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We apply the so-called monomiality principle in order to construct eigenfunctions for a wide set
of ordinary differential operators, relevant to special functions and polynomials, including Bessel
functions and generalized Gould-Hopper polynomials.

1. Introduction

In many paper the so-calledmonomiality principle, introduced by Dattoli et al. [1], was used in
order to study in a standard way the most important properties of special polynomials and
functions [2].

In this paper, we show that the abstract framework of monomiality can be used even
to find in a constructive way the eigenfunctions of a wide set of linear differential operators
connected with the Laguerre-type exponentials introduced in [3].

In this paper, we limit ourselves to consider the first Laguerre derivative DL :=
DxD, so that we substitute the derivative D and multiplication operator x. with the
corresponding derivative and multiplication operators ̂P and ̂M, relevant to a given set of
special polynomials or functions.

The same procedure could be generalized by considering (for any integer n) the
higher-order Laguerre derivatives DnL := Dx · · ·DxDxD (containing n + 1 ordinary
derivatives), showing that this method can be used to obtain eigenfunctions for each one
of the infinite many operators obtained by using the same substitutions described before.

It can be noticed that this gives a further proof of the power of the monomiality
technique.
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2. The Monomiality Principle

The idea of monomiality traces back to Steffensen [4], who suggested the concept of poweroid,
but only recently this idea was systematically used by Dattoli [2].

It was shown in [5] that all polynomial families are essentially the same, since it is
possible to obtain one of them by transforming each other by means of suitable operators,
called derivative and multiplication operators. However, the derivative and multiplication
operators, relevant to a general polynomial set, are expressed by formal series of the
derivative operator, so that it is in general impossible to obtain sufficiently simple formulas
to work with.

However, for particular polynomials sets, relevant to suitable generating functions,
the above-mentioned formal series reduce to finite sums, so that their main properties can be
easily derived. The leading set in this field is given by the Hermite-Kampé de Fériet (shortly
H-KdF) also called Gould-Hopper polynomials [6, 7].

Following Dattoli [2], we start with the following definition.

Definition 2.1. The polynomial set {pn(x)}n∈N is a quasimonomial set if there exist two linear
operators ̂P and ̂M, called, respectively, derivative operator and multiplication operator,
verifying (∀n ∈ N) the identities

̂P
(

pn(x)
)

= npn−1(x),

̂M
(

pn(x)
)

= pn+1(x).
(2.1)

The ̂P and ̂M operators are shown to satisfy the commutation property

[

̂P, ̂M
]

= ̂P ̂M − ̂M ̂P = ̂1, (2.2)

and thus display a Weyl group structure.
If the considered polynomial set {pn(x)} is a quasi-monomial set, then its properties

can be easily derived from those of the ̂P and ̂M operators. In fact the following holds.

(i) If ̂P and ̂M have a differential realization, then the polynomial pn(x) satisfies the
differential equation

̂M ̂P
(

pn(x)
)

= npn(x). (2.3)

(ii) Assuming here and in the following p0(x) = 1, then pn(x) can be explicitly
constructed as

pn(x) = ̂Mn(1). (2.4)
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(iii) The last identity implies that the exponential generating function of pn(x) is given
by

et
̂M(1) =

∞
∑

n=0

(

t̂M
)n

n!
(1) =

∞
∑

n=0

tn

n!
̂Mn(1), (2.5)

and therefore

et
̂M(1) =

∞
∑

n=0

tn

n!
pn(x). (2.6)

3. Laguerre-Type Exponentials

For every positive integer n, the nL-exponential function is defined by

en(x) :=
∞
∑

k=0

xk

(k!)n+1
. (3.1)

This function reduces to the classical exponential when n = 0, so that we can put e0(x) := ex.
Consider the operator (containing n + 1 derivatives)

DnL : = Dx · · ·DxDxD = S(n + 1, 1)D + S(n + 1, 2)xD2 + · · · + S(n + 1, n + 1)xnDn+1, (3.2)

where S(n + 1, 1), S(n + 1, 2), . . . , S(n + 1, n + 1) denote Stirling numbers of the second kind.
In [3] (see also [8, 9] for applications), the following theorem is proved.

