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Let M be a 2-torsion-free semiprime I'-ring satisfying the condition aabfc = apbac for all a,b,c €
M,a,peT,andlet D : M — M be an additive mapping such that D(xax) = D (x)ax + xad(x) for
all x € M, a € I and for some derivation d of M. We prove that D is a generalized derivation.

1. Introduction

Hvala [1] first introduced the generalized derivations in rings and obtained some remarkable
results in classical rings. Daif and Tammam El-Sayiad [2] studied the generalized derivations
in semiprime rings. The authors consider an additive mapping G : R — R of a ring R with
the property G(x?) = G(x)x+xD(x) for some derivation D of R. They prove that G is a Jordan
generalized derivation.

Aydin [3] studied generalized derivations of prime rings. The author proved that if I is
an ideal of a noncommutative prime ring R, a is a fixed element of R and F is an generalized
derivation on R associated with a derivation d then the condition F([x, a]) =0or [F(x),a] =0
for all x € I implies d(x) = A[x, a].

Ceven and Oztiirk [4] have dealt with Jordan generalized derivations in I'-rings and
they proved that every Jordan generalized derivation on some I'-rings is a generalized
derivation.

Generalized derivations of semiprime rings have been treated by Ali and Chaudhry
[5]. The authors proved that if F is a commuting generalized derivation of a semiprime ring
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R associated with a derivation d then d(x)[y, z] = 0 for all x,y,z € R and d is central. They
characterized a decomposition of R relative to the generalized derivations.

Atteya [6] proved that if U is nonzero ideal of a semiprime ring R and R admits a
generalized derivation D such that D(xy) — xy € Z(R) then R contains a nonzero central
ideal.

Rehman [7, 8] studied the commutativity of a ring R by means of generalized deriva-
tions acting as homomorphisms and antihomomorphisms.

In this paper, we prove the following results

Let M be a 2-torsion-free semiprime I'-ring satisfying the following assumption:

aabfc = apbac Va,b,ce M, a,p €T, (%)

and D : M — M be an additive mapping. If there exists a derivation d of M such that
D(xax) = D(x)ax + xad(x) for all x € M, a € T, then D is a Jordan generalized derivation.

2. Preliminaries

Let M and I be additive abelian groups. M is called a I'-ring if there exists a mapping M x
M x M — M such that forall a,b,c € M, a, p € I the following conditions are satisfied:

(i) apb e M,
(ii) (a+b)ac = aac+bac, a(a+p)b = aab+apb, an(b+c) = aab+aac, (aab)pc = aa(bfic).

Forany a,b € M and for a, € I the expressions aab—baa is denoted by [a, b], and aap—paa
are denoted by [a, ] ,. Then one has the following identities:

[aﬂb/ C]a = aﬂ[b, C]a + [a' C]uﬁb + a[ﬂ’ “]cb’

2.1
[a,bpc], =bpla,c], +[a,bl,pc+b[B a] c, @1)

forall a,b,c € M and for all a, § € I'. Using the assumption (*) the above identities reduce to

[apb,c], = aplb,c], + [a,c],pb,

(2.2)
[a,bpc], = bpla,c], + [a,b],pc,
foralla,b,ce Mand a, peT.
Further M stands for a prime I'-ring with center Z(M). The ring M is n-torsion-free
if nx = 0, x € M implies x = 0, where n is a positive integer, M is prime if al MI'b = 0
implies a = 0 or b = 0, and it is semiprime if al’ MI'a = 0 implies a = 0. An additive mapping
T : M — M is called a left (right) centralizer if T(xay) = T(x)ay(T (xay) = xaT(y)) for
x,y € M, a €T and it is called a Jordan left (right) centralizer if

T(xax) = T(x)ax(T (xax) = xaT(x)) Vxe M, aeT. (2.3)

A mapping 0 : M x M — M is called biadditive if it is additive in both arguments. An
additive mapping D : M — M is called a derivation if D(xay) = D(x)ay + xaD(y) for all
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x,y € M, a € I and it is called a Jordan derivation if D(xax) = D(x)ax + xaD(x) for all
x € M, a € T. A derivation D is inner if there exists a € M, such that D(x) = aax — xaa
holds for all x € M, a € I'. Every derivation is a Jordan derivation. The converse is in general
not true. An additive mapping D : M — M is said to be a generalized derivation if there
exists a derivation d : M — M such that D(xay) = D(x)ay + xad(y) for all x,y € M,
a € I'. The maps of the form x — aax + xab where a, b are fixed elements in M and for
all « € T called the generalized inner derivation. An additive mapping D : M — M is
said to be a Jordan generalized derivation if there exists a derivation d : M — M such
that D(xax) = D(x)ax + xad(x) for all x € M, a € I'. Hence the concept of a generalized
derivation covers both the concepts of a derivation and a left centralizers and the concept
of a Jordan generalized derivation covers both the concepts of a Jordan derivation and a
left Jordan centralizers. An example of a generalized derivation and a Jordan generalized
derivation is given in [4].

3. Main Results

We start from the following subsidiary results.

