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We investigate the Shintani functions attached to the spherical and nonspherical principal series
representations of SL(3,R). We give the explicit formulas of the radial part of Shintani functions
and evaluate the dimension of the space of Shintani functions.

1. Introduction

Shintani function is originally introduced by Shintani for p-adic linear group GL(n, k), where
k is a finite extension of the p-adic field Q, [1]. He defined some “Whittaker function” on
GL(n, k) and obtained the explicit formulas of them. Moreover, he proved the uniqueness of
his function. Later, a more detail study of Shintani functions for GL(n) was done by Murase
and Sugano [2] (see also [3]). They obtained new kinds of integral formulas for the L-func-
tions in terms of the global Shintani functions and proved the multiplicity one theorem of the
local one at the finite primes.

On the other hand, the multiplicity and explicit formulas of the Archimedean Shintani
functions were more recently investigated by some mathematicians. For example, Hirano
studied the Shintani functions on GL(2,R) [4] and GL(2,C) [5], Tsuzuki on SU(1,1) [6] and
U(n,1) [7], and Moriyama on Sp(2,R) [8, 9]. They constructed the differential equations
satisfied by the radial part of the Shintani functions and obtained the explicit formulas by
solving them. Most of them are expressed by some linear combinations of the Gaussian
hypergeometric functions. Moreover, the dimensions of the spaces of Shintani functions are
obtained, which are sometimes bigger than 1.

In this paper, we investigate the Shintani functions on G = SL(3,R), attached to the
principal series representations of G. Now we explain the definition of the Shintani functions
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on G. We take

H 0
H-= {< - > € G| (Hy, h) € GL(2,R) x GL(1,R)} (1.1)
2

as a subgroup of G and take K = SO(3) as a maximal compact subgroup of G. Let or be an
arbitrary irreducible unitary representation of G and (7, V;)) an irreducible unitary represen-
tation of H, and let C;?(H\G) be the space of smooth functions F : G — V,; satisfying F(hg) =
n(h)F(g)((h, g) € HxG). We consider the intertwining space I, , = Hom g k) (71, C;‘1°(H\G))
and its restriction

I, » — Homg <T, C(H \ G)) = Cyr (L) (1.2)

to the minimal K-type (7, V;) of o, where (7%, V,-) is the contragredient representation of
(r,V:),L:= H\G/K and Cyrr (L) is the space of smooth functions F : G — V,® V.- satisfying
F(hgk) = (n(h) ® T*(k™1))F(g) for (h,g, k) € H x G x K. The function which belongs to the
image of above map is called the Shintani function. In this paper, we assume that o is the
irreducible unitary principal series representation of G and 7 is the unitary character of H.
The study of Shintani functions for the general unitary representation 7 of H is a further pro-
blem.

In Section 4, we investigate the Shintani functions attached to the spherical (or class
one) principal series representations. These representations have unique K-fixed vector, and
hence the minimal K-type is one-dimensional. In this case, the explicit formulas of Shintani
functions are obtained by solving two Casimir equations which are characterized by the
action of the center of universal enveloping algebra. We also obtain the necessary condition
of the existence of nonzero Shintani functions and prove that the dimension of the space of
Shintani functions is equal to or less than 1 (Theorem 4.8).

On the other hand, in Section 5, we investigate the Shintani functions attached to the
nonspherical principal series representations, whose minimal K-type is three-dimensional
representation of K. In this case, we construct two kinds of differential equations. One is
the Casimir equation we used in Section 4, and the other is the gradient equation. The key
point is as follows. We have three different nonspherical principal series with the same
infinitesimal characters Z(g) — C. We cannot distinguish them only by the elements of Z(g).
This is the reason we need the gradient operator which has distinct eigenvalues for diffe-
rent nonspherical principal series. By combining these equations, we obtain the explicit for-
mulas of the Shintani functions, the necessary condition of the existence of nonzero Shintani
functions, and prove that the dimension of the space of Shintani functions is equal to or less
than 1 (Theorem 5.7).

As an application of the results of this paper, our explicit formulas for Shintani
functions will be useful to compute the local zeta integral in the theory of Murase and Sugano
([2, 3]; (see also [10], in the case of U(n, 1)). Furthermore, the author thinks these results are
interesting themselves in view of the harmonic analysis on homogeneous spaces.
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2. Preliminaries
2.1. Groups and Algebras

Let G be the real reductive Lie group SL(3,R) and g = sl(3,R) its Lie algebra. The Cartan
involution 6 : G — G is defined by 0(g) = (‘g )7! (g € G), and its differential d0 : g — g
is given by d9(X) = -'X (X € g), where ! means the transposition of matrices. Then the
fixed subgroup of 8 in G is equal to K = SO(3), which is the maximal compact subgroup of
G. Next, we define another involutive automorphism o of G by o(g) = JgJ (g € G), where
J = diag(-1,-1,1). Its differential do : g — g is given by do(X) = JX] (X € g). The fixed
subgroup H of o in G is isomorphic to GL(2, R), that is,

an app 0
H = a ap 0 eGy = GL(Z, R) (21)
0 0 ass

We define +1 and -1 eigenspaces of df, do in g by

t={Xeg|dd(X) =X}, p={Xeg|do(X)=-X}, 22)
2.2
b={Xegldo(X) =X}, q={Xeg|do(X)=-X]}.

Then, ¢, b are the Lie algebras of K, H, respectively. We have g = t®p = heq. Let E;; € M(3,R)
be the matrix whose (i, j)-component is 1 and the other components are 0 (1 <i, j < 3). For
1 < i< ] < 3, we put Kl‘]‘ = Ei]' - E]'i, Xi]‘ = Ei]' + E]'i, H] = Eii - E]] Then, we have

t = BRKj;, p = @ORX;j ® RH1p & RHys. (2.3)
i<j i<j ’
Next, we take
100 010 0-10 00 0
Yi=|00 0 |, Y,=| 100, Y;=|1 0 0|, Y,=|01 0
00 -1 000 000 00 -1
(2.4)

as a basis of . We have p N q = RXj3 ® RX33, and we take a = RXj3 as a maximal Abelian
subspace of p N q. We define a subgroup A of G by

cosht 0 sinht
A=exp(a) =4 a;:= 0O 1 o0 |teR ;. (2.5)
sinht 0 cosht

Then, G has a decomposition G = HAK. Throughout this paper, we put L := H \ G/K.
For a Lie algebra [, we denote its complexification by I¢, that is, [c = [®g C.
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2.2, The Principal Series Representations

As a representation of G, we take the principal series representation defined as follows. Let
Py be a minimal parabolic subgroup of G given by the upper triangular matrices in G and
Py = M Ap,N the Langlands decomposition of Py with

Ap, = {diag(a1, az,a3) | a; >0, ajaza; =1},
M = K n {diagonals in G},

1 X1 X2 (26)

N = 01 x3 €G|X1,XQ,X3ER
00 1

To define a principal series representation with respect to the minimal parabolic subgroup P,
of G, we firstly fix a character o of M and a linear form v € a}o ®r C = Homg (ap,, C), where
ap, is the Lie algebra of Ap,. We write

v(diag(tl, Ly, tg)) =1l + b (27)

for diag(ty, t2, t3) € ap,. Then, we can define a representation o ® a” of M Ap, and extend this
to Py by the identification Py/N = MAp,, taking the trivial representation 1y as the repre-
sentation of N. Then, the induced representation

Ty = C*Indf (0 © @ © 1y) (2.8)

is called the principal series representation of G. Here, p is the half sum of positive roots of
(g,a) given by af = a%az, for a = diag(ai, az, az) € Ap,.
Concretely, the representation space is given by

Cine) (K) = {f € C*(K) | f(mk) =0o(m)f(k), me M, k € K}, (2.9)
and the action of G is defined by

(7o (x) f) (k) = a(kx)""? f(x(kx)) (x € G,k € K). (2.10)

Here, for g € G, g = n(g)a(g)x(g) (n(g) € N, a(g) € Ap,, k(g) € K) is the Iwasawa de-
composition. Throughout this paper, we assume that the representation 7, is irreducible.
Moreover, we assume that v, v, are the elements of v/—1R. Then, this representation becomes
unitary.