Theorem 3.1. Let a be an arbitrary real or complex number. The nth Laguerre-type exponential
en(ax) is an eigenfunction of the operatorDnL, that is,

DnLen(ax) = aen(ax). (3.3)

For n = 0, we have D0L := D, and therefore (3.3) reduces to the classical property of
the exponential function

Deax = aeax. (3.4)

It is worth noting that for all n, the nL-exponential function satisfies en(0) = 1, and it
is an increasing convex function whenever x ≥ 0; furthermore,

ex = e0(x) > e1(x) > e2(x) > · · · > en(x) > · · · , ∀x > 0. (3.5)
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According to [10], for all s = 1, 2, 3, . . ., it follows that

(DxD)s = DsxsDs, (DxDxD)s = DsxsDsxsDs, (3.6)

and so on for everyDnL (n = 1, 2, 3, . . .).

4. Eigenfunctions of Differential Operators

We start assuming a = 1, n = 1, in (3.3), so that

DxD

( ∞
∑

k=0

xk

(k!)2

)

=
∞
∑

k=0

xk

(k!)2
. (4.1)

By applying the monomiality principle to (4.1), we find the following result.

Theorem 4.1. Let {pk(x)} be a polynomial (or function) set, and denote by ̂P and ̂M the
corresponding derivative and multiplication operators. Then

̂P ̂M ̂P

( ∞
∑

k=0

pk(x)

(k!)2

)

=
∞
∑

k=0

pk(x)

(k!)2
. (4.2)

Therefore, the operator ̂P ̂M ̂P admits the eigenfunction
∑∞

k=0 pk(x)/(k!)
2.

Proof. Searching for an eigenfunction of the form
∑∞

k=0 akpk(x), normalized assuming a0 := 1,
we find that, by using properties (2.1),

̂P ̂M ̂P

( ∞
∑

k=0

akpk(x)

)

=
∞
∑

k=0

ak
̂P ̂M ̂P

(

pk(x)
)

=
∞
∑

k=1

akk
2pk−1(x) =

∞
∑

k=0

ak+1(k + 1)2pk(x)

(4.3)

and consequently, recalling a0 := 1,

ak+1

ak
=

1

(k + 1)2
⇐⇒ ak =

1

(k!)2
. (4.4)

By the same method, we find, for any integer n, the general result.

Theorem 4.2. The operator ̂P ̂M ̂P · · · ̂M ̂P , including n + 1 copies of the derivative operator ̂P ,
admits the eigenfunction

∑∞
k=0 pk(x)/(k!)

n+1, that is,

̂P ̂M ̂P · · · ̂M ̂P

( ∞
∑

k=0

pk(x)

(k!)n+1

)

=
∞
∑

k=0

pk(x)

(k!)n+1
. (4.5)
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We want to show, in the following sections, several examples of this method, deriving
explicit eigenfunctions for a large set of differential operators, connected with classical
polynomial (or function) sets.

5. Hermite and Gould-Hopper Polynomials

5.1. Hermite Polynomials

Consider first the Hermite polynomials defined by the Rodrigues formula

Hn(x) = (−1)nex2 dn

dxn
e−x

2
. (5.1)

Recalling

(

1
2

d

dx

)

Hn(x) = nHn−1(x),

(

2x − d

dx

)

Hn(x) = Hn+1(x),

(5.2)

we have

̂P =
1
2

d

dx
, ̂M = 2x − d

dx
, (5.3)

so that we find the operator

̂P ̂M ̂P =
1
2

d

dx
+
1
4

(

2x − d

dx

)

d2

dx2
(5.4)

and the corresponding eigenfunction

+∞
∑

n=0

Hn(x)

(n!)2
=

+∞
∑

n=0

[n/2]
∑

h=0

(−1)h (2x)n−2h

h!(n − 2h)!n!
. (5.5)

5.2. Gould-Hopper Polynomials

They are defined by [11]

H
(m)
n

(

x, y
)

:= ey∂
m
x xn = n!

[n/m]
∑

h=0

yhxn−mh

h!(n −mh)!
. (5.6)
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We have in this case

̂P =
∂

∂x
, ̂M = x +my

∂m−1

∂xm−1 , (5.7)

so that we find the operator

̂P ̂M ̂P =
∂

∂x
+ x

∂2

∂x2 +my
∂m+1

∂xm+1
(5.8)

and the corresponding eigenfunction

∞
∑

n=0

H
(m)
n (x)

(n!)2
=

∞
∑

n=0

[n/m]
∑

h=0

yhxn−mh

h!(n −mh)!n!
. (5.9)

6. Generalized Gould-Hopper Polynomials

In [12] a general set of polynomials, generalizing the Gould-Hopper ones is introduced. For
shortness we will call them GGHP.