Lemma 3.1. Let M be a semiprime I'-ring. If a,b € M are such that aaxpb = 0 for all x € M,
a,p T, then aab = baa = 0.

Proof. Let x € M. Then

aabPxyaab = aa(bpxya)ab =0,

3.1)
baapxybaa = ba(apxyb)aa = 0.

By semiprimeness of M with respect to §, y €I, it follows that aab = baa = 0. O

Lemma 3.2. Let M be a semiprime I'-ring and 6, : M x M — M biadditive mappings. If
0(x, y)awpy(x,y) =0 forall x,y,w € M, then 0(x,y)awpep(u,v) =0 forall x,y,u,v,w € M,
a,pel.

Proof. First we replace x with x + u in the relation 8(x, y)awpe(x, y) = 0, and use the biaddi-
tivity of the 6 and ¢. Then we have

O(x+u,y)awpp(x+u,y) =0 = 0(x,y)awpyp(u,y) = -0(u, y)awpy(x,y). (3.2)
Then

(0(x, y)awpep(u,y))yz6(0(x, y)awpyp(u,y))

(3.3)
= ~(8(u, y)awpy(x,y))y=z0 (6 (u, y)awpy(u,y)) =0.
Hence 0(x, y)awpp(u,y) = 0 by semiprimeness of M with respecttoy, 6 €.

Now we replace y by y + v and obtain the assertion of the lemma with the similar
observation as above. O
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Lemma 3.3. Let M be a semiprime I-ring satisfying the assumption () and a be a fixed element of
M. Ifaf[x,y],=0forallx,y € M, a,p €T, then a € Z(M).

Proof. First we calculate the following expressions using the assumption (*),

[z, a],px06|z,al, = zaaPxb|z, a],, — aazpx6|z, al,
(3.4)
= zaap|z, xaa]s — zaaf[z, x]saa — aa[z, z6xaa],; + aa[z, z6x] gaa.

Since ap[x,y], = O for all x,y € M, a,p € I, we get [z, a],px6[z,a], = 0. By the
semiprimeness of M we get [z,a], = 0 for all « € I'. Hence a € Z(M). O

Lemma 3.4. Let M be a I'-ring satisfying the condition (x) and D : M — M be a Jordan generalized
derivation with the associated derivation d. Let x,y,z € M and a, p € . Then

(i) D(xay + yax) = D(x)ay + D(y)ax + xad(y) + yad(x).
In particular, if M is 2-torsion-free, then
(ii) D(xaypx) = D(x)aypfx + xpd(ypx),
(iii) D(xaypPz + zPyax) = D(x)ayPz + D(z)fyax + xad(ypz) + zpd(yax).

Proof. (i) We have D(xax) = D(x)ax+xad(x), for all x € M, a € I'. Then replacing x by x +y,
and following the series of implications below we get the result:

D((x +y)a(x+y))
=D(x+y)a(x+y) + (x+y)ad(x+y)
= D(xax + xay + yax + yay)
= D(x)ax + D(y)ax + D(x)ay + D(y)ax + xad(y) + xad(x) + yad(y) + yad(x)
= D(xax + yay) + D(xay + yax) (3.5)
= (D(x)ax + xad(x) + D(y)ay + yad(y)) + D(x)ay
+D(y)ax + xad(y) + yad(x)
= D(xay + yax)
=D(x)ay + D(y)ax + xad(y) + yad(x), Vx,yeM, aeT.

(ii) Replace y by xpy + ypx in the above relation (3.5), then we get,

D(xa(xpy +ypx) + (xPy + ypx)ax)
= Dx)a(xpy +ypx) + D(xpy + ypx)ax
+xad(xpy + ypx) + (xPy + ypx)ad(x), VYx,y,z€ M, a,pT.
= D(xaxpy + yPxax) + D(xaypx) + D(xpyax)
= D(x)axpy + D(x)aypx + D(x)pyax + D(y)pxax + xpd(y)ax + ypd(x)ax
+ xad(xPy + ypx) + (xPy + ypx)ad(x), VYx,y,ze M, a,peT.

(3.6)
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Using the assumption (*), we conclude that

D (xaxpy + yPpxax) + 2D (xaypx) = D(x)axPy + D(x)aypx + D(x)pyax + D(y) pxax

+xpd(y)ax + ypd(x)ax + xad(xpy + ypx)
+ (xpy + ypx)ad(x), VYx,y,z€M, a,peT.

(3.7)
Again, replacing x by xfx in (3.5)
D(xpxay + yaxpx) = D(xpx)ay + D(y)axpx + xpxad(y)
+yad(xpx), VYx,yeM, a,peT, (38)

= D(xpxay + yaxpx) = D(x)pxay + xpd(x)ay + D(y)axpx + xpxad(y)
+ yad(x)px + yaxpd(x), Vx,ye M, a,pel.