Next, we define characters o; (j =0, 1,2,3) of M as follows. The group M consisting of
four elements is a finite Abelian group of (2,2)-type, and its elements except for the unity are
given by

my = diag(1,-1,-1), my = diag(-1,1,-1), mg = diag(-1,-1,1). (2.11)
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Table 1
m my m3
o 1 -1 -1
(o) -1 1 -1
o3 -1 -1 1

The set M consists of 4 characters {cj 1 j =0,1,2,3}, where o is the trivial character of M
and oy, 0, 03 are defined by Table 1.

The following proposition (see [11, Proposition 1.1]) gives the correspondence bet-
ween the character o of M and the minimal K-type of the principal series representation i,
of G.

Proposition 2.1. (1) If o is the trivial character of M, the representation 7, is spherical or class
one. That is, it has a unique K-invariant vector in H .

(2) If o is not trivial, the minimal K-type of the restriction iy ,|x to K is a 3-dimensional
representation of K, which is isomorphic to the unique standard one (T, V2). The multiplicity of this
minimal K-type is one:

dimec Homg (1, Hp ) = 1. (2.12)

3. The Space of Shintani Functions
3.1. The Definition of Shintani Functions

As a representation of H, we take the unitary character 7 = n5x : H — C* (s € V-1R, k €
{0,1}) defined by

hi1 hip| 0

_ hi1 hi
1 hot hy | 0 = det (H;)¥|det(Hy) "%, H = (

) € GL(2,R). (3.1)

ho1 hy

Let 17 = 15 x be the unitary character of H defined previously. We consider the induced repre-
sentation C*Ind%;(17) with the representation space

CP(H\G) = (F e C*(G) | F(hg) = n(h)F(g), Vh € H, Vg € G}. (3.2)

G acts on this space by right translation. Let i, be the principal series representation of G.
We consider the intertwining space

Lz, = Hom(ge ) (7, C(H\ G)). (3.3)
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We denote its image by S, ., , that is,

S 7o = U Image(T). (3.4)

TEITZ/»’T(J',V

We call the element of S, -, the Shintani function of type (7, 7). Let (7, V;) be the K-type
of the principal series representation 75, and let 1 : 7 — 75, be the K-embedding of T and
1* the pullback via 1. Then, the map

¢t Iy, — Homg (7,C2(H\ G)) = Cn (L) (3.5)

gives the restriction of T € S, 5,, to 7, where 7* is the contragredient representation of 7 and
the space C7°... (L) is defined by

Cee(L) = {F: G — Vi | F(hgk™) = q(W)T (K)F(3), ¥(h,g,k) e HxGx K}.  (3.6)

We denote the image of I, in C}..

the Shintani function of type (75,17, T).

(L) by C3.. (L), ,, and the element of this space is called

T

3.2. The A-Radial Part

Because G has the decomposition G = HAK, the element of C?.(L) is characterized by its
restriction to A. We denote the centralizer and the normalizer of A in K N H by Zgnn(A),
Ninw(A), respectively. It is easy to verify that K N H, Zgnp(A), and Nk (A) are given as
follows.

Lemma 3.1. One has

cosf sinf |0 cosf sinf |0
KnH = —-sinf cosf|0 | |8 €R |_| sinf —cosf| 0 |0 €R ¢,
0 0 |1 0 0 [-1

/—1 0 0\

Zew(A) =401 01 0 |},
3.7
\ 0 0 -1/ 67

-1.0 0\ /-10 0\ /10 0
Neen@A =435l o 10|, 010 |[[o-10
0 01/ \oo-1/ \o o0 -1

Here, I is the unit element of GL(3, R).
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Let wy := diag(-1,-1,1). Then, wyZknr (A) is the unique nontrivial element of W =
Ninu(A)/Zknu(A). Let 1 : H — C be the unitary character of H and (7, V;) the finite-

dimensional representation of K. We denote by CJ7(A;7,T) the space of smooth functions
F: A — V, satisfying the following conditions:

(1) n(m)r(m)F(a) = F(a) (Ym € Zxnu(A), Ya € A),
(2) n(wo)r(wo)F(a) = F(a™!) (Ya € A), (338)

3) n()Tr()F(1) = F(1) (¥l € K n H).

The following lemma is proved by Flensted and Jensen (see [12, Theorem 4.1]).
Lemma 3.2. The restriction to A gives the following isomorphism:
Cor(L) = iy (A;m, 7). (3.9)
Through this isomorphism, we denote the image of Ci.(L),  in Cjj(A;n,7) by
Cyy (A;1,7),, - This is our target space in this paper. The following two lemmas are obvious.

Lemma 3.3. Fort#0, one has
g =Ad(a;1)heeaeee. (3.10)

Lemma 3.4. Let F € Cff (L). For X €t, Y ebh, Z € a, one has

,T

R((Ad(at’l)Y)ZX)F(at) = ()T (-X)(Zf) (ar). (3.11)

4. Shintani Functions Attached to the Spherical Principal
Series Representations

Throughout this section, as a character of M, we take the trivial character o = 0y. Then, the
principal series representation 7, », is the spherical or class one principal series representation
whose minimal K-type is the one-dimensional trivial representation (1,V;) of K, which
occurs of multiplicity one in 74, v (Proposition 2.1).

4.1. The Capelli Elements

Let Z(g) be the center of the universal enveloping algebra U (g) of g. Z(g) has two indepen-
dent generators, and they are obtained as the Capelli elements because g = sl3 is of type A
(see [13]). Fori=1,2,3, we put

1 3
Ei=Ei-3 (ZEkk>- (4.1)
P
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The following proposition gives the explicit description of the independent generators of
Z(g) (see [11]).

Proposition 4.1. The independent generators {Cp,, Cps} of Z(g) are given as follows:

sz = (E,H - 1)E’22 + Elzz (Egg + 1) + (E,H - 1) (Eg3 + 1) — Ex3Ez — E13E31 — E1Enq,
Cps = (E}; = 1)Ey(Ey; + 1) + EnExsEsy + EisEniEsp — (Eyy — 1) ExsEsy — EEjyEsr (4.2)
— E1nEx (Eé3 + 1)

Since Cp,, Cps are the elements of Z(g), they act on 7, ,, as the scalar operators. And
since the space of Shintani functions is the image of the (gc, K)-homomorphism of 7, ,, they
act on the space of Shintani functions as the same scalar operators, respectively.

4.2. Eigenvalues of Cp,, Cps

In order to construct the partial differential equations satisfied by spherical functions attached
to the spherical principal series, we have to compute the eigenvalues of the actions of the
Capelli elements Cp,, Cps. For the spherical principal series representation, ¢ = 0y is the
trivial character of M. Let f be the generator of the minimal K-type in H,,, normalized
such that fo | K = 1. The actions of Cp,, Cps on fj are computed in [11], and the result is as
follows.

Proposition 4.2. The Capelli elements Cp,, Cps act on fo by scalar multiples, and the eigenvalues
are given as follows:

1
szf() = —§<V% - Vv + V%)fo,
(4.3)

Cpsfo= —%(21)1 =) (2v2 = v1) (V1 + M) fo.

4.3. Construction of the Casimir Equations

Next, we compute the actions of Cp,, Cps on F(a;) € CZ‘,’I(L)| a. Here, 1 = 15« is the unitary
character of H.

Lemma 4.3. For F(a;) € C,‘;?T(L)|A, one has

R(Ad(at‘l)Y,->F(at) =sF(a) (i=1,4),

R(Ad(a;)Y;)F(a) =0 (i=2,3), (4.4)

R(X1s)Far) = 2 (@),
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Proof. By definition, we have

R(Ad(a;")Y)F(@) = & F(aexp(uad(a)X;))

d
= @F(exp(ulfi)at)

u=0

u=0

F(at).

u=0

= & (expur)

Since exp(uY;) = diag(e*, 1,e7*), we have n((exp(uY;)) = ek - (-0 = g5t
Therefore, we have

R(Ad(@l)n)F(at) = sF(ay).

Next, since

coshu sinhu 0
exp(uY) = | sinhu coshu 0 |,
0 0 1

n(exp(uY>)) = 1¥ - |1k = 1. Therefore, we have

R(Ad(at‘1>Y2>F(at) = 0.

(4.5)

(4.6)

(4.7)

(4.8)

The computations of the actions of Ad(at‘l) (Y;) (i = 3,4) are similar. Finally, since exp(uXi3) =

a,, we have

ROXis)F(@) = - Fla)| = 2@,

u=0

(4.9)
O

By simple computations of matrices, we have the following expressions of the ele-

ments in M(3,R).
Lemma 4.4. One has

2
, _ cosh®t+1 a\y 1 1\y 1
1n= m d(at >Y1 §Ad<[lt >Y4 E tanh(Zt)K13,

1
E, = 5(—H12 + Hy3),

sinh’t - 1 1 1
= mAd(agl)n - 3Ad(a;") Y + 5 tanh(26)Ks,

1 4 1 1
Ex = ZSinhtAd<at >Y3 * 2tanhifK12 * §K23'
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1 1
Ep = §X13 + §K13,

1 N 1 1
E12 = mAd(ﬂt )Yz - E tanh tK23 + EKlz.
(4.10)

To make use of Lemma 3.4, we have to rewrite Cp,, Cps in the form of linear combi-
nations of the elements in (Ad(at‘l)h)aé. To do this, we use the following formulas which can
be obtained by direct computation.

Lemma 4.5. One has
[K13, Ad <a;1>Y1 ] = —2cosh(2t)Xy3, [K13, Ad(a;l) Y4] = —cosh(2t) X33,

[K12,Ad<at‘l>Y3] = sinh tXy3,

[k, Ad (a7 ) vs] = —%Ad(agl)n +2sinht Ad(a;")Ys + %KB,
(K13, X13] = msﬁwAsz;l)Yl —2tanh(2t)K13,
K3, Ad(a7) 2| = - cosh x4,
[Kia, A (7)) = 200 L a7~ 2cosh Ad (a7 ¥e - S0,
[K1z, X13] = —ﬁAd(at’l)Yg - ——Kun,

[Kas, X13] = ;Ad<a[1>lf2 —tanh tK>3,

cosht
[X13, Ad(at_l>Y2] = —tanht Ad([lt_1>Y2 - COihthg”
[K13, Ad<at_1>Y2] = —taihtAd<at_1>Y3 - % 12,
[K13, Ad<a[1>Y3] = tanhtAd(af)Yz - %KB,
[Xlg,Ad<at‘1>Yl] =2 tanh(2t)Ad<at‘1>Y1 - @KB,
[x13,Ad(a;1)y4] = —tanh(Zt)Ad(af)Yl - @Km
K12,Ad a;l Yl = —MA(‘I a;l Yz —tanhtK23,
cosht
1 - sinh?t

[K12/ Ad(a;1>Y4] = Ad(a;1>Yz —2tanh tK23,

cosht
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o A0 -~ -

1
tanh t

Ky,

[K23,Ad<at_1>Y4] = —L:;ic—r:)kithAd<Qt_1>Y3 - tajhtKlz.

(4.11)

Here, [X,Y] := XY — Y X is the Lie bracket on g.

By using Lemma 4.5, we can rewrite Cp,, Cp; as we wished. Now, since for all F(a;) €
C,‘;‘fl(L)lA is annihilated by the action of U(g)t and Ad(at_l)YQU(g)Ad(at‘l)Ygll(g), and the
actions of Ad(at‘l)Yl and Ad(at‘l)n on F are the same (the multiplication by s), we may
regard Cp,, Cps as the elements in U (g) (mod B), where P is the subalgebra of U (g) defined

by
T = <Ad<a;l>Yl - Ad(agl)n)U(g) + Ad(at"l)YzU(g) + Ad(at‘l)l@ll(g) +U(g)E (4.12)

Lemma 4.6. One has the congruences

1 1
Cpr = ——X%S ~5 <tanh(2t) +

1
4 tanh(2t) )XB

+ (}Ltanhz(Zt) - %) <Ad<at_1>Yl>2 ~1(mod P),
Cps = -% (Ad(ar)vi) X% - %(tanh(Zt) + m> (Ad(a')¥i) X
+ (—%7 + 11—2tanh2(2t)> (Ad(c¢;1>lf1>3 - %(Ad<a[1>1ﬁ) (mod ).

By combining Proposition 4.2, and Lemmas 4.3 and 4.6, we have the following two dif-
ferential equations.

(4.13)

Theorem 4.7. The Shintani function F(a;) € C (L), |4 satisfies the following equations:
(1) the differential equation obtained from the action of Cpa:

1d°F 1 1 \dF LONETHRE
@) 5 (e s e ) s { (5 ganen ) -1 (414)
= Lo F(a;);

(2) the differential equation obtained from the action of Cps:

1 d°F 1 1 dF 2 1 5 3 1
- ﬁSﬁ(at) - E(tanh(Zt) + M)Sﬁ(at) + {(-E + Etanh (2t)>S - gs}F(at)

= AsF(ay).
(4.15)
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Here,

A = —% <v% -+ v%),

. (4.16)
A3 = =55 (201 = v2) (2v2 = v1) (V1 + 1)
are the eigenvalues of the Capelli elements on principal series representations.
Equations (4.15)—(4.14) x (1/3)s give
Loyl F(a;) =0 (4.17)
275 3 28 3 az) = U. .
Therefore, if F(a;) is not identically zero, we have
3 2 2 -
s’ — 3<v1 -+ v2>s + (2v1 =) (2vy —v1)(v1 + 1) = 0. (4.18)
By solving this equation, we have
S=2v1 -V, 2V — V1, =V — V). (4.19)

Therefore, one of the necessary conditions of the existence of nontrivial Shintani functions is
that the parameter s is one of the above three values. Now, we assume that s satisfies this con-
dition. We put x = tanh(2t), F(x) := F(a;) in (4.14). Then, we have

—4x(1 - x)Z%(x) —4(1- x)zj—l;(x) + { <—% + }Ix> $-1- Az}f(x) =0. (4.20)

Next, we put F (x) = (1= x)"Go(x) (u € C). Then, Gy satisfies

u+2 dZGO
dx?

+ {—4‘11(# —1)x +4p —4px + (—% + }Ix>52 -1- J\z}(l - x)*Go(x) = 0.

(x)+ (—4+ Bu+4)x)(1- x)’“l%(x)
(4.21)

We want to divide the left-hand side of (4.21) by (1 - x)"*1. To do this, we take u € Cso that
U satisfies

—4p® + Ay~ éﬁ -1-1;=0. (4.22)

The value of u € C s as follows.
(1) Ifs=2v; —vy, u=(2£v)/4. Sowetake y = (2+1,)/4.
(2 Ifs=2vy —v1, p=(2=+v1)/4.Sowetake y = (2 +v1)/4
(B)Ifs=-vi—v, u={2+(vi —v)}/4.Sowetake = (2+ v — ) /4
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For this y, the left-hand side of (4.21) is divided by (1 — x)**!, and the equation becomes

x(x - 1)%(3() +(-1+(1+ Zy)x)% + (//12 - 11—652>G0(x) =0. (4.23)

This is the Gaussian hypergeometric differential equation. Note that the Shintani function
F(a;) on A is regular at the origin (& x = 0). Therefore, Go(x) = (1 - x)_”l?(x) is also regular
at x = 0. Equation (4.23) has just one solution which is regular around x = 0 (up to constant
multiples), and it is given by

Go(x) = 2F1(a, ;1;x), (4.24)
where » F; is the Gaussian hypergeometric function and «, § € C are defined by

l+a+p=1+2p,
(4.25)
aﬂ=y2—Es.

Explicitly, by solving these equations, a,  are given as follows.
(1) Incase of s =2v; — vy, (a,B) = ((vi +1)/2,(—v1 +v2 +1)/2).
(2) Incaseof s =2v, — vy, (a,B) = ((v2+1)/2, (—v2 +v1 +1)/2).
(B) Incaseof s =—v1 — vy, (a,B) = ((v1 +1)/2,(-v, +1)/2).

Finally, we consider the three conditions in (3.8). Condition (1) is equivalent to (-1)*
F(a;) = F(a;). Condition (2) always holds. Condition (3) is equivalent to (—1)kF(1) = F(1),
which holds if condition (1) is satisfied. Summing up, we have the following theorem.

Theorem 4.8. Let 1 = 15 be the unitary character of H defined by (3.1). Then, the necessary condi-
tion of the existence of the nontrivial elements in C* (L),  is that

k=0, §=2v1— vy, 2vo — V|, —V] — V. (4.26)

Suppose that this condition is satisfied and nontrivial Shintani functions exist. If one puts x =
tanh?(2t), F(a;) = F(x) € C;fl(L)m,O,JA is given as follows (up to constant multiples).

(1) In case of s = 2v1 — vy, one has

~ 1 - 1

F(x) = (1 -x)&™/*,F, <V12+ ’ ! +2vZ + 1, x>. (4.27)
(2) In case of s = 2v, — vy, one has

~ 1 - 1

F(x) = (1-x)@"/4,F, <1J22+ , 23 +2v1 + 1, x>. (4.28)
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(3) In case of s = —v1 — v, one has

Fx) = (1)@ (200, 22 5 ), (429)
Especially, one has
dim €2 (L),,, , <1. (4.30)

5. Shintani Functions Attached to the Nonspherical Principal
Series Representations

In this section, as a character of M, we take a nontrivial character o = 0; (i = 1,2,3). Then,
the minimal K-type of 7, ,, is the three-dimensional representation of K which is isomorphic
to the tautological representation 7, : K = SO(3,R) — GL(3,R) which occurs of multiplicity
one in 7, »|x. We take 7} instead of 7, as a minimal K-type of 7, .. The representation space
of 7, is denoted by V,, (= R®), and we take s; = /(1,0,0), s = £(0,1,0), s3 = '(0,0,1) as a
basis of Vz,. Let ¥ € C (L), , be the Shintani function. Then, ¥ is expressed by

n,m
¥(g) = Fo(g)s1+Go(g)s2 + Ho(g)ss- (5.1)

¥ is characterized by its restriction to A. To investigate ¥|4, we construct two kinds of dif-
ferential equations. One is the Casimir equation of degree two and the other is the gradient
equation (or the Dirac-Schmidt equation).

5.1. The Casimir Equation

Firstly, we construct the Casimir equation of degree two. Since the Capelli element Cp; acts
on the representation space of the principal series representation i, , as a scalar operator (A,-
multiple) and the space of Shintani functions C,?TZ(L)%W is the image of (gc, K)-homomor-
phism of 7,,,, Cp, acts on this space as the same scalar operator. Since for all ¥(a;) €
C;’Z?TZ(L)| A is annihilated by the action of Ad(a;l)YzLI(g), Ad(a; HY;U(g) and the actions of
Ad(at‘l)Yl and Ad(at‘l)l@ on F are the same (the multiplication by s), we may regard Cp, as
the element in U (g) (mod '), where 3’ is a subalgebra of U(g) defined by

P = (Ad(a)Yi - Ad(a") Ya)U(g) + Ad(a;") Yol (9) + Ad(a;") YU (g). (5.2)

By using Lemmas 4.4 and 4.5, we can rewrite Cp, in Proposition 4.1 as follows.

Lemma 5.1. One has

1, 1 1 1, 1 2
CPZ = _ZIXB - E(tanh(Zt) + m>X13 + <Ztanh (2t) - §> (Ad(ﬂt >Y]> -1

tanh(2t)

1 1
-1 2 2 2\ g2
2cosh(2t)Ad<at )Y1K13+< Ztanh?(21) + )KB

4
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1 1 1 1
+ (—Ztanhzt + Z>K%2 + (ZI - Ztanh2t>K§3

: (mod <Ad<a;1>Yl - Ad(agl)n)U(g) + Ad(at’l)YzLI(g) + Ad(agl)ygLI(g)).
(5.3)

By using this lemma, the action of Cp, on W(a;) = Fo(ar)s1 + Go(ar)sz + Ho(ar)ss €

Cor, (L)|a can be computed easily. We have

Cp2¥(a;) = F'(ar)s1 + G'(ar)s2 + H'(ay)s3, (5.4)
where
1 dZF() 1 dFO
Fla) = -3z (a0 - <tanh(2t) " fanh(21) ) r

_g} (@) - Janh(2)
stanh?t 2J 0777 2cosh(21)

2
Glar) = LG g - 1(tamh(zt> s ;> &0

{( tanh?(2t) — )s + 1tanh2(2t) + sHo(a:),

4 dt? 2 tanh(2t)
+ { <Llltanh2t - %)sz + itanhzt + 4taj1h2t - %}Go(at),
H'(a;) = ‘}L%(‘”) - %(tanh(Zt) m> dHo (ar)
{ < tanh?(2¢) - >s + 1tanh2(2t) + tanh - ;}Ho( ) + %smag.

(5.5)

Since W(ay) satisfies Cp,W(a;) = A,¥(a;), we have the following three differential equations.

Theorem 5.2. For ¥(a;) = Fo(a;)s1 + Go(as)sa + Ho(as)ss € C by TZ(L)% V|A' the functions Fy, Gy,
Hy satisfy the following equations:

1 d2F0 1 dFO
“3ae - <ta“h(2t) * fanh(2p) > (@)

1, N, 1. ., 1 3
Z _Z - - 56
+ {<4tanh (2t) 3>s + 4tanh (2t) + D 2}Fo(at) (5.6)

tanh(2t) _
- WSHO(W) = L Fo(ay),
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142Gy 1 1 dGy
"3 W3 (tanh(Zt) " fanh(2) ) —ar @
(5.7)
oo 1N, 1 ., r 3 _
+ {<4tanh t 3>s + 4tanh t+ Ry 2}Go(at) = LGo(ay),
1d%H, 1 1 dH,
"3 ae - E(ta“h(Zt) " tanh(Zt)> ar ()
1, N, 1. 1 ., 3
2 _Z 2 z _2 5.8
+ {<4tanh (2t) 3>s + 4tamh (2t) + 4tanh t 2}Ho(at) (5.8)
tanh(2¢) )
WSFO(at) = L2Ho(ay).

5.2. The Gradient Equation

For the spherical function ¥(g) € C7;, (L), we define the right gradient operator VR as fol-
lows.

Definition 5.3. For the orthonormal basis {X;}3_; of p, the right gradient operator VX is defined
by

VR (g) = ES:R(XI-)‘PQ@X;‘. (5.9)

i=1

Here, X? is the dual basis of X; with respect to the inner product (X,Y) €p x p — Tr(XY) €
C.

The set {Hiy, Has, X12, X253, X413} becomes the orthonormal basis of p, and {(1/3)
(2H12 + H23), (1 /3) (H12 + 2H23), (1/2)X12, (1/2)X23, (1 /2)X13} is its dual basis. Therefore,
the gradient operator V¥ is explicitly given by

1 1 1
VRIP(g) = §R(H12)IP ® (2H12 + H23) + §R(H23)IP ® (H12 + 2H23) + EZR(XU)IP(X) Xl]

i<j
(5.10)
We rewrite this by using the basis of pc.
Claim 1. We define five elements w; (0 <i <4) in pc by
wo = —2<H23 -V —1X23>, Wy = —2<H23 + vV —1X23>,
2
wy = 3(2H12 + Hos), (5.11)

wy = X3+ V-1X1, ws = -X13 + V-1X12.

Then, {w; | 0 <i <4} becomes the basis of pc.
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Table 2
wo w1 w> w3 Wy
1 1 1

S1 0 —1(53 + \/_TSZ) —§S] 1(33 - \/332) 0

1 V-1 1 v-1 1
52 5(52 - +/~1s3) _Tsl ESZ —Tsl 5(32 ++/—1s3)

1 1 1 1 1
s3 —5(53 +v/-1s7) -5 5 15 5(_33 +1/=1sy)

With this basis, the gradient operator VR is rewritten as
e 1 1 1
VY = ER(UM)‘P ® woy + ER(WO)IP ® Wy — ZR(W3)IP ® wq

- %R(wl)‘lf ® ws3 + gR(wg)‘P ® Wy
(5.12)

1(1 1
1 { ZR(w4)‘P® wo + ZR(wO)‘I‘ Q@ wy — R(ws)¥ ® wy

—R(w)¥ @ ws + %R(wz)‘l’ ® ZUQ}.

The Lie algebra pc becomes the representation space of the adjoint action of K. We denote
this representation by (74, W4). By the Clebsch-Gordan theorem, 7, ® 74 has the irreducible
decomposition

TYQRTL=ET) DTy D Te. (513)

Here, each 7, is the (n+1)-dimensional irreducible representation of K. In this decomposition,
the projector of K-modules

prai T ®Ty — Ty, si®@ wj — pra(s;i @ wj), (5.14)

is described as in Table 2.
VR¥ is a 7, ® (T ® pc)-valued function. Then, by mapping s; ® wi to pra(s; ® wy), we
have a K-homomorphism

pfao VR C® (L) — C=, (L). (5.15)

n,72 n,m

Since the minimal K-type 7; occurs of multiplicity one, p7; o VX is a map of constant
multiple. To compute the action of the gradient operator p7 o VX on the space of the Shintani

functions C;‘l‘sz(L)%ilv, we have to decompose w; (i = 0,1,2,3,4) along the decomposition

gc = Ad(a;")hc @ ac @ kc.
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Lemma 5.4. One has

wo = fosslfl‘g:) Ad(@") Y1 -2Ad(a;) Y + tanh(2) K13 + 2*/;Ad( DY+ i—ﬁKu,
wy = %Ad(@l)m -2Ad (") Yy + tanh(26)Kis - i;Ad( ai')Ys - ZEKQ,
2
W, = %Ad( )n - —Ad(at )n — tanh(2t)K 13,

w1 = X13 + c Ad( >Y2 —+/=1tanh tK23,

osht

w3 = —X13 + LAd( )Yz —+/-1tanh tK»s.
(5.16)

By using Lemmas 3.4 and 4.3 and the table of projections, we can compute the action
of the gradient operator. For W(a;) = Fo(a;)s1 + Go(ar)s2 + Ho(as)ss € Cip, (L)|a, we have

2

proVR® (a;) = F'(a;)s1 + G (a;)sy + H (as)s3, (5.17)
where
F'(a;) = —(m 2)sFo(at) ;ddt (a;) - %(tanh(Zt) +tanht)Ho(a;),
G'(a) = —%sGo(at), (5.18)
H"(a) = (W 1)5 Ho(ar) - ;dj‘)( ;) - %(tanh(Zt) + taiht>1—’0(at).

On the other hand, the eigenvalue of the gradient operator on the spherical functions of the
principal series representation 7, ,, depends on the choice of o;, denoted by A, (i = 1,2,3).
These values are computed in [11] and they are as follows:

.)Lgl = —%(21)1 - 1)2), )LGZ = —%(21}2 — 1)1), -)Log = %(1)1 + Vz). (519)

Therefore, since ¥ (a;) = Fo(ay)s1+Go(as)sa+Hy(ay)s; € (G (L), |4 satisfies pr2o VRW (g) =
As; ¥ (a;), we have the following three differential equations.

Theorem 5.5. For W(a;) = Fo(a;)s1 + Go(as)sa + Ho(ay)ss € Cn TZ(L)%_,V|A, one has

_<m é)sFo(at) ;ddI;IO (ar) - —(tanh(Zt) +tanht)Hy(a;) = s, Fo(ar), (5.20)
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~55Go(@) = 16.Go(a), (5.21)

(W 1>SH0(‘1*) ;dlio(at) (tanh(Zt)+

1

nht)FO(at) = Ao, Ho(ar). (5.22)
We consider the case of 0 = 0. We have \;, = —(1/3)(2v1 —v,). By (5.21),if s # —31,, =

2v1 — vy, we have Gy(a;) = 0. Suppose that s = 2v; — v,. We put x = tanh? (2t), Go(ar) = Gy1(x)

in (5.21). Then, the equation becomes

—4x2(1 - 2 Gl( x) + {<1x —%x)s —(2+)Lz)x+1}cl(x)

(5.23)

We put G; (x) = x*(1 - x)ﬂél(x) (a, p € C). Then, the equation becomes

~4x*(1-x Zd ){—2a—1+(2a+2ﬁ+1)x}@( x)

+ { —da(a-1)(1-x)> -4 - 1)x® + 8apx(1 - x) —da(l - x)* +4px(1 - x)  (5.24)
+<41sz - %x)s2 -2+ X)x+ 1}@1(x) =0.

We want to divide the left-hand side of (5.24) by x(1 — x). For this purpose, a, € C must
satisfy

—4a®+1=0,
1 (5.25)
-4(B-1) —ESZ—AZ—l =0.

The solutions are a = £1/2, f = (2 +v;)/4. We choose a« = 1/2, f = (2 + v»)/4. Then the
left-hand side of (5.24) can be divided by x(1 — x), and the equation becomes

2>x}dGl( )+ (V1+V1V2+2V2+4)G1(x) 0. (5.26)

G
x(x—l)ﬁ(x)+{—2+<3+ > Tx

This is a Gaussian hypergeometric differential equation, and its regular solution is given by
1 1 1
Gl(x) = ,F; v1 +1, vz - §v1 +1;2;x (5.27)

up to constant multiples. (The other solutions are not regular around x = 0, since they contain
log x.) Therefore, we have

1 11
Go(ar) = Go(x) = Cx/2(1 - x)®™/4, ) (Evl +1,5m = 5v + 12 x>, (5.28)
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where C is a constant number and x = tanh*(2t). Next, we consider the equations satisfied by
Fy and Hy. From (5.20) and (5.22), we have

dFO 1 1 1
) = (oo * 3 )*Ho(@) - (fanh(@0) + o Y Fo(an) - 24 Ho(ar),
p (5.29)
H, 1 1
0( a;) = —<m - g)sFo(at) — (tanh(2t) + tanh t) Hy(a;) — 2\s, Fo(ay).
By differentiating both sides of (5.29) by t, we have
d’F - ) 2 2 tanh(2t) 4
W(at) = {Btanh (2t) + 1 + bt 3- gslm
- e a2 g (ar)
Cosh2 ) 9 o
4tanh(2t) 2 2 2
" { ( cosh(2t) gt anh(2f) + 3tanh(2t) * sinh(2t) >S
1

+ 4<tanh(2t) + W)J\,m }Ho(at),
d*Hy 2 2
W(at) = { 3tanh”(2t) + 2tanht + 2 tanh ¢t tanh(2¢) —

4 1 1

- —8dg = [ —=— = )s*+4\2 tHo(a
3 <cosh2(2t) 9> 1} o(ad)
4tanh(2t) 2 2 2
" {( cosh(2n) 3 hCh - 3 i G t sinhen >S
1
+ 4<tan h(2t) + m).}to—] }Fo(at).
(5.30)

By inserting (5.29) and (5.30) into the Casimir equation (5.6), (5.8) to eliminate the differential
terms, we have

1 1
(55)‘0'1 - ‘)L(z)j - §Sz - )‘2>F0(at) = O/

(5.31)

<%5Agl A2 - és2 - )Lz>Ho(at) =0.

Therefore, if the parameter s € C satisfies (1/3)sAs, — Acz,l — (1/9)s% — A, #0, then Fy(ay),
Hoy(a;) = 0. Suppose that (1/3)s)g, — A3 - (1/9)s* = A2 = 0. Since Ay, = —(1/3)(2v1 — o),
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Ay = —(1/3)(v1 -V + vz) we have
2+ (2v1 —wm)s + (v% -V — 2v§> =0. (5.32)
Therefore, we have
S =—v] —Vy, =V +2Vy. (5.33)

That is, (5.33) is the necessary condition of the existence of nontrivial Fy(a;), Ho(a¢). We put

Fo(a) = cosh™/2(2t)(sinh t) ' F(8),

. (5.34)
Ho(ay) = cosh™2(2¢) (cosh t) T H (t)
and insert these into (5.20), (5.22). Then we have
1 1 1 1dH 1 =
_<2cosh(2t) - 6>Stanht O =37 O = do gy T
(5.35)
1 1 1dF —
<m )stanh tH(t) - ——(t) )‘0'1 tanh tH(t)

Next, we put tanh’t = u, F () = l;l(u), H (t) = ﬁl(u). Then, the above equations become

_<—2(11_+L;) - %>sﬁ1 (u) —u(l- u)%(u) = Ao, F1 (), (5.36)
~(1-u) dFl( ) + <2(11 +u) 1)5H1(u) Ao, Hi (10). (5.37)

For a while, we consider the case of s = 0, that is, 77 = 79 « is a signature sgn of H, where

hii hiz 0
k K hii i
S8 (1) ha1 ha 0 = det (H)"|det(Hy)| ™, H; = . (5.38)
ha1 hx
0 0 M
Then, by combining (5.36), (5.37), we have
o
u(l- u)%m@(u) —u(l-u)dy, dF =L (u) - A3 Fi(u) =0. (5.39)
du? du
Suppose that A, #0. Then, the equation becomes
d*F dF .
2071 1 2 _
w(l = )" () = u(l =) —" (u) = A5, Fa () = 0. (5.40)
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We put ﬁl(u) =(1- u))‘”1 F>(u). Then, F,(u) satisfies

d’F,

u(l - M)W

(1) — (Ao, + 1)u%(u) — A2, Fa(u) = 0. (5.41)

Equation (5.41) is the Gaussian hypergeometric differential equation. Now, since Fp(u) =
1- u)_)“’1 cosh!/? (2t) sinhtFy(a;) and Fo(a;) isregularata; =1 (&t =0 & u =0), Fo(u) must
be regular at u = 0. The regular solution of (5.41) is given by

Fy(u) =usFi(Ae, + 1,46, +1;2;u) (5.42)
up to constant multiples. Therefore, we have
fl(u) =C-u(l- u))‘"1 2F1(Ao, + 1,46, +1;2;u)  (C : constant). (5.43)
Similarly, we have

Hi(u)=C' - (1-u)'n 2F1(do, +1,A6,;1;u) (C': constant). (5.44)
We want to find the relation between C and C'. By expanding F (u) and H, (u) around u =0,
we have

2+ 1

- Ay
Fl(u)=C-<u+ 12 u2+u3P1(u)>,

(5.45)
Hi(u)=C- (1 02 u+ usz(u)>,

where P;(u) and P, (u) are the analytic functions around u = 0. By inserting these into (5.36),
we have

—3u<1 - u2>C' ()L%,l + up3(u)) =3(1+ u))tolC<u + u2P4(u)>, (5.46)

where P;(u) and Py(u) are also the analytic functions around u = 0. By comparing the coef-
ficients of u of both sides, we have

C=-1,C. (5.47)
Summing up, Fo(a;) and Hy(a;) are given by

Fo(ay) = —C'Ag,cosh™/2(28) (sinh £) 'u(1 — u)* 2 F1 (Ao, + 1, Ao, + 1;2; 1),
(5.48)
Hy(as) = C’cosh_l/z(Zt)(cosh H7 1 - u)tn 2F1(Ag, + 1, A6 L u).
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(C": some constant, u = tanh’t). In our computation, we assumed that ,, #0, but the
result above holds without this assumption.
Next, we consider conditions (1), (2), and (3) in (3.8). For ¥ = '(F,, Go, Hy) € C2

SN (k), T
(L), condition (1) is equivalent to o
(-1)* - '(~Fo(ar), Go(ar), ~Ho(ar)) = *(Fo(ar), Go(ar), Ho(ay)) - (549)
This is equivalent to
k=0= Fy=0, Hy=0,
(5.50)
k=1=Gy=0.

Condition (2) is equivalent to

‘(=Fo(ar),~Go(ar), Ho(ar)) = ' (Fo(ar), Go(ar), Ho(ay)) - (5.51)

The solutions we have always satisfy this condition. Condition (3) is equivalent to

t(cos OFy(1) + sin 0Gy(1), — sin OF,(1) + cos 0Gy(1), Ho(1)) = '(Fo(1), Go(1), Ho(1)),

t(cos OFy(1) + sin 0Gy(1), sin 8Fy (1) — cos 8Go (1), —Hy(1)) = (=1)¥ - H(Fo(1), Go(1), Ho(1)).
(5.52)

(for all 8 € R). Since Fy(1) = Go(1) =0, (5.52) are equivalent to
k=0= Hy=0. (5.53)

But this condition holds if condition (5.50) is satisfied. We have obtained a result about the
Shintani functions attached to the nonspherical principal series representation 7, ,. Note that
since the transform v; - v, v, — v; does not change the eigenvalue of Casimir operator A,
and changes the eigenvalue of gradient operator Ay, to \g,, this transform gives the result in
case of 0 = 0. Similarly, the transform v; — —v1,v, — —v; + v, gives the result in case of
0 = 03. Summing up these results, we have the following theorem.

Theorem 5.6. Let 1 = sgn,, (k € {0,1}) be a signature of H defined by (5.38) and T, a three-dimen-
sional tautological representation of K, and let ¥ = '(Fo, Go, Ho) € C;.gn(k),‘rz(l’) Topr be a Shintani
function corresponding to the nonspherical principal series representation sy, , of G. Then, the restric-
tion of ¥ to A is given as follows.

(1) In case of k = 0,

(@) if 2v1 = #£0, ¥ =0;
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(b) if 2v1 — v, = 0, one has

0
FO(at) 12 (24vy) /4 1 1 1
V2 <.
Go(a) |=cC-| * 1-x) 2F1<§v1+1,§v2—§v1+1,,2,x> ‘
Ho(a) (5.54)
0

<x = tanh?(2t), C : some constant).

(2) Incaseof k =1,

(@) if (=v1 =12) (=11 +21m) #0, ¥ =0;
(b) if (=v1 = v2)(—v1 +2v,) = 0, one has

Fo(ay) —\g,cosh™/2(2¢) (sinh £) 'u(1 - u)*t 5 F1 (Ao, + 1, Ao, + 1;2; 1)
Go(ar) | =C- 0
Ho(ay) Cosh’1/2(2t) (cosh )™ (1 - u))‘”1 2F1(Ao, + 1,46, 1, 1) (5.55)

<u = tanh’t, C : some constant).

Especially, in any case, one has

dim CZ, (L), < 1. (5.56)

Toy»

The transform vy — vy, vy +— vy gives the result in case of ¢ = o, and the transform

V| = —V1, V) = =V + V) gives the result in case of 0 = 03.
Next, we compute the Shintani functions ¥ € C},, (L) oy for general unitary character
11 = s x under the assumption that 1, v{, v, are linearly independent over Q. We have already
known that the necessary condition of the existence of non zero ¥ is that the parameter s is
one of 2v; — v,,2v; — v, or —v; — ¥, and we have already solved the differential equations in
case of s = 2v; — ;. Hereafter, we suppose that the parameter s is either 2v, — v or —v; — v,.

We put w = (1-u)/(1+u), F(w) = Fy(u), Hy(w) = Hy (1) in (5.36), (5.37). Then we have
- dH. =
_<§ _ %) Fa(uw) + (1 - ) 52 (@) = 1o, Fa(w),

(5.57)

w(l+w)%(w)+ <9

>+ %)J{}(w) = Ao, Ha(w).

We put

Fr(w) = Zanw”*“, H,(w) = chw”” (5.58)
n=0 n=0
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(a,y € C,ap, co#0) in (5.57) and compute the power series solutions. By inserting these series
into (5.57), we have

Zaow“ + w“”Ql(w) +ycow! + w1 Qy(w) = Ao agw™ + W Qs (w),
(5.59)

s
aaow® + wQu(w) + gcowy + w1 Qs(w) = Ao cow? + w1 Qs (w),

where Q;(w) (i =1,...,6) are the analytic functions around w = 0. By comparing the lowest
terms in power series, easily we have a = y (in this argument, we use the fact that 1, v;, v, are
linearly independent over Q carefully). Therefore, from (5.59), we have

(2 - )uol) +7vyco =0,

(5.60)
s
aag + <6 - .)LO-1>C0 =0.
Since (ay, cg) # (0,0), we have
s 2
(5-10) ~ar-o (5.:61)
6
By combining this and « = y, we have
s
azyz:l:(g—)ugl). (5.62)

Hereafter, we put A = A(vy,v) = (5/6) — A, Then, F, (w) (resp., H, (w)) are expressed by
the linear combination of some power series Yo a,w"™4, 3% alw" 4 (resp., X5 chaw™4,
> ,c,w™ ). That is, there exist common constants C,, C_ such that

[ee) [ee)
Fr(w) = C+Zanw"+A + C_Za;w”*A,
n=0 n=0

(5.63)
Hz(w) = C+chw"+A + C_Zc;lw”_A.

n=0 n=0

By inserting

Fr(w) = Zanw"“‘, H,(w) = chw"”l (5.64)
n=0
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n+A

into (5.57) and picking up the coefficients of w™**, we have the following recurrence relations:

—gan,l + Al (n+ A—1)cp1+ (m+ A)cy =0, (5.65)

(n+ A-1)an + (n+Aay + ;cn_l + Ac, =0, (5.66)

for all n > 0. Here, we assume that a; = ¢; = 0if I < 0. From (5.65), (5.66), easily we have ¢, =
(-1)"*"a,, for all n > 0 by induction. Therefore, by inserting ¢, = (-1)"'a,, ¢,.1 = (-1)"a,1
into (5.65), we have

(A +(n+ A)(—l)"“)an - (; +(n+A- 1)(—1)">an_1. (5.67)
Thus, we have
[ ys/2+ (m+ A-1)(=DF
= {E A+ (k + A)(=1)F }ao’ (5:68)

e Y S/2+ (n+ A= 1) (-1
cn = (-1) {E T }ag. (5.69)

Similarly, if the characteristic roots are & = y = —A, by inserting

F(w) = Za'nw"*A, H,(w) = Zc;w”’A (5.70)
n=0 n=0

into (5.57), we have

) { n s/2+(n—A—1)(—1)k}
= ao,
k

an
g A+ (k- A)(1)F!
(5.71)
, o[ Fs/2+ (- A-1)(-1)F
= (-1 .
oy {ﬂ A+ (k- AT }a°
(for all n > 1). From (5.68), ay, and ay,—; are expressed by
_(s/4+A/2+1/2),(-s/4+A/2),
fan = nl(A+1/2), o
(5.72)

 (s/4+A/2+1/2),(~s/4+ A/2),
Ban-1 =~ n-1I(A+1/2),

agp.
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Here, fora € C,n € Z,, we define (a),, = a(a+1)(a+2)--- (a+n—-1) and (a), := 1. Therefore,
if we normalize ay = 1, we have

iahwz’“ _ i (s/4+A/241/2),(=s/4+ A/2), .,

a n(A+1/2),
s A 1 s A 1 5,
_2F1<Z+E+§'_Z+E’A+§'w>'

iazn-ﬂvzn_l __TS/4+ A/ZE (s/4+A/2+1/2), 1(-s/4+A/2+1), 4 W (5.73)
n=1 n=1

A+1/2 (n-1)I(A+3/2),

_s/4-A/2 G(s/A+A/2+1/2),(-s/4+A/2+1), ,,
TTA+1/2 wnz_o nl(A+3/2), @

A
2

_s/4—A/2 s+A+1_s+
T A2 YNt Ty

3
+1, A+ E;w2).
Thus, we have

< s A 1 s A 1
Zanwn+A:wA{2F1<Z+§+§,—Z+5}A+§}w2>

"= (5.74)
s/4-A/2 s A 1 s 3 .,
S/ET A 214472
A+1/2 w2F1<4+2 2273 2t +2’w)}
And since ¢, = (-1)"" a,, we have
< n+A _ Al Eél_f 1 2>
nzzocn’w =w { 2F1<4+2+2, 1 — A 2/71)
(5.75)
s/4—A/2w (S é 1 s é+1A+3 )}
A+1/2 0! 272712 2’ '
Similarly, by using
, _ (-s/4-A/2+1/2),(s/4-A/2), ,
Don = n(-A+1/2), s
(5.76)
LS/ A241/2),,(s/4=A/D),
-1 (n-1I(-A+1/2), 0’

and ¢;, = (-1)"a;, if we normalize a; = 1, we have
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2 s A 1s A 1 2)
= —_—— — ____-_A .
nZ:ch w {2F1<4 Sty AW
5/4_A/2 _E_é+15_é+1_A+§~ 2
“Ar12 RN\ Ta T Ty AT
(5.77)
Therefore, fz(w) and Hz(w) are expressed as follows:
F(w0) = Cooh s, AL s A Ly
F)(w) = Cyw {2F1<4+2+2, 4+2,A+2,w
s/4—A/2w <S+A+1 —S+A+1A+3'w2>}
A+1/2 N4 2 27 2T Y
- soA s AL L
+C_w {2F1<4 2+2,4 X A+2,w
s/4-A/2 s A 1s A 3 5
~imer(G g e A
—~ s A 1 s A 1
Hz(w)=C+wA{—2F1<Z+E+§,—Z+E;A+§;w2>
s/4—-A/2 s A 1 s A ] 5
A+1/2 2F1(;+5+§"1+5+1'A+§'w)}
s A 1s A 1
8 S Ly D2 L A Zw?
+C_w {21?1(4 2+2,4 X +2,w>
s/4—-A/2 s A 1s A 3 5,
“A+1/2 2F1<‘1‘5+§'1‘5”"A+§'w)}
(5.78)

We want the relation between C, and C_. We can find the relation by using the regularity of
the Shintani function and the asymptotic formula of Gaussian hypergeometric function ,Fj.
Now, since Fy(a;) and Hy(a;) are regular around t = 0 (& w = 1) and since

E(t) = cosh'/?(2t) sinh tFy(ay),
— (5.79)
H (t) = cosh'/?(2t) cosh tHy(ay),

fz(w) = ﬁ(t) and ﬁz(w) = ﬁ(t) must be regular around w = 1 and ﬁz(w) must satisfy
F>(1) = 0. Since all hypergeometric functions appearing in the right-hand sides of (5.78) are
in the form of ,F;(a,b;a+b;w?), to investigate the behavior of the right-hand sides of (5.78)
around w = 1, we use the following asymptotic formula.



International Journal of Mathematics and Mathematical Sciences 29

Formula 1
We have
. L I'(a+Db)(log(1 - z) +¢(a) +¢(b) +2y)
2Fi(a,b;a+b;z) = - T@Ib) 1+0(z-1)) (z—1).
(5.80)
Here, y is the Euler constant and ¢ is defined by
/1 1
¥(2) =Z<%—m> -y (5.81)

k=1

We apply this formula to the right-hand sides of (5.78). Firstly, the coefficient of log(1-
w?) of Fy(w) equals

- T(A+1/2)
+{ I(s/4+A/2+1/2)[(-s/4+ A/2)

_s/4-A/2 T(A+3/2)
A+1/2 T(s/4+A/2+1/2)T'(-s/4+A/2+1) }

| T(=s/4-A/2+1/2)T(s/4- A/2)

L S/4-A/2 T(-A+3/2)
—A+1/2T(-s/4-A/2+1/2)T(s/4- A/2+1) }

=C,-0+C_-0=0.

Therefore, ﬁz(w) is regular around w = 1 regardless of the values of C., C_. Next, the coef-
ficient of log(1 — w?) of Hy(w) equals

c [(A+1/2)
+{F(s/4+A/2+1/2)F(—s/4+A/2)
s/4—A/2 I(A+3/2)
A+1/2 F(s/4+A/2+1/2)F(—s/4+A/2+1)}
cl I[(-A+1/2)
" { T(—s/4—A/2+1/2)T(s/4-A/2) -
s/4-A/2 [(-A+3/2) (5:89)
CCA+1/2 F(—s/4—A/2+1/2)F(s/4—A/2+1)}
~ 2T(A+1/2) c
T T(s/4+A/2+1/2)[(-s/4+A/2) *
AT (-A+1/2)

CT(-s/4-A/2+1/2)T(s/4-A/2)
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Since this coefficient must be 0, we have

c - [(-A+1/2)
T T(-s/4-A/2+1/2)T(s/4-A/2)’ 584
c - T(A+1/2) (5584

T(s/4+A/2+1/2)T(-s/4+ A/2)

up to (the same) constant multiples. Note that we can easily verify that F5(1) = 0 for these
C,, C_ by using formulas I'(z + 1) = zI'(z), ¢(z+ 1) = ¢(z) + 1/z. Now, we have completely

determined F, (w), Ez(w). We have

5 ~ ['(-A+1/2) A
b = s aanirea-am”
AR
s/4-A/2 s A 1 s 4 5 w?
e (fra it g A e )
T(A+1/2) -A
" T(s/4+ A/2+1/2)T(- S/4+A/2)w
TEEERTE R
20\ T4 T2 Ty - o
s/4— A2 s A ls A S w?
_meZH< 127212 1_A+§/w>}’ (5.85)
. ~ I'(-A+1/2) A |
He(w) = s i A2+ 1/2)T(s /2= A/2)w

x 4 —oF S+A+1—S+
2I\2"2"21

A

27

s/4-A/2 F s A
2k 4 5

)
A
2

1 s 3 w?
T Aar12 ¢ tyTgtp tlArgw )}
T(A+1/2) A
T T(s/a+ A/2+1/2)T(-s/4+ A/2)
s A 1s )
X{ﬁ(‘rE*z'z‘—f‘ w)
L S/AmAR2 (s A LS AL A 3w
Ar12 0 N\T2T 2 172 2’

up to (the same) constant multiples. Here, A = A(v1,v2) =5/6 — Ay, Aoy, = —=(1/3)(2v1 — vp),

= (1-u)/(1+u) = (1-tanh?)/(1 + tanh?t), F>(w) = F(t) = cosh!/?(2¢) sinh tFy(ay),
ﬁz(w) = ﬁ(t) = cosh!/? (2t) coshtHy(a;). By the same argument we have done when 7 is
the signature, we can easily verify that conditions (1), (2), and (3) in (3.8) are equivalent to
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condition (5.50). We have already computed Fy(a;), Go(a;), and Hy(a;) in any case. Summing
up, we obtain the following theorem.

Theorem 5.7. Assume that 1,v1, v, are linearly independent over Q. Let 11 = 1 i be a unitary charac-
ter of H defined by (3.1) and o = o1 the character of M. Then, the necessary condition of the existence
of the nontrivial Shintani functions attached to the nonspherical principal series representation I,
is that

k=0, s =2V — v (5.86)
or
k=1, S=-vi—vy or —vi+2v,. (5.87)

That is, if the condition above is not satisfied, one has

C (L), , = {0}, (5.88)

Let ®(a;) = "(Fo(ay), Go(ar), Ho(ay)) € Cor, (L),,Ul/le and suppose that the condition above is satis-
fied. Then,

(1) if k = 0and s = 2vy — vy, one has

0
Fo(at)
Go(ar) | =C- | x/2(1- X)(2+v2)/42F1<1V1 Pl w12 X>
2 2 2 (5.89)
Ho(ay) 0 '

(x = tan 1*(2t), C: someconstant) ;

(2) if k =1and s = —v; — v, or —vy + 2V, one has

Fo(ar) cosh™2(2t)sinh ™ tF> (w)
Go(a) | =C- 0 , (5.90)
Ho(ay) cosh™/2(2t)cosh™ tH, (w)

where C is some constant and ﬁz(w) and ﬁz(w) are the functions given by (5.85). Espe-
cially, in any case, one has

dim C32,, (L), , < 1. (5.91)

nr2
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The transform vy — vy, v, +— vy gives the result in case of o = 0y, and the transform vy — —vy, v, —
—Vv1 + v, gives the result in case of o = 03.

Remark 5.8. By using the relation 1 - x = w? and the formulas of the hypergeometric function

T(@)I(p) oy S@TB-a) e e e s L
W Fl(“;ﬂ/}’/ )_—F(y—a) (1 ) 2F1< Y =B ﬂ+1’1—z>
O NS
g A tR(pr-epas i), (592)

- z
oF1(a, B y;z) = (1-2) 2F1<“rY—[5;Y)Z_1>
= (1 - Z)Y_ﬂ_ﬂ 21:'1 (Y _ arY _ ﬁ, Y, Z),

we can rewrite F>(w), Hy(w) in Theorem 5.7 as functions in x = tanh?(2t). We put Fy(w) =
F5(x), Hyo(w) = H3(x). Then, we have

s A s A+1 s A
Fg(x) = <_Z+ E){—(l—X)A/zzF‘l(Z + T’_Z + E,l,x)

s A+1 s A
+(1—JC)(A+1)/22F1<Z+T,—Z E+1,1,x> },
N A1 N (5.93)
S S + S
Hj(x) = <_Z + E) { (1-x)4%,F, (Z gt 5;1; x)
s A+1 s A
+(1 —x)(A+1)/2 2F1<Z + T/_Z + E + 1,1,x> }

These computations are due to Professor T. Ishii.
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