They are defined by the operational rule

Gn

(

x, g
)

= eg(D)xn, (6.1)

where g(t) is an analytic function andD := Dx = d/dx.
Of course, if g(t) = ytm, then the Gould-Hopper polynomials are recovered.
It is worth noting that if g(t) is a polynomial vanishing at t = 0, assuming g(t) =

x1t + x2t2 + · · ·+ xrtr , the GGHP give back the many-variable one-index Hermite polynomials
(see, e.g., [13]). Extensions of the last ones to many indices are given in [14].

The Gn(x, g) satisfy [12]

DGn

(

x, g
)

= nGn−1
(

x, g
)

,

[

x + g ′(D)
]

Gn

(

x, g
)

= Gn+1
(

x, g
)

.
(6.2)

Therefore, they belong to the Appell class, and

̂P = Dx = D, ̂M = x + g ′(Dx) = x + g ′(D). (6.3)

As a consequence,

̂P ̂M ̂P = D
(

x + g ′(D)
)

D = D + xD2 + g ′(D)D2 = D +
[

x + g ′(D)
]

D2, (6.4)

and the corresponding eigenfunction will be

∞
∑

n=0

Gn

(

x, g
)

(n!)2
. (6.5)
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7. Bessel Functions of the First Kind

The Bessel function of the first kind,

Jk(z) =
∞
∑

h=0

(−1)h (z/2)
2h+k

h!(h + k)!
, (7.1)

satisfies the recurrence relations

2k
z
Jk(z) = Jk−1(z) + Jk+1(z),

2
d

dz
Jk(z) = Jk−1(z) − Jk+1(z).

(7.2)

Adding and subtracting these equalities, we get

(

d

dz
+
k

z

)

Jk(z) = Jk−1(z),

(

− d

dz
+
k

z

)

Jk(z) = Jk+1(z),

(7.3)

and, therefore, we have

̂P = k
d

dz
+
k2

z
, ̂M = − d

dz
+
k

z
, (7.4)

so that we find the operator

̂P ̂M ̂P = −k2 d3

dz3
+
k3(k − 1)

z2
d

dz
+
k3(k − 2)(k + 1)

z3
, (7.5)

and the corresponding eigenfunction

+∞
∑

k=0

Jk(z)

(k!)2
=

+∞
∑

k=0

∞
∑

h=0

(−1)h (z/2)2h+k

h!(h + k)!(k!)2
. (7.6)

Note that the negative integer values of the index k do not contribute to the series.

8. A Direct Proof for Bessel Functions

Considering the case of Bessel functions Jn, we could proceed as follows.
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(a) We define the “number operator” ̂k associated to them by putting

̂kJn(z) := nJn(z). (8.1)

(b) And we define the relevant shift-down operator by

̂E− :=
d

dz
+
1
z
̂k (8.2)

(note that z and ̂k do not commute).
Applying ̂E− to Jn yields

̂E−Jn(z) =
(

d

dz
+
1
z
̂k

)

Jn(z) =
(

d

dz
+
n

z

)

Jn(z) = Jn−1(z). (8.3)

Furthermore, by iteration,

(

̂E−
)2
Jn(z) = ̂E−

(

̂E−Jn(z)
)

=
(

d

dz
+
n − 1
z

)(

d

dz
+
n

z

)

Jn(z) = Jn−2(z), (8.4)

and in general

(

̂E−
)m

Jn(z) =
(

d

dz
+
n − (m − 1)

z

)

· · ·
(

d

dz
+
n

z

)

Jn(z) = Jn−m(z). (8.5)

The derivative operator ̂P for the Bessel functions can be written, in terms of the number
operator, as follows:

̂P =
(

̂k + ̂1
)

̂E−. (8.6)

In fact, by using the above rules, we have

̂PJn(z) =
(

̂k + ̂1
)

̂E−Jn(z) =
(

̂k + ̂1
)

Jn−1(z) = nJn−1(z) = Jn−1 +
z

2
[

Jn(z) + J(n−2)(z)
]

. (8.7)

Since the number operator does not commute with z and d/dz, it does not commute with
̂P too.