Adding both sides 2D (xayfx), we get,
= D(xpxay + yaxpx) + 2D (xaypx)
= D(x)pxay + xpd(x)ay + D (y)axpx + xpxad(y) (3.9)
+ yad(x)px + yaxpd(x) + 2D (xaypPx), Vx,y e M, a,peT.
Comparing (3.7) and (3.9) we obtain,
2D (xaypx) = 2{D(x)aypPx + xayPd(x) + xad(y)px}. (3.10)

Since M is 2-torsion-free, it gives

D (xaypx) = D(x)aypx + xad(ypx). (3.11)

(iii) Replace x for x + z in (3.12), we get,

D((x + 2)ayp(x + 2))
=D(x + z)ayp(x +z) + (x + z)ad (yp(x + z))
= D (xaypx + xayPz + zaypx + zaypz)
= D(x)aypx + D(z)aypx + D(x)aypz + D(z)aypz + xad (ypx)
+xad(ypz) + zad (ypPx + yPz)
= D(xaypx + zayPz) + D(xaypPz + zaypx)
= (D(x)aypx + D(z)ayPz + xad(ypx) + zad(ypz))
+ (D(z)aypx + D(x)aypz + xad(yPz) + zad(ypx))
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= D(xaypz + zaypx)
= D(x)aypz + D(z)aypPx + xad(ypz) + zad (ypx)
= D(xaypz + zfyax)
= D(x)aypz + D(z)aypx + xad(ypz) + zad(ypx), Vx,ye M, a,peT.
(3.12)
O
Definition 3.5. Let M be a I'-ring and D : M — M be a Jordan generalized derivation with

the associated derivation d. Define G,(x,vy) = D(xay) — D(x)ay — xad(y) forall x,y € M
and a €T.

Lemma 3.6. The function Gu(x,y) has the following properties:

(i) Ga(x,y) + Galy, %) = 0.
(ii) Ga(x, y + 2) = Ga(x,y) + Ga(x, 2).
(iii) Ga(x +y,2) = Ga(x, 2) + Ga(y, 2).
(iv) Gasp(x,y) = Ga(x, y) + Gp(x,y).
Proof. The results easily follow from Lemma 3.4(i). O

Remark 3.7. D is a generalized derivation if and only if G,(x,y) =0forallx,y € M, a €T

Theorem 3.8. Let M be a 2-torsion-free semiprime I'-ring satisfying the condition (x). Let x,y,z €
Mand ,6 €. Then

(i) Ga(x,y)pz6[x,y], = 0forall z € M,
(i) Ga(x, y)plx, y1, = 0.

Proof. (i) From Lemma 3.4(iii) we get
D (xaypz + zpyax) = D(x)ayPz + D(z)fyax + xad(ypz) + zpd(yax). (3.13)
We set
A = xayPfzdyax + yaxpfzdxay. (3.14)
Since

D(A) = D(xaypzbyax + yaxfzéxay)
= D(xa(ypzbyax) + ya(xpzéxay))

= D(x)aypzdyax + xad(ypzbyax) + D(y)axpzdxay + yad(xpzbxay)
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= D(x)ayPzbyax + xad(y)pz6yax + xaypd(z6yax) + D(y)axPzdxay
+ yad(x)pzbxay + yaxpd(zéxay), Vx,y,z€ M, a,4,6 €T.
(3.15)
Again
D(A) = D(xaypzbyax + yaxpzbxay)

= D((xay)pz6(yax) + (yax)pz6(xay))

3.16
= D (xay)pzbyax + D(yax)pzbxay + xaypfd(z6yax) (310

+ yaxpd(zbxay), VYx,y,z€M, a,p,6 €.
From (3.15) and (3.16) we find,

(D(xay) - D(x)ay — xad(y))pzéyax + (D(yax) — D(y)ax — yad(x))pzbxay = 0.
= Ga(x,y)pzbyax + Gu(y, x) pzbéxay =0,
= Gq(x,y)pz6yax — Ga(x,y)pzbxay =0, (3.17)

= Ga(x,y)pz6[y,x], =0,
= Gu(x,y)pz6[x,y], =0, forx,yeM, a,f,6 €.

(ii) According to Lemma 3.4(ii) we have,
D(xaypz) = D(x)aypz + xad(ypz). (3.18)
Replace z by xay in (3.18) we find

D (xaypxay) = D(x)aypxay + xad(ypxay)
= D((xay)p(xay)) = D(x)aypxay + xad(ypxay)
= D(xay)pxay + xaypd(xay) — D(x)aypxay — xad(yPxay) =0 (3.19)
= (D(xay) - D(x)ay — xad(y))pxay) + xaypd(xay) — xaypd(xay) =0
= Gu(x,y)pxay = 0.

Similarly G (x, y)pyax = 0. Therefore,

Ga(x,y)pxay - Gu(x,y) pyax = Go(x,y)B[x, y],, = 0. (3'20[)]

Lemma 3.9. G,(x,y) € Z(M), forall x,y € M, a € T..

Proof. From Theorem 3.8(ii), we have G,(x,y)f[x,y], = 0. Therefore due to Lemma 3.4(ii)
Ga(X, ) € Z(M). O
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Theorem 3.10. Let M be a 2-torsion-free semiprime I-ring satisfying the assