � defined by f(x) = y
denote the lower boundary function generated by b. Similarly, g denotes the upper boundary
function generated by b. For each x ∈ [0,∞), let f ′

−(x) (g ′
−(x)) and f ′

+(x) (g ′
+(x)) denote

the left-sided and right-sided, (respectively) derivatives of f and g at x. Note that by
Theorem 3.7, every Ψ(c) in ∂L ∩ B(b) has the property that Ψ(c) ∈ Ψ([p−s , p

+
s ]) for some

s ∈ σ(b) with τ(p−s ) < ∞.

Theorem 3.12. Let s ∈ σ(b), and let c ∈ [p−s , p
+
s ] ∩ (�τ)+1 . Then

(1) f ′
−(τ(c)) and f

′
+(τ(c)) exist,

(2) f ′
−(τ(p−s )) = sup{s′ ∈ σ(b) : s′ < s},

(3) f ′
+(τ(p

+
s )) = inf{s′ ∈ σ(b) : s < s′},

(4) f is not differentiable at τ(p±s ) if and only if (s−ε, s)∩σ(b) = ∅ (or (s, s+ε)∩σ(b) = ∅)
for some ε > 0.

Proof. (1) Since B(b) is convex, f is a convex function, and so for any x ∈ (0,+∞)

f(x) − f(x − h)
h

(3.51)

increases as h decreases to zero. Furthermore, if x = τ(c) with c ∈ [p−s , p
+
s ] ∩ �τ for some

s ∈ σ(b), then since Ψ([p−s , p+s ]) is a line segment (or ray) in the lower boundary with slope
equal to s (by Theorem 3.7), we know (f(x) − f(x − h))/h is bounded above by s. Since
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bounded increasing sequences converge, f ′
−(x) exists at each x = τ(c) with c ∈ [p−s , p

+
s ] ∩ �τ

for some s ∈ σ(b). Using a similar argument considering the sequence (f(x + h) − f(x))/h
for some fixed x = τ(c) as h decreases to 0, and Theorem 3.7, we get that f ′

+(x) also exists at
every x ∈ [0,+∞).

(2) Fix s ∈ σ(b) with smin < s, where smin is the minimum of σ(b), and suppose x =
τ(p−s ) < ∞. Let

r = sup
{
s′ ∈ σ(b) : s′ < s

}
. (3.52)

Since σ(b) is closed, r ∈ σ(b). We want to show that r = f ′
−(τ(p−s )). Clearly r ≤ s.

First suppose that (r − ε, r) ∩ σ(b)/= ∅ for some ε > 0. If we had r = s then we would
have (s− ε, s)∩ σ(b)/= ∅, which contradicts the definition of r. Therefore, in this case we must
have r < s. But then again, by the definition of r, we have (r, s)∩σ(b)/= ∅. Therefore r ∈ σp(b),
and by Theorem 3.7 we know that Ψ(p−s ) = Ψ(p+r ) is the right endpoint of a line segment in
∂LB(b) ∩ B(b) with slope equal to r. Thus, r = f ′

−(τ(p−s )).
If (r −ε, r)∩σ(b) = ∅ for every ε > 0, then we can choose an increasing sequence (sn) of

distinct points in σ(b) that converge to r. But then since τ is normal, we know that αn = τ(p−sn)
converges in the w∗-topology to α = τ(p−r ). Since all the elements under consideration are
distinct spectral projections of b we have

sn
(
p−r − p−sn

) ≤ b
(
p−r − p−sn

) ≤ r
(
p−r − p−sn

)
(3.53)

for each n ∈ �. Applying τ to both sides of this we get

sn(α − αn) ≤ f(α) − f(αn) ≤ r(α − αn) (3.54)

for every n ∈ �. Therefore

sn ≤ f(α) − f(αn)
α − αn

≤ r (3.55)

for every n. Since (sn) converges to r, we get

lim
n

f(α) − f(αn)
α − αn

= r. (3.56)

Since the function defined by

h(x) =
f(α) − f(x)

α − x
∀x ∈ [0,∞] (3.57)

is an increasing function. From this and (3.55) above, we see that if (rn) is any sequence in �
increasing to τ(p−s ), then

lim
n

f(α) − f(rn)
α − rn

= r. (3.58)

Thus, f ′
−(τ(p

−
s )) = r.
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(3) Let r = inf{s′ ∈ σ(b) : s < s′}. Clearly, by the definition of r, we have s ≤ r. Using
the same argument as in (2), we get

f ′
+
(
τ
(
p+r
))

= r = inf
{
s′ ∈ σ(b) : s < s′

}
. (3.59)

(4) From parts (2) and (3) above, we have

f ′
−
(
τ
(
p−s
))

= sup
{
s′ ∈ σ(b) : s′ < s

}
, f ′

+
(
τ
(
p+s
))

= inf
{
s′ ∈ σ(b) : s < s′

}
. (3.60)

But then, (s, s + ε) ∩ σ(b) = ∅ for some ε > 0 if and only if x < y whenever x ∈ {s′ ∈ σ(b) :
s′ < s} and y ∈ {s′ ∈ σ(b) : s′ > s} if and only if f ′

−(τ(p−s ) < f ′
+(τ(p+s ) if and only if f is not

differentiable at τ(p−s ) or f is not differentiable at τ(p+s ). An identical argument shows that
(s − ε, s) ∩ σ(b) = ∅ for some ε > 0 if and only if f is not differentiable at τ(p−s ) or f is not
differentiable at τ(p+s ).

Theorem 3.13. Let t ∈ σ(b), and let c ∈ [q−t , q
+
t ] ∩ (�τ)+1 . Then

(1) g ′
−(τ(c)) and g ′

+(τ(c)) exist,

(2) g ′
−(τ(q

−
t )) = sup{t′ ∈ σ(b) : t′ < t},

(3) g ′
+(τ(q

+
t )) = inf{t′ ∈ σ(b) : t < t′},

(4) g is not differentiable at τ(q±t ) if and only if (t − ε, t) ∩ σ(b) = ∅ (or (t, t + ε) ∩ σ(b) = ∅)
for some ε > 0.

Proof. Substitute (3.34) for (3.33) into the proof of Theorem 3.12.

Theorems 3.12 and 3.13 tell us that if p+s = p−s and s does not lie in a gap of the spectrum,
then f is differentiable at τ(ps) and f ′(τ(ps)) ∈ σ(b). Part (4) of these theorems also confirm
that corners in the boundary of B(b) correspond to gaps in σ(b).

We finish with a few examples of spectral scales in the semifinite von Neumann
algebra setting. Recall from Theorems 3.9 and 3.10 that we let

EL =
{
s ∈ σ(b) : τ

(
p+s
)
= ∞}, with λ = inf EL,

EU =
{
t ∈ σ(b) : τ

(
q+t
)
= ∞}, with ρ = supEU.

(3.61)

We also let

E =
{
λ ∈ � : τ

(
χ(λ−ε,λ+ε)(b)

)
= ∞ ∀ε > 0

}
(3.62)

denote the essential spectrum of b. We will see in the next section that B(b) describes the
minimum and maximum elements of E. Note that all of the figures that follow are (supposed
to resemble) unbounded subsets of �2 .

Example 3.14. Let p ∈ M be a projection. Then either τ(p) < ∞ and τ(1 − p) = ∞, or τ(p) = ∞
and τ(1 − p) < ∞, or τ(p) = ∞ and τ(1 − p) = ∞. In any case we have that τ(p+λ) = τ(q+ρ) = ∞.

Therefore by Corollary 3.11 we have B(p) = B(p). Furthermore, B(p) must be one of the
following (see Figure 7).
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τ(p)

τ(p)

(a)

τ(1 − p)

τ(1 − p)

(b)

1

1

(c)

Figure 7: B(p)—Example 3.14.

4 5

1

−1

Figure 8: B(b)—Example 3.15.

Example 3.15. LetM = B(H) for some infinite-dimensional separable Hilbert SpaceHwith τ
the standard canonical trace onM, and let

b =

⎛

⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎝

1 0 0 0 0 0 0 · · ·

0 −1
3

0 0 0 0 0 · · ·

0 0
1
2

0 0 0 0 · · ·

0 0 0 −1
3

0 0 0 · · ·

0 0 0 0
2
3

0 0 · · ·

0 0 0 0 0 −1
3

0 · · ·

0 0 0 0 0 0
3
4

· · ·
...

...
...

...
...

...
...

. . .

⎞

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎠

. (3.63)

B(b) is pictured in Figure 8.
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1

1

Figure 9: B(b)—Example 3.16.

Notice that in this case we have λ = −1/3 and ρ = 1 are the minimum andmaximum of
the essential spectrum E of b. Moreover, τ(p+

λ
) = ∞ and τ(q+ρ) < ∞. By Theorem 3.9, ∂LB(b) ∩

B(b) = ∂LB(b), and by Theorem 3.10, ∂UB(b)∩B(b)/= ∂UB(b). Corollary 3.11 then tells us that
B(b) /=B(b). Note the closed portion of ∂UB(b) between x = 0 and x = 1, which tells us that
ρ = 1 is an eigenvalue with multiplicity equal to 1.

Example 3.16. Suppose M = B(H) for some infinite-dimensional separable Hilbert Space H,
with τ the standard canonical trace, and let b ∈ M be the diagonal operator with diag(b) =
� ∩ (0, 1). In this case we have λ = 0 and ρ = 1. Furthermore, λ /∈ EL and ρ /∈ EU, so
∂LB(b)∩B(b)/= ∂LB(b) and ∂UB(b)∩B(b)/= ∂UB(b). Again, by Corollary 3.11 B(b) /=B(b). B(b)
is pictured in Figure 9.

Example 3.17. LetM = L∞([0,∞), m)with τ(c) =
∫∞
0 c dm for all c ∈ M, wherem is Lebesgue

measure on [0,∞). Let b ∈ M be defined by b(x) = e−x on [0,∞). Then σ(b) is equal to the
essential range of b, which equals [0, 1]. For each s ∈ [0, 1]we have

p−s = p+s = χ(−∞,s](b) = χ[− ln(s),∞),

q+s = q−s = 1 − p+s = 1 − χ[− ln(s),∞) = χ[0,− ln(s)).
(3.64)

Since points of the form (τ(p±s ), τ(bp
±
s )) and (τ(q±s ), τ(bq

±
s )) determine the extreme points of

B(b) (see Theorems 3.7 and 3.8), by performing a couple quick integrals we find g and f (the
upper and lower boundary curves (resp.) generated by b):

g(x) = 1 − e−x, f(x) = 0. (3.65)

Note that we have λ = 0 /∈ EL and ρ = 0 ∈ EU. Therefore ∂LB(b) ∩ B(b)/=B(b) and ∂UB(b) ∩
B(b) = B(b). Thus B(b)/=B(b) by Corollary 3.11. B(b) is pictured in Figure 10.
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1

1

y
y = 1 − e−x

x

Figure 10: B(b)—Example 3.17.

Since g(x) has a horizontal asymptote at y = 1, we know that τ(b) < ∞. The spectrum
of b can be read from Figure 10 as slopes of lines tangent to g and f . Since λ = 0 ∈ σ(b)\σp(b)
and τ(p+0 ) < ∞, f(x) is “dotted” (or “open”).

Example 3.18. Suppose M = B(H) for some infinite-dimensional separable Hilbert Space H,
with τ the standard canonical trace, and let

b =

⎛

⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜
⎝

1 0 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 0 · · ·
0 0 1 0 0 0 0 0 · · ·
0 0 0 −1 0 0 0 0 · · ·

0 0 0 0
1
2

0 0 0 · · ·

0 0 0 0 0 −1
2

0 0 · · ·

0 0 0 0 0 0
1
3

0 · · ·

0 0 0 0 0 0 0 −1
3

· · ·
...

...
...

...
...

...
...

...
. . .

⎞

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟
⎠

. (3.66)

B(b) is pictured in Figure 11 (the black dots in the boundary are meant to emphasize the
extreme points).

From Figure 11 we can see that the eigenvalue 1 has multiplicity three by noticing that
the line segment Ψ([p−1 , p

+
1 ]) extends from x = 0 to x = 3. We can also see that b is trace class

since the upper and lower boundary curves g and f (resp.) have asymptotes. In fact, if we
write b = b+ − b− with b+ ≥ 0 and b− ≥ 0, we see that the asymptote for g is y = τ(b+) and
the asymptote for f is y = −τ(b−). Also note that we have λ = 0 ∈ EL and ρ = 0 ∈ EU, so by
Corollary 3.11 B(b) is closed. Since the slopes of the line segments in the boundary of B(b)
tend to 0 as x → ∞, we know that b is compact.
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3

3

y

x

Figure 11: B(b)—Example 3.18.
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