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Branched covering Riemann surfaces (C, f) are studied, where f is the Euler Gamma function
and the Riemann Zeta function. For both of them fundamental domains are found and the
group of cover transformations is revealed. In order to find fundamental domains, preimages of
the real axis are taken and a thorough study of their geometry is performed. The technique of
simultaneous continuation, introduced by the authors in previous papers, is used for this purpose.
Color visualization of the conformal mapping of the complex plane by these functions is used for a
better understanding of the theory. A version of this paper containing colored images can be found
in arXiv at Andrian Cazacu and Ghisa.

1. Introduction

Following [1, page 98] we call fundamental region, or fundamental domain of an analytic
function f , a domain which is mapped conformally by f onto the whole plane, except for
one or more cuts (or slits). It has been proved in [2] that every neighborhood of an isolated
essential singularity of an analytic function f contains infinitely many nonoverlapping
fundamental domains of f . In fact this is true as well for essential singularities which are
limits of poles or of isolated essential singularities [2–5]. The Euler Gamma function and the
Riemann Zeta function have∞ as their unique essential singularity. For the function Gamma,
∞ is a limit of poles, while for the function Zeta it is an isolated essential singularity. It
follows that for each one of these functions, the complex plane can be written as a disjoint
union of sets whose interiors are fundamental domains, that is, domains which are mapped
conformally by the respective function onto the complex plane with a slit. By analogy with
the well-known case of elementary functions we use the preimage of the real axis in order to
find such a disjoint union of sets. As we will see next, for the function Gamma there is a great



2 International Journal of Mathematics and Mathematical Sciences

similarity with that case, while for the function Zeta a supplementary construction is needed.
However, in both cases there is a noticeable difference, namely, while for the elementary
functions the slit is the same for every fundamental domain, for the functions Gamma
and Zeta it can vary from one fundamental domain to the other. This fact implies some
complications when trying to define the cover transformations of the respective branched
covering Riemann surfaces. However, the method of fundamental domains allows one to
extract a lot of information about the function, in particular about its zeros, as well as the
zeros of its derivative and to reveal global mapping properties of the function. Since the
fundamental domains are leafs of the corresponding branched covering Riemann surface,
the study of the group of cover transformations of the respective surface must start from
them. This has been done in [3–5] for some classes of Blaschke products, in [6] for arbitrary
rational functions, and in [2] for functions obtained composing the exponential function with
aMöbius transformation andwe deal here with this topic in Section 3 for the function Gamma
and in Section 7 for the function Zeta. Sometimes we need to use a rather descriptive language.
This is because we fully adopted Ahlfors opinion [1, page 99]: whatever the advantage of such a
representation may be, the clearest picture of the Riemann surface is obtained by direct consideration of
the fundamental regions in the z-plane. We apply repeatedly the general method of simultaneous
continuations in order to construct the fundamental domains and then color visualization
perfected in the previous papers [2–6] in order to illustrate the facts, but never as logical proofs.
Expressions indicating motion should be taken only as figures of speech. One can always
replace them by static pictures.

Before starting the study of the two functions, let us illustrate the method of
fundamental domains on the elementary function w = f(z) = cos z presented in [1, page 98-
99], with the interpretation of the facts proper to this method. The function f has the branch
points zk = kπ , k ∈ Z, where f ′(z) = − sin z cancels. The points kπ are simple zeros of f ′(z),
and therefore the preimage of a small interval of the real axis centered at w = 0 produces at
every zk a configuration similar to that of [1, page 133], obtained for n = 2. In the following
we will call such a configuration star configuration. Since cos z ∈ R for z ∈ R, one of the arcs
of this configuration is an interval of the real axis containing zk and the other one a Jordan
arc orthogonal to it at zk. Since cos(kπ + it) = (−1)k cosh t ∈ R, such an arc is necessarily
a vertical segment of line. When performing simultaneous continuations over the real axis
of these intervals, we obtain the net of [1, Figures 3–11]. Indeed, the continuation of every
vertical interval is unlimited, since there is no critical point of cos z in its way, while the
continuation of horizontal intervals join two by two at (2k + 1)(π/2), as w reaches 1 and
respectively −1. If we denote byΩj , j ∈ Z the vertical strips between x = jπ and x = (j +1)π ,
then by the conformal mapping correspondence theorem, every Ωj is mapped conformally
by f onto the complex plane with a slit alongside the part of the real axis complementary to
the interval (−1, 1). The domains Ωj are fundamental domains of the function f . It is obvious
that the functions Uk : Ωj− > Ωj+2k, k, j ∈ Z defined by Uk(z) = z + 2kπ , are such that
f ◦Uk(z) = f(z), that is, they are cover transformations of (C, f).

We can obtainUk by themethodwe used in [2–6], which will be used also for the func-
tions Gamma and Zeta in Section 3, respectively, Section 7. Let us denoteUk(z) = f−1

|Ωj+2k
◦f(z)

for every z ∈ Ωj and notice that f ◦Uk(z) = f(z), z ∈ Ω =
⋃+∞

j=−∞ Ωj . Since for x ∈ (jπ, jπ +π),
f(x+2kπ) = f(x), we have thatUk(x) = x+2kπ , that is, the functions z− > z+2kπ andUk(z)
coincide on R \ {jπ}, j ∈ Z. Being analytic functions, they must coincide onΩ. We can extend
by continuity to every ∂Ωj the functionsUk so defined and they become the analytic functions
z− > z + 2kπ with the domain C. They form an infinite cyclic group G1. Every couple of
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fundamental domainsΩj andΩj+2k determines a unique cover transformationUk ∈ G1 which
maps conformallyΩj ontoΩj+2k. Indeed, suppose thatU is an arbitrary cover transformation
of (C, f), that is,U is analytic in C, f ◦U(z) = f(z) for every z ∈ C and suppose as well thatU
maps conformallyΩj ontoΩj+2k. ThenU(z) = f−1

|Ωj+2k
◦f(z) = Uk(z). The involutionH(z) = −z

is also a cover transformation of (C, f) due to the fact that cos(−z) = cos z. We have that
H(Ωj) = Ω−j−1 and then Uk ◦ H(Ωj) = Ω−j−1+2k, thus the cover transformation which maps
conformallyΩj ontoΩj+k with arbitrary j, k ∈ Z isUp if k = 2p andUm◦H, wherem = j+p+1
if k = 2p + 1. The involution H does not belong to G1. It is an elementary exercise to show
that the group G generated byU1 and H is the group of cover transformations of (C, f).

2. Global Mapping Properties of the Euler Gamma Function

We use the explicit representation of the Euler Gamma function as a canonical product [1]:

Γ(z) =
(
e−γz

z

) ∞∏

n=1

(

1 +
z

n

)−1
ez/n, (2.1)

where γ is the Euler constant

γ = lim
n→∞

(

1 +
1
2
+ · · · + 1

n
− lnn

)

≈ 0.57722. (2.2)

It is obvious from this representation that Γ has the set of simple poles A =
{0,−1,−2, . . .} and has no zero. The product converges uniformly on compact subsets of C\A
and therefore w = Γ(z) is a meromorphic function in the complex plane C.

Theorem 2.1. The preimage by Γ of the real axis is formed with infinitely many unbounded curves
(components). The components corresponding to the positive and to the negative real half axis alternate
and do not cross each other. Some of them start however from the same poles of Γ.

Proof. The number Γ(x) is real for every real x and the graph of the function x → Γ(x) has
the lines x = 0, x = −1, x = −2, . . . as vertical asymptotes [7].

Figure 1 can be found in most of the books of complex analysis serving as texts for
graduate studies. We used the online document [7]. It shows the graph of the real function
x → Γ(x), which can be used to draw some information about the complex function Γ.

The respective graph has local minima and maxima, which correspond to the points
where Γ′(z) = 0. All these points are on the real axis, namely, x0 ∈ (1, 2), and for every positive
integer n, there is a unique xn ∈ (−n,−n + 1) such that Γ′(xn) = 0. Indeed, let us denote

Γn(z) =
(
e−γz

z

) n∏

k=1

(

1 +
z

k

)−1
ez/k. (2.3)

The sequence (Γn) converges uniformly on compact sets of C \A to Γ. It can be easily
checked that for every n ∈ N, the equation Γ′n(x) = 0 is equivalent to an algebraic equation of
degree n+1 and has exactly n+1 real solutions situated one in every interval (−k,−k+1), k =
1, 2, . . . , n and one in the interval (0,∞). Therefore Γ′n(z) = 0 cannot have nonreal solutions.
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Since (Γ′n) converges in turn uniformly on compact subsets of C \A to Γ′, we infer that every
interval (−n,−n + 1), n ∈ N, contains exactly one solution xn of the equation Γ′(z) = 0, and
there is one more solution x0 ∈ (1, 2). There are no other solutions of this equation. It is also
obvious that

Γ(x2k+1) < 0, Γ(x2k) > 0, k = 0, 1, 2, . . . . (2.4)

Based on this information, we can reveal the preimage by Γ of the real axis, denoted
Γ−1(R). Since all xn, n ≥ 0 are simple roots of Γ′(z) = 0, in a neighborhood Vn of every xn, Γ(z)
has the form [1, page 133]

Γ(z) = Γ(xn) + (z − xn)2ϕn(z), (2.5)

where ϕn is analytic and where ϕn(xn)/= 0.
By the Big Picard Theorem, the preimage by Γ of Γ(xn) is for every n a countable set of

points. The formula (2.1) shows that Γ(z) = Γ(z), thus this set is of the form {zn,k}∪{zn,k}, k =
0, 1, 2, . . . having the unique accumulation point∞. Suppose that zn,0 is xn. Then by (2.5), the
preimage of a small interval (an, bn) of the real axis centered at Γ(xn) is the union of an interval
(αn, βn) 
 xn of the real axis and another Jordan arc γ−n orthogonal to the real axis at xn (let
n = 2 in [1, Figure 4.8]) and symmetric with respect to the real axis, as well as infinitely many
other Jordan arcs passing each one through a zn,k, respectively, zn,k, k ∈ N. Simultaneous
continuations [6] over the real axis of these preimages have as result the interval (−n,−n + 1)
for (αn, βn). Indeed, −n and −n + 1 being poles for Γ, we have that for x ∈ (xn, xn+1), x− > −n
and x− > −n + 1 if and only if Γ(x)− > ±∞. The continuations have as result an unbounded
curve crossing the real axis at xn for γ−n and infinitely many other unbounded curves passing
each one through zn,k, or through zn,k for k ∈ N. The unboundedness is guaranteed by the fact
that the continuation is unlimited, since there are no poles of Γ off the real axis. We use the
same notation γ−n for the curves passing through xn and γn,k, respectively, γn,k for the others.
We notice that these curves cannot intersect each other, since in such a point of intersection
z0 we would have Γ′(z0) = 0, which is excluded. Also, the curves γn,k, and γn,k, k /= 0 cannot
intersect the real axis, for a similar reason. We call these curves components of Γ−1(R).

Since 0 is a lacunary value for Γ, there can be no continuity (except at the poles)
between the preimage of the real positive half axis and negative half axis, which means that



International Journal of Mathematics and Mathematical Sciences 5

10

5

0

−5

−10
1050−5−10

Figure 2

each one of these components is unbounded. Moreover, if we use two different colors, say
black and red for the preimage of the negative, respectively, positive real half axis, then these
colors must alternate, since minima and maxima for the real function Γ(x) are alternating.
Hence the intervals (αn, βn) have alternating colors, which imply alternating colors for γ−n.
Indeed, due to the continuity of Γ, except at the poles, change of color can happen only there,
which means that the color of γ−n and that of (αn, βn) must agree. Thus, the colors of γ−n are
alternating. On the other hand, if a point travels on a small circle centered at origin in the
w-plane (w = Γ(z)), it will meet alternatively the positive and the negative half axis, which
implies alternation into the colors of γn,k. If xn were multiple zeros of Γ′ then more than one
curve γ−n of the same color would start from xn violating this rule of color alternation. Thus,
as previously stated, Γ′ has only simple zeros.

We notice that, by Formula (2.1), if z = x + iy ∈ γn,k, or z ∈ γn,k then limx→−∞ Γ(z) = 0
and limx→+∞ Γ(z) = ∞. Therefore, when z describes any γn,k or γn,k its image Γ(z) describes
the positive or the negative real half axis, the correspondence z− > Γ(z) being bijective there.
Also, if z ∈ γ−n, then limx→−∞ Γ(z) = 0.

The preimage of the real axis seen in the computer generated picture in Figure 2
illustrates these affirmations. These limits will help next to prove the following theorem.

Figure 2 shows the computer generated preimage by Γ of the real axis. Since zero is a
lacunary value, red curves meet black curves only at the poles.

Theorem 2.2. The complex plane C can be written as a disjoint union of sets bounded by the
components of Γ−1(R) such that the interior of each one of them is a fundamental domain of Γ. These
domains accumulate to infinity and only there. The function Γ extended to the boundary of each one of
them maps them surjectively onto Ĉ \ {0}.
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Proof. Let us introduce first some notations. We denote by Ω−n the domain bounded by γ−n−1
and γ−n, n = 0, 1, 2, . . .. Let Ω1 be the domain from the upper half plane bounded by γ0, the
interval [x0,+∞) and the second component of Γ−1(R) situated in the upper half plane and
which does not intersect the real axis, Ω2 be the domain bounded by this component and the
fourth one and so forth. We denote by Ω̃n, n ∈ Z the domain symmetric to Ωn with respect to
the real axis. Obviously, for n ≤ 0, we have Ω̃n = Ωn.

Let us notice that, by the conformal correspondence theorem, the image by Γ of every
Ω−n, n = 0, 1, 2, . . . is the complex plane with a slit L−n alongside the real axis, from Γ(xn−1)
to Γ(xn), while the image of every Ωn and of every Ω̃n, n ∈ N is the complex plane with
a slit Ln = [0,+∞) (the same for every n ∈ N). It is obvious that the union of the closures
of the domains Ωn and Ω̃n, n ∈ Z, is the complex plane and if the common boundary of
every adjacent couple of them is counted just once, we obtain a disjoint union. As proven
in [2], for an arbitrary analytic function having the unique essential singularity at ∞, these
domains accumulate to ∞ and only there in the sense that every neighborhood V of ∞
contains infinitely many domainsΩn and Ω̃n and any compact set in C intersects only a finite
number of these domains. Finally, since for every Ωn and every w/= 0 there is z ∈ Ωn such
that w = Γ(z) (z ∈ Ωn if w is not on the corresponding slit and z ∈ ∂Ωn if w is on the slit) we
have that Γ : Ωn− > Ĉ \ {0} is surjective. The same is true for every Ω̃n.

Figure 3 represents a visualization of the way the fundamental domains are mapped
conformally by Γ onto the complex plane with a slit. Figure 3(a) is obtained by taking
preimages of colored annuli centered at the origin of the w-plane Figures 3(b)–3(d) and
imposing the same color, saturation, and brightness on the preimage of every point. The very
big annuli Figure 3(d) have preimages around the poles, and this is obvious when looking at
the colored pictures on the web project. However, the same colors appear for z = x + iy with
big positive values of x characterizing the fact that limx→+∞ Γ(x + iy) = ∞. Coupled with the
preimage of orthogonal rays to these annuli, the picture in Figure 3(a) gives a pretty accurate
graphic of the function.

3. The Group of Cover Transformations of (C,Γ)

The results from the previous section allow one to treat (C,Γ) as a branched covering
Riemann surface of Ĉ \ {0} whose leafs are the fundamental domains Ωn. We call cover
transformation of (C,Γ) an analytic function U : C \ E− > C \ E such that Γ ◦ U(z) = Γ(z),
where E is a countable set of slits. The cover transformations of (C,Γ) form a group.

The covering Riemann surfaces we are dealing with here are not smooth, and it is
expected that some of the familiar properties of smooth covering surfaces be invalid for them.
For example, while the cover transformations of smooth covering Riemann surfaces have no
fixed point, the origin is a fixed point for the transformationH we defined in the first section.
Next, as long as the slits are not the same for all the fundamental domains, as it happens in
the case of the functions Γ and ζ, we are forced to introduce a set E of slits in C when defining
the cover transformations in order to avoid working with multivalued functions. For the case

of Γ this can be done as follows. Let us denote Ej = Γ−1(Lj) and E =
+∞⋃

j=−∞
Ej . Since, for z ∈ Ωj

we can have Γ(z) ∈ Lj+k, in order to be able to use, for example, the formula

Uk(z) = Γ−1|Ωj+k
◦ Γ(z) (3.1)
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we have to take this time z ∈ Ωj \ Ej+k instead of z ∈ Ωj . The functions Uk can be extended
by continuity to every ∂(Ωj \ Ej+k), yet they can take different values on different borders of
the slitsΩj ∩Ej+k. Since Γ(−n) = ∞ for n = 0, 1, 2, . . . the extendedUk must fulfil the equalities
Uk(−n) = k − n, for k − n ≤ 0 and Uk(−n) = ∞ for k − n > 0. Next, we extend Uk to the lower
half plane by symmetry:

Uk(z) = Uk(z). (3.2)

Theorem 3.1. The group G of cover transformations of (C,Γ) has two generators: an involution and
a transformation generating an infinite cyclic subgroup of G.
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Proof. We notice that Uk are conformal mappings in C \ E since the branch points xn belong
to E. For every k ∈ Z we have Γ ◦Uk(z) = Γ(z), z ∈ C \ E. Moreover, Uk(Ωj \ E) = Ωk+j \ E,
Uk(Ω̃j \ E) = Ω̃k+j \ E.

Finally we define H : Ωj ∪ Ω̃j− > Ωj ∪ Ω̃j , j ∈ Z by

H(z) = Γ−1|Ω̃j
◦ Γ(z), if z ∈ Ωj , H(z) = Γ−1|Ωj

◦ Γ(z) if z ∈ Ω̃j . (3.3)

It can be easily seen thatH is an involution and Γ◦H(z) = Γ(z),H(Ωj) = Ω̃j ,H(Ω̃j) =
Ωj ,Uk ◦H(Ωj) = H ◦Uk(Ωj) = Ω̃j+k, and so forth. We notice also that

Uk ◦Uj = Uj ◦Uk = Uk+j , U
−1
k = U−k, k, j ∈ Z. (3.4)

This shows in particular that U1 generates an infinite cyclic subgroup. It is an
elementary exercise to show that the group generated by U1 and H is the group of covering
transformations of (C,Γ).

4. The Riemann Zeta Function

The Riemann Zeta function is one of the most studied transcendental functions, in view of
its many applications in number theory, algebra, complex analysis, and statistics as well as
in physics. Another reason why this function has drawn so much attention is the celebrated
Riemann conjecture regarding its nontrivial zeros, which resisted proof or disproof until now.

We are mainly concerned with the global mapping properties of Zeta function.
The Riemann conjecture prompted the study of at least local mapping properties in the
neighborhood of nontrivial zeros. There are known color visualizations of the module, the
real part and the imaginary part of Zeta function at some of those points, however they do
not offer an easy way to visualize the global behavior of this function.

The Riemann Zeta function has been obtained by analytic continuation [1, page 178]
of the series

ζ(s) =
∞∑

n=1

n−s, s = σ + it (4.1)

which converges uniformly on the half plane σ ≥ σ0, where σ0 > 1 is arbitrarily chosen. It is
known [1, page 215] that Riemann function ζ(s) is a meromorphic function in the complex
plane having a single simple pole at s = 1 with the residue 1. Since it is a transcendental
function, s = ∞ must be an essential isolated singularity. Consequently, the branched
covering Riemann surface (C, ζ) ofC has infinitelymany fundamental domains accumulating
at infinity and only there. The representation formula

ζ(s) = −Γ(1 − s)
2πi

∫

C

[
(−z)s−1
(ez − 1)

]

dz, (4.2)

where Γ is the Euler function and C is an infinite curve turning around the origin, which
does not enclose any multiple of 2πi, allows one to see that ζ(−2m) = 0 for every positive
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integer m and there are no other zeros of ζ on the real axis. However, the function ζ has
infinitely many other zeros (so called, nontrivial ones), which are all situated in the (critical)
strip {s = σ+it : 0 < σ < 1}. The famous Riemann hypothesis says that these zeros are actually
on the (critical) line σ = 1/2. Our study brings some new insight into this theory.

We will make reference to the Laurent expansion of ζ(s) for |s − 1| > 0:

ζ(s) =
1

s − 1
+

∞∑

n=0

[
(−1)n
n!

]

γn(s − 1)n, (4.3)

where γn are the Stieltjes constants:

γn = lim
m→∞

[∑m
k=1

(
log k

)n

k
−
(
logm

)n+1

(m + 1)

]

(4.4)

as well as to the functional equation [1, page 216]:

ζ(s) = 2sπs−1 sin
πs

2
Γ(1 − s)ζ(1 − s). (4.5)

5. The Preimage by ζ of the Real Axis

We will make use of the preimage by ζ of the real axis in order to find fundamental domains
for the branched covering Riemann surface (C, ζ) of Ĉ. By the Big Picard Theorem, every
value z0 from the z-plane (z = ζ(s)), if it is not a lacunary value, is taken by the function ζ
in infinitely many points sn accumulating to ∞ and only there. This is true, in particular, for
z0 = 0.

A small interval I of the real axis containing 0 will have as preimage by ζ the union
of infinitely many Jordan arcs γn,j passing each one through a zero sn of ζ, and vice versa,
every zero sn belongs to some arcs γn,j . Since ζ(σ) ∈ R, for σ ∈ R, and by the formula (4.5),
the trivial zeros of ζ are simple zeros and the arcs corresponding to these zeros are intervals of
the real axis, if I is small enough. For such an arc γn,j the subscript j is superfluous. Due to
the fact that ζ is analytic (except at s = 1), between two consecutive trivial zeros of ζ, there is
at least one zero of the derivative ζ′, that is, at least one branch point of (C, ζ). Since we have
also ζ′(σ) ∈ R for σ ∈ R, if we perform simultaneous continuations over the real axis of the
components included in R of the preimage of I, we encounter at some moments these branch
points and, as in the case of Γ, the continuations follow on unbounded curves crossing the
real axis at these points.

The argument for the unboundedness of these curves and of the fact that they have no
common points is the same as in the case of Γ. Only the continuation of the interval containing
the zero s = −2 stops at the unique pole s = 1, since limσ↗1ζ(σ) = ∞. Similarly, if instead
of z0 = 0 we take another real z0 greater than 1 and perform the same operations, since
limσ↘1ζ(σ) = ∞, the continuation over the interval (1,∞) stops again at s = 1. In particular,
the preimage by ζ of this interval can contain no zero of the Zeta function. Thus, if we color
red the preimage by ζ of the negative real half axis and let black the preimage of the positive
real half axis, then all the components of the preimage of the interval (1,+∞) will be black,
while those of the interval (−∞, 1) will have a part red and another black, the junction of the
two colors corresponding to a zero (trivial or not) of the function Zeta.
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Figure 4 represents the preimage of the real axis in which the components previously
described are visible. We notice the existence of branch points on the negative real half axis
and their color alternation, as well as the trivial zeros between them. Since these zeros are
those of sinπs/2, they are simple zeros and consequently there is no branching at them.
Some nontrivial zeros are also visible.

The red and the black unbounded curves passing through the branch points on the
real axis cannot meet elsewhere (except at ∞). Indeed, such an intersection point would be a
zero of ζ and the two curves would bound a domain which is mapped conformally by ζ onto
the complex plane with a slit alongside the real axis from the image of one branch point to
the image of the next one. Yet such a domain should contain a pole of the function, which is
impossible.

The components of the preimage of the real axis passing through nontrivial zeros form
a more complex configuration. This configuration has something to do with the special status
of the value z = 1. Let us introduce notations which will help making some order here and
justifying the configurations shown on the computer generated picture, Figure 4. Due to the
symmetry with respect to the real axis, it is enough to deal only with the upper half plane.
Let x0 ∈ (1,+∞) and let sk ∈ ζ−1({x0}) \ R. Continuation over (1,+∞) from sk is either an
unbounded curve Γ′

k
such that limσ→+∞ ζ(σ + it) = 1, by (4.2), and limσ→−∞ζ(σ + it) = +∞,

where s = σ + it ∈ Γ′k, or there are points u such that ζ(u) = 1, thus the continuation can take
place over the whole real axis. We notice that it is legitimate to let σ tend to −∞ on Γ′

k
, since

if supremum of |s| were reached for a finite s0, then that s0 would be a pole of ζ, which is
impossible.

The existence of Γ′k and that of u with ζ(u) = 1 is attested by computation. The graphs
just illustrate this computational fact. However, they hint to something more, namely, that
the number of these entities is infinite. This can be proved rigorously. Indeed, suppose that
for a Γ′k no other unbounded curve situated above it is mapped by ζ onto the interval (1,+∞).
For a point s0 above Γ′

k
let z0 = ζ(s0) and let z /∈ (1,∞) be arbitrary. We can connect z0 and
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z by a Jordan arc γ not intersecting the interval (1,∞). If we perform continuation by ζ over
γ starting from s0 we arrive at a point s above Γ′

k
such that ζ(s) = z. Then the closed domain

above Γ′
k
would be mapped by ζ onto the whole complex plane, which is absurd.

Theorem 5.1. Consecutive curves Γ′k and Γ
′
k+1 form strips Sk which are infinite in both directions. The

function ζ maps these strips (not necessarily bijectively) onto the complex plane with a slit alongside
the interval [1,+∞) of the real axis.

Proof. Indeed, if two such curvesmet at a point s, one of the domains bounded by themwould
be mapped by ζ onto the complex plane with a slit alongside the real axis from 1 to ζ(s). Such
a domain must contain a pole of ζ, which cannot happen.When a point s travels on Γ′

k
and

Γ′k+1 leaving the strip at left, ζ(s)moves on the real axis from 1 to∞ and back.

When the continuation can take place over the whole real axis, we obtain unbounded
curves each one containing a nontrivial zero of ζ and a point u with ζ(u) = 1. Such a point u
is necessarily interior to a strip Sk since the borders of every Sk and ζ−1({1}) are disjoint.

Theorem 5.2. There are infinitely many points u with ζ(u) = 1.

Proof. Let us denote by uk,j the points of Sk for which ζ(uk,j) = 1, by Γk,j the components of
ζ−1(R) containing uk,j and by sk,j the nontrivial zero of ζ situated on Γk,j . When limσ−>+∞ ζ(σ+
it) = 1, σ + it ∈ Γk,j , we assign (by abuse!) the value ∞ to the respective uk,j . We will see later
that every Sk contains a unique Γk,j with this property. The monodromy theorem assures
that there is a one to one correspondence between sk,j (counted with multiplicities if they
exist), uk,j , and Γk,j . If sk,j is a zero of order m, then m curves Γk,j cross at that zero making a
star configuration. The color alternation rule is still respected. Since there are infinitely many
nontrivial zeros of ζ, it follows that there are infinitely many points uk,j .

Let us notice that every strip Sk can contain only a finite number jk of nontrivial zeros,
since they belong also to the critical strip and then infinitely many of them would have an
accumulation point in C, which is not allowed (see [1, page 127]).

Consequently, the given Sk contains also exactly jk points uk,j with ζ(uk,j) = 1
(including ∞) and exactly jk components Γk,j . This analysis suggests that the value z = 1
behaves simultaneously like a lacunary value since limσ→+∞ζ(σ + it) = 1, σ + it ∈ Γ′

k
and like

an ordinary value, since ζ(uk,j) = 1. We can call it quasilacunary.

Theorem 5.3. When the continuation takes place over the whole real axis, the components Γk,j are
such that the branches corresponding to both the positive and the negative real half axis contain only
points σ + it with σ < 0 for |σ| big enough.

Proof. Indeed, a point traveling in the same direction on a circle γ centered at the origin of the
z-plane meets consecutively the positive and the negative real half axis. Thus the preimage
of γ should meet consecutively the branches corresponding to the preimage of the positive
and the negative real half axis. It can be easily seen that two components Γk,j can meet only
at multiple nontrivial zeros of ζ (if they exist!) and no Γk,j can intersect any Γ′

k
. Thus, those

components of preimages of circles centered at the origin which cross a Γ′
k
, will continue

to cross alternatively red and black components of the preimage of the real axis. These last
components are mapped by ζ either on the interval (−∞, 1), or on the whole real axis.
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On the other hand, due to the continuity of ζ on Γ′k, if a component of ζ−1(γ) meets a
Γ′
k
, it should cross it and all Γ′

l
, l ≥ 1 meeting consecutively the branches corresponding to

the preimage of the positive and of the negative real half axis. Such an alternation is possible
only if the previously stated condition on σ is fulfilled.

Theorem 5.4. For every k there is a unique component of ζ−1(R) situated in the strip Sk, say
Γk,0, which is mapped bijectively by ζ onto (−∞, 1), that is, such that limσ−>+∞ζ(σ + it) = 1, and
limσ−>−∞ζ(σ + it) = −∞, σ + it ∈ Γk,0.

Proof. The strip Sk is mapped by ζ onto the complex plane with a slit alongside the real axis
from 1 to +∞. The mapping is not necessarily bijective. For every x0 ∈ (1,+∞), there is sk ∈ Γ′

k

and sk+1 ∈ Γ′k+1 such that ζ(sk) = ζ(sk+1) = x0. Let us connect sk and sk+1 by a Jordan arc η
interior to Sk (except for its ends). Then ζ(η) is a closed curve Cη bounding a domain D or
a Jordan arc travelled twice in opposite directions, in which case D = ∅. We need to show
that Cη intersects again the real axis, in other words η intersects the preimage of (−∞, 1).
Indeed, otherwise Cη would be contained either in the upper or in the lower half plane. Then
ζwould map half of the strip Sk bounded by η and the branches of Γ′

k
and Γ′

k+1 corresponding
to σ → +∞ onto C \ D with a slit alongside the real axis from x0 to 1. We can take x0

big enough such that this half strip contains no zero of ζ, which makes impossible such a
mapping.

Let us show that Sk cannot contain more than one component of the preimage of
(−∞, 1). Indeed, if there were more, we could repeat the previous construction with two
consecutive such components, taking sk and sk+1 with ζ(sk) = ζ(sk+1) > 0 and arrive again to
a contradiction.

Figure 5 represents dynamically the birth of a strip. We picked up the strip S5 with t
in the range of 45 to 55 on the imaginary axis. It shows consecutively domains which are
mapped conformally by ζ onto the sectors centered at the origin with angles from α to 2π −α,
where α takes, respectively, the values of π/30, π/100, and π/1000. It is visible how the
border of such a domain splits into Γ′5, Γ

′
6 and Γ5,0 previously defined as α → 0. Between

them can be seen the curves Γ5,−1 and Γ5,1.

Theorem 5.5. Every strip Sk contains a unique unbounded component of the preimage of the unit
disc.

Proof. Indeed, to see this it is enough to take the preimage of a ray making an angle α with
the real half axis and let α → 0. A point s ∈ ζ−1({z}) with |z| = 1, arg z = α, tends to ∞ as
α → 0 if and only if the corresponding component of the preimage of that ray tends to Γk,0 as
α → 0, which happens if and only if the component of the preimage of the closed unit disc
containing the point s is unbounded. The uniqueness of Γk,0 implies the uniqueness of such a
component. Obviously, the respective unbounded component can contain besides sk,0 some
other nontrivial zeros of ζ, as it appears on the pictures in Figures 6 and 7.We notice that some
of Sk contain bounded components of the preimage of the unit disc and some others do not
contain such components, and this is another experimental fact. For example S5, S7, S10 do
contain one bounded component, while the others in this range do not. However, it looks
like the existence of bounded components becomes a rule for k big enough, when there
can be several bounded components of the preimage of the unit disc in every strip Sk (see
Figure 7). We have found (see [8]) that the strip corresponding to t ∈ (10, 008; 10, 016) has
three bounded components of the preimage of the unit circle, one of which contains two
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nontrivial zeros and the strip corresponding to t ∈ (1, 000, 002; 1, 000, 012) has six of them,
one containing three nontrivial zeros.

We do not try to answer the question “why is it so?”. On the other hand it is obvious
that, as ρ increases past 1, all the unbounded components of the preimage of γρ fuse into a
unique one intersecting every Γ′k. Since limσ−>−∞ ζ(σ + it) = +∞ as σ + it ∈ Γ′k, the points of
intersection of this component with every Γ′k move to the left as ρ increases, such that the
bounded components of the preimage of γρ will touch the unbounded one for some values of
ρ fusing with it. It might be interesting to know what is the greatest value of ρ (if any!) for
which such a fusion takes place.

Theorem 5.4 does not exclude the possibility of Sk containing several other compo-
nents Γk,j , j ∈ Jk ⊂ Z, which are mapped bijectively by ζ onto the whole real axis. Every one of
the components Γk,j , contains a nontrivial zero of ζ and, for j /= 0, intersects the preimage of the
unit circle in two points corresponding to z = −1 and z = 1. There is no point corresponding
to z = 1 on Γk,0. Using the approximation of ζ by the partial sums from (4.3), it can be easily
shown that for s = σ + it ∈ Γk,j , j /= 0, we have σ → −∞ as ζ(s) → ∞. If Sk contains jk
components Γk,j wewill call it jk-strip. Every jk-strip contains jk nontrivial zeros of ζ (counted
with multiplicities, if they exist). Let us denote them by sk,j = σk,j + itk,j . The computer
generated data suggest that the height of every strip Sk is approximately 10. A rigorous proof
of this fact and an estimation of jk could bring us to an alternative formula for the estimate of
the number N(T) of nontrivial zeros of ζ for t ∈ (0, T).
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6. Fundamental Domains of the Riemann Zeta Function

The preimage of circles centered at the origin of the z-plane are useful in the study of
the configuration of the components Γk,j . A circle with radius less than 1 has bounded
components of its preimage containing one or several zeros. All the components of the
preimage of the respective circle must meet alternatively components of the preimage of the
positive and negative real half axis. Indeed, a point moving in the same direction on a circle
centered at the origin will cross alternatively the positive and the negative real half axis. A
corollary of this fact is as follows

Theorem 6.1. All the real zeros of ζ′ are simple zeros and they alternate with the trivial zeros of ζ.

Proof. Indeed, since the color change can happen only at a zero of ζ (and at s = 1) and
the trivial zeros of ζ are simple, if several branches of the preimage of the positive or of
the negative half axis crossed the real axis at the same point or in different points between
consecutive trivial zeros of ζ, the color alternation for those branches would be violated.

A way to envision this violation is to keep in mind that the function ζ is locally
conformal, except at the branch points, hence the orthogonal net formed with the real axis
and a family of circles centered at the origin of the z-plane is the image by ζ of an orthogonal
net in which the components of the preimages of the negative and of the positive half axis
must alternate when travelling in the same direction on each one of the components of the
preimage of those circles.

The preimages of circles centered at the origin of radius less than or equal to 1 cannot
meet the curves Γ′

k
(which belong to the preimage of (1,+∞)). We will see later that there are

bounded components of the preimage of circles of radius greater than 1, but close to 1with the
same property. However, the unbounded components of the preimages of these circles must
intersect every Γ′

k
, which are then counted in the alternation of the branches of the preimage

of the positive and negative half axis.
The mesh they give rise of is formed with quadrilaterals of different conformal

modules, which are the images by ζ of quadrilaterals from the s-plane having the same
conformal modules and colors with the same saturation and brightness for the corresponding
points. The preimage of the unit disc in the next pictures is formed with domains colored red
and white (which is in fact degraded red). Several unbounded components of it are visible
in Figures 6 and 7, one containing trivial zeros and the others containing nontrivial zeros.
For the fundamental domains containing nontrivial zeros, the parts mapped onto the unit
disc and onto different annuli interior or exterior to the unit disc are obvious. The same is
true for the fundamental domains containing nontrivial zeros, except for those unbounded
parts which are mapped onto a small quadrilateral around the point z = 1. More exactly,
in the respective pictures, this quadrilateral is that bounded by rays of angle ±π/6 and by
the circles of radius 0.8 and, respectively, 2.5 in Mathematica’s grid. We will make next more
precise statements about this mapping.

Figure 6 shows the preimages by ζ of the colored annuli from Figure 3 intersecting
the preimage of the real axis in the box [−15, 15] × [−30, 30] in Figure 6(a) with a zoom on
the origin in Figure 6(b). The curves on the left side in Figure 6(a) crossing alternatively
components of the preimage of the negative and positive real half axis are preimages of circles
centered at the origin with radius greater than 1. The preimage of annuli coupled with the
preimage of some orthogonal rays give a pretty accurate description of the mapping.
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Figure 7 displays a 7-strip situated in the area corresponding to t ∈ (1005, 1016).
There are clearly visible two components of the preimage of the unit circle: one bounded
situated in the upper part of the strip containing a unique nontrivial zero, and one unbounded
containing the other 6 nontrivial zeros. We notice in the strip above this 7-strip two bounded
components of the preimage of the unit circle. It appears that the number of these bounded
components in consecutive strips also increases (on the average) with t.

Theorem 6.2. If Sk is a jk-strip with jk ≥ 2, then it contains at least one and at most jk − 1 zeros
(counted with multiplicities, if any) of the derivative ζ′.

Proof. Let us notice first that S1 is a 1 strip, thus the derivative ζ′ cannot have any zero in
S1. This is attested by the fact that ζ maps conformally S1 onto the complex plane with a slit
alongside the interval (1,+∞) of the real axis; therefore there cannot be branch points of ζ
in S1. The strips S2 and S3 are 2 strips, S4, S5, and S6 are 3 strips, and so forth. Let γρ be a
circle |z| = ρ for a small enough value of ρ, such that the preimage of γρ consists of disjoint
closed curves. If such a curve ηk,j is in the critical strip, then we can suppose that it contains a
unique nontrivial zero sk,j of ζ. Suppose first that sk,j belongs to the unbounded component
of the preimage of the unit disc. As ρ increases the corresponding curves ηk,j expand such
that for some value of ρ,ηk,j will meet another curve of the same type at point vk,h(j). Indeed,
starting with S2 there are at least two such curves and each one will cover, as ρ varies from 0
to 1, the whole component of the preimage of the unit disc. It is obvious that vk,h(j) must be
a branch point of ζ, due to the fact that ζ takes the same value in points situated on different
curves ηk,j in every neighborhood of vk,h(j). Since vk,h(j) cannot be a multiple pole, we have
necessarily that ζ′(vk,h(j)) = 0. All the zeros of ζ′ we could visit were simple zeros. However,
up to now, nothing allows us to say that this should always be the case. If more than two
curves ηk,j touch at the same point vk,h(j) for a ρ = ρ0, then that point must be a multiple
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zero of ζ′. Let us see what global mapping properties of ζ can be described in such a case.
At a multiple zero vk,h(j) of order m of ζ′ the preimage of the segment of line γ from 1 to
ζ(vk,h(j)) produces a star configuration withm+1 arcs converging to vk,h(j). The simultaneous
continuation of those arcs over γ must end up in points uk,j with ζ(uk,j) = 1, or at ∞, as
limσ−>+∞ ζ(σ + it) = 1. The theorem of domain preservation (which says that an analytic
function in an open and connected set maps that set onto another one of the same type)
assures that the respective uk,j are different. Thus, if m > 1, at least two of these arcs must
turn to different points uk,j with ζ(uk,j) = 1. It is obvious that those uk,j are consecutive on the
preimage of the unit circle. Then the domains bounded by those arcs and the preimage of the
unit circle is mapped conformally by ζ onto the unit disc with a slit alongside γ . Consequently,
the domains bounded by the preimage of the interval [1,+∞) and those arcs are mapped
conformally by ζ onto the complex plane with a slit alongside this interval followed by a slit
alongside γ .

When ρ increases past ρ0 the respective ηk,j fuse into a unique closed curve. This last
curve can meet for a ρ > ρ0 another ηk,j or another curve obtained by fusion and so on until
we obtain a curve turning around all the zeros of ζ contained in the respective unbounded
component of the preimage of the unit disc. The fact that these curves must fuse and not
simply intersect each other is obvious. Indeed, due to the continuity of ζ if ηk,j crossed each
other, this would have happen at points as close as we wanted of vk,h(j), which is impossible,
since the zeros of ζ′ are isolated points. Finally, since for a v in the preimage of the unit disc
with ζ′(v) = 0, the preimage of γρ passing through v must contain at least two different
components ηk,j , we conclude that the points vk,h(j) are the only zeros of ζ′ having images by
ζ situated in the unit disc.
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The preimage of any circle γρ with ρ > 1 contains a unique unbounded component
obtained by the fusion of all unbounded components when increasing ρ past 1. This
component intersects every Γ′

k
since γρ intersects the interval (1,+∞). As ρ increases, the

respective component moves to the left covering unbounded domains in every Sk which are
mapped by ζ onto a small quadrilateral situated in the neighborhood of the point z = 1 and
exterior to the unit circle. The real axis divides this quadrilateral into two quadrilaterals,
the preimages of which have unbounded components. The respective components are
curvilinear 4n-gones with two unbounded sides, one corresponding to a segment of the real
axis and the other one to an arc of the unit circle having both one end in z = 1. For bigger
values of ρ (ρ = 2.5 is big enough!) these domains are the quadrilaterals which can be seen in
Figures 6 and 7 on the left of the critical strip. The unbounded component of the preimage of
γρ touches bounded components of the preimage of γρ for some values of ρ in zeros of ζ′ which
project by ζ outside the unit disc. Figures 6 and 7 do not give us an accurate description of the
intermediate positions of this component at the right of critical strip, since the increment of ρ
is too rough and the range of t is too small. Such a position can be seen in the supplementary
pictures of [8] for t = 1, 000, 025. There the preimage of γρ has a bounded component for
ρ ≈ 3.5 and the unbounded component of γ2.5 is on its right side.

A zero of ζ′ in some strip Sk with image by ζ outside the unit disc cannot belong to
components of preimages of γρ with different values of ρ, due to the fact that ζ is a single
valued function. The only way for a branch point of ζ to have the image on a γρ0 with ρ0 > 1
is for it to be the touching point of two bounded components of the preimage of γρ0 or of a
bounded and unbounded component of the preimage of γρo . When increasing ρ past ρ0 the
two components fuse into a unique one, which is unbounded if the two components were
not both bounded. To facilitate the counting of the zeros of ζ′ in Sk, we form a full binary tree
in which the leafs are the zeros of ζ and the internal vertices are the zeros of ζ′,corresponding
to the points where the curves ηk,j come into contact. If a zero of ζ′ is multiple of orderm, we
can build the tree such that it generatesm internal vertices. It follows easily by recursion that
if the number of leafs is jk, then the number of internal vertices is jk − 1 and the conclusion of
the theorem is obvious.

Figure 8 illustrates the situation where a component of the preimage of γρ has a self-
intersection point. In the box [−4, 4] × [45, 55], Figure 8(a), two components of the preimage
of the circle γρ with ρ = 1 are visible: a bounded one on the upper part of the box, containing
a unique nontrivial zero of ζ and an unbounded one covering the right lower corner of the
box and containing two nontrivial zeros. As the radius ρ takes values greater than 1, the two
components expand, Figures 8(b), 8(c), touching each other for ρ = ρ0 ≈ 1.042 in Figure 8(b).
We can interpret the preimage of γρ0 as having a unique unbounded component with a self-
intersection point v5,2. It borders three domains, one bounded and two unbounded. As ρ
takes values greater than ρ0, the bounded component opens, Figure 8(c), and we get a unique
unbounded component separating the plane into two unbounded domains. It is obvious
that v5,2 is a branch point of ζ. Indeed, the arcs of the preimage of γρ0 situated in a small
neighborhood of v5,2 are mapped by ζ onto an arc of γρ0 containing ζ(v5,2). Thus ζ′(v5,2) = 0
and v5,2 is a simple zero of ζ′. Figure 8(e) is a superposition of Figures 5 and 8(a)–8(c) showing
the domains mapped by ζ outside the circles γρ and the sectors in Figure 5. It helps to locate
v5,2 on Figure 8(d).

It is obvious that the scenario described in Figure 8 repeats itself in every strip Sk

which contains bounded components of the preimage of γρ with ρ ≥ 1. Some of the vk,h(j)

can be obtained as the touching points of these components as ρ increases. In other words, to
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every uk,j , except for uk,0(= ∞), corresponds a branch point vk,h(j) of ζ situated in the strip Sk.
We notice that components of the preimage of γρ with different values of ρ cannot intersect,
since this would contradict the single value nature of ζ. Thus, ζ cannot have branch points
other than vk,h(j). The way vk,h(j) have been obtained suggests that they are all situated in the
right half plane. We have no knowledge of a proof of this affirmation, nor could we provide
a proof of it, hence we make the following.

Conjecture. All the nonreal zeros of ζ′ are situated in the right half plane.

In order to build fundamental domains for ζ it is enough to deal with an arbitrary strip
Sk. Since every simple nontrivial zero of ζ from Sk belongs to one and only one fundamental
domain, and every multiple zero of order m, if it exists, must be a common boundary point
of exactly m fundamental domains, it is important to know as much as possible about the
branch points of ζ and the existence of multiple zeros. In our knowledge, there are just
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statistical estimations of the proportion of such zeros [9], and this happens only if the
Riemann hypothesis were true. This topic transcends the scope of the present paper and a
separate study will be devoted to it.

Theorem 6.3. If Sk is a jk-strip, then Sk is the disjoint union of exactly jk substrips, whose interiors
are fundamental domains of ζ.

Proof. The only 1 strip in the upper half plane is S1 and it has no branch point of ζ. It is
by itself a fundamental domain of ζ and it is mapped conformally by ζ onto the complex
plane with a slit alongside [1,+∞). As we have seen in Theorem 5.2, a jk-strip Sk contains
exactly jk components Γk,j of ζ−1(R) and exactly jk points uk,j with ζ(uk,j) = 1, and one of
these points being considered (by abuse!) as ∞ (which is the only one for S1). For k ≥ 2,
there is a number hk,1 ≤ hk ≤ jk − 1 of branch points vk,h(j) of ζ in Sk. If we connect all the
points ζ(vk,h(j)) to the point z = 1 by a segment of line γk,h(j) (which is the interval [0, 1]when
sk,j is a multiple zero of ζ) and follow the protocol of Theorem 6.2, we obtain jk − 1 arcs or
unbounded curves Lk,j belonging to Sk which are projected by ζ onto different γk,h(j). The
arcs Lk,j connect consecutive points uk,j via a point vk,h(j), while the unbounded curves go
from uk,j to ∞ via a point vk,h(j). For every vk,h(j) at most one of the arcs Lk,j containing
vk,h(j) can be unbounded. There cannot be unbounded Lk,j containing a vk,h(j) when this
point is between two embraced curves Γk,j , as in the case where t ∈ (1, 000, 001; 1, 000, 002)
appearing in supplementary pictures of [8]. By the conformal correspondence theorem, the
sub-strips formed by consecutive arcs or unbounded curves Lk,j and consecutive components
of ζ−1{[1,+∞)} are mapped conformally by ζ onto the complex plane with a slit alongside
[1,+∞) followed by at most three slits alongside intervals starting at z = 1 and ending in
some ζ(vk,h(j)). Every such sub-strip contains a unique sk,j , if it is a simple zero of ζ, and if
sk,j is a multiple zero of order m then exactly m sub-strips meet at sk,j . Thus the number of
sub-strips of Sk is exactly jk. If the joint boundary of every couple of adjacent sub-strips is
counted just once, Sk is the disjoint union of these sub-strips, which proves completely the
theorem.

Figure 9 describes the conformal mapping by ζ in the strip S2. Figure 9(a) shows the
way in which v2,1 is obtained as the point where the components of the preimage of the circle
γρ meet each other for ρ = ρ0 ≈ 0.9296. In Figure 9(b) a curve L2,1 is shown such that C2,1

obtained by adding to L2,1 the part of Γ2,1 corresponding to [1,+∞) divides the strip S2 into
two fundamental domains. Details of the conformal mapping by ζ of these domains onto the
complex plane with a slit are visible when one compares Figures 9(b) and 9(c).

7. The Group of Cover Transformations of (C, ζ)

Theorem 7.1. The group G of cover transformations of (C, ζ) has two generators: an involution and
a transformation generating an infinite cyclic subgroup of G.

Proof. In order to find the group of cover transformations of (C, ζ) we need to rename the
fundamental domains. We proceed in a way similar to what we did in the case of the function
Gamma. Let us denote by σn the branch points of ζ situated on the negative real half axis
counted in an increasing order of their module. Let Ω0 be the domain bounded by the
branches of the components of the preimage of the positive real half axis crossing the real
axis at σ1 (see Figure 4). It is mapped conformally by ζ onto the complex plane with a slit
alongside the real axis from ζ(σ1) to 1. Let Ω−1 be the domain bounded by the component
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of the preimage of the negative real half axis crossing the real axis in the s-plane at σ2, by
the boundary of Ω0, by Γ′1 and its symmetric with respect to the real axis. We notice that
Ω−1 is mapped conformally by ζ onto the complex plane with a slit alongside the real axis
complementary to the interval (ζ(σ2), ζ(σ1)), The domains Ω−n, n ≥ 2 are those bounded by
the branches of the preimage of the real axis crossing the real axis at σn, respectively σn+1. They
aremapped conformally by ζ onto the complex planewith a slit alongside the complementary
with respect to the real axis of the interval between ζ(σn) and ζ(σn+1). Finally the domainsΩn,
n ∈ N are the former domains Ωk,j counted starting from the positive real half axis and going
up. In order to have consecutive subscripts for all adjacent domains, we take Ω−1 = Ω1. All
the domains Ωn, n ∈ Z are fundamental domains of ζ. So are the domains Ω̃n symmetric to
them with respect to the real axis. For n ≤ 1, we have Ω̃n = Ωn.

We define, as in the case of the function Gamma mappings Uk andH by the formulas
similar to (3.1) and (3.3), where Γ is replaced by ζ. As in that case we need to perform slits into
everyΩj such that for every j and k, ∂Ωj , and ∂Ωj+k are mapped by ζ onto the same slits into
the z-plane in order for these formulas to be applicable. We notice that the group generated
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byU1 andH is the group G of covering transformations of (C, ζ). The group generated byU1

is an infinite cyclic subgroup of G.
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