(c) We define the shift-up operator by

̂M := ̂E+ := − d

dz
+
1
z
̂k. (8.8)
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The action of the Laguerre derivative on Bessel functions becomes

[(

̂k + ̂1
)

̂E−
]

̂E+

[(

̂k + ̂1
)

̂E−
]Jn(z)

n!
= n

Jn−1(z)
(n − 1)!

. (8.9)

The Bessel equation follows by using the factorization method:

̂E+ ̂E−Jn(z) =
(

− d

dz
+
n − 1
z

)(

d

dz
+
n

z

)

Jn(z) = Jn(z). (8.10)

Note that the derivative operator can be iterated without problem, since

̂P 2Jn(z) =
(

̂k + ̂1
)

̂E−
(

̂k + ̂1
)

̂E−Jn(z) = n(n − 1)Jn−2(z), (8.11)

and in general

̂PmJn(z) =
n!

(n −m)!
Jn−m(z). (8.12)

Note that

̂E−Jn(λz) = λJn−1(λz). (8.13)

By using the preceding equations, it is easy to see that the function

F(z) :=
∞
∑

s=0

λsJs(z)
s!

(8.14)

is an eigenfunction of the operator ̂P . Therefore, the operator ̂P ̂M ̂P admits the eigenfunction

∞
∑

k=0

Jk(z)

[k!]2
, (8.15)

as can be checked directly.
Of course it should be very complicated to write similar equations for each monomial

set, but this is useless, since the abstract Theorem 4.1 guarantees the validity of our result.

9. Parabolic Cylinder Functions

We deal with the functions

Dn(z) := 2−(n/2)e−(z
2/4)Hn

(

z√
2

)

, (9.1)
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where Hn denotes the ordinary Hermite polynomials (5.1). Taking into account the
recurrence relations

zDn(z) = nDn−1(z) +Dn+1(z),

d

dz
Dn(z) +

z

2
Dn(z) = nDn−1(z),

(9.2)

we have in this case [15]

̂P =
z

2
+

d

dz
, ̂M =

z

2
− d

dz
. (9.3)

Consequently, we find the operator

̂P ̂M ̂P = − d3

dz3
+
z2 + 2
4

d

dz
+
z3 + 2z

8
, (9.4)

and the corresponding eigenfunction

+∞
∑

n=0

Dn(z)

(n!)2
= e−z

2/4
+∞
∑

n=0

Hen(z)

(n!)2
. (9.5)

10. Bessel-Clifford Functions of the First Kind

They are defined by

Cn(z) :=
1

Γ(n + 1) 0F1(−, n + 1; z) (10.1)

and are a particular case of Wright functions [2, 16], connected with the Bessel functions of
first kind by

Jn(z) =
(z

2

)n
Cn

(

−z
2

4

)

. (10.2)

The relevant generating function is given by

et+(z/t) =
+∞
∑

n=−∞
Cn(z)tn. (10.3)

From the recurrence relations

d

dz
Cn(z) = Cn+1(z),

zCn+2(z) + (n + 1)Cn+1(z) = Cn(z),
(10.4)
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we have in this case

̂P = nz
d

dz
+ n2, ̂M =

d

dz
. (10.5)

Therefore, we find the operator

̂P ̂M ̂P = n2z2
d3

dz3
+ n2(n + 2)z

d2

dz2
+ n3 d

dz
, (10.6)

and the corresponding eigenfunction

+∞
∑

k=0

Ck(z)

(k!)2
=

+∞
∑

k=0

+∞
∑

h=0

zh

h!(h + k)!(k!)2
. (10.7)

11. Modified Laguerre Polynomials

They are defined by

fα
k (x) =

k
∑

h=0

Γ(k − h + α)
h!(k − h)!Γ(α)

xh, (11.1)

and are related (see [16]) to the classical Laguerre polynomials L
(α)
n (x) and the Poisson-

Charlier polynomials cn(x;α) by

f−α
k (x) = (−1)kL(α−k)

k (x) =
xk

k!
ck(x;α). (11.2)

We have in this case

̂P = k
d

dx
(11.3)

coming directly from the differentiation of (11.1). Using the recurrence relation

fα
k+1(x) =

1
k + 1

[k + (x + α)]fα
k (x) − x fα

k−1(x), (11.4)

we easily obtain the operator

̂M =
1

k + 1
[k + (x + α)] − x

d

dx
. (11.5)
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Consequently, we find

̂P ̂M ̂P = k2

{

1
k + 1

d

dx
+
x + α − 1
k + 1

d2

dx2 − x
d3

dx3

}

, (11.6)

and the corresponding eigenfunction

+∞
∑

k=0

fα
k (x)

(k!)2
=

+∞
∑

k=0

k
∑

h=0

Γ(k − h + α)

h!(k − h)!Γ(α)(k!)2
xh. (11.7)

12. Confluent Hypergeometric Polynomials

The Confluent Hypergeometric function Φ(a, c; z):= 1F1(a, c; z) reduces to a polynomial
when a = −m (wherem denotes an integer number).

Recalling the recurrences [15]

(

a + z
d

dz

)

Φ(a, c; z) = a Φ(a − 1, c; z),

(

c − a − z

c − a
+

z

c − a

d

dz

)

Φ(a, c; z) = Φ(a + 1, c; z),

(12.1)

we have in this case

̂P = a + z
d

dz
, ̂M =

c − a − z

c − a
+

z

c − a

d

dz
, (12.2)

so that putting again a = −m we find the operator

̂P ̂M ̂P =
1

c − a

{

z3
d3

dz3
+ z2(c + 3 − z)

d2

dz2

+z[(c − a − z + 1)(a + 1) − z]
d

dz
+ a[(c − a − z)a − z]

}

(12.3)

and the corresponding eigenfunction

+∞
∑

m=0

Φ(−m, c; z)

(m!)2
. (12.4)

13. Hypergeometric Polynomials

A similar result holds for the Hypergeometric polynomials F(a, b, c; z):= 2F1(a, b, c; z) when
a = −m (integer number).
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Recalling the recurrences [15]

(

a + z
d

dz

)

F(a, b, c; z) = a F(a + 1, b, c; z),

(

(a − c) + bz

a − c
− z(1 − z)

a − c

d

dz

)

F(a, b, c; z) = F(a − 1, b, c; z),

(13.1)

we have in this case

̂M = 1 +
z

a

d

dz
, ̂P =

az(1 − z)
c − a

d

dz
− baz

c − a
+ a, (13.2)

so that putting again a = −m we find the operator

̂P ̂M ̂P =
a

(c − a)2

{

z3(1 − z)2
d3

dz3
+ z2(1 − z)[c + 3 − z(a + b + 5)]

d2

dz2

+ z[(1 − z)(a + 1)(1 − 2z + c − a − bz) + z(a + b − c − 2 + 2z)]
d

dz

+[bz(a + 1)(2z − c + a + 1) + a(c − a)(c − a − bz)]

}

(13.3)

and the corresponding eigenfunction

+∞
∑

m=0

F(−m, b, c; z)

(m!)2
. (13.4)

14. Conclusion

The above consideration shows that, even in the most simple case of the first-order Laguerre
derivative DL := DxD, the use of monomiality gives us the possibility to construct explicitly
eigenfunctions for a wide set of linear differential operators, by using a very simple and
standard method.

The extension of this method to the higher-order Lagaerre derivatives DnL :=
Dx · · ·DxDxD (containing n + 1 ordinary derivatives) could be obtained in a similar way;
however, the manual computation becomes very hard when the order n increases. The use of
symbolic computer algebra programs like Mathematica could be exploited in order to obtain
the relevant formulas in an easy way. However, we think that this extension does not add
further elements of novelty to the above-described methodology.

Similar results can be obtained by using the operator

DL +mD = DxD +mD = D(xD +m) (14.1)
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(m real or complex constant), or more generally the operator

D(xD +m)n =
n
∑

k=0

(

n

k

)

DkLm
n−k (14.2)

(n positive integral number), and the corresponding eigenfunctions

∞
∑

k=0

xk

k!(k +m)!
, (14.3)

or

∞
∑

k=0

xk

(k!)n(k +m)!
. (14.4)

The monomiality principle ensures that, by considering a quasi-monomial system {pk(x)}
and the relevant derivative ̂P and multiplication ̂M, the operators ̂P ̂M ̂P + m ̂P , or more
generally ̂P(̂M ̂P +m̂I)

n
, admit the eigenfunctions

∞
∑

k=0

pk(x)
k!(k +m)! (14.5)

or

∞
∑

k=0

pk(x)
(k!)n(k +m)!

. (14.6)

The explicit expression of these operators in the case of several quasi-monomial systems will
be considered in a forthcoming paper.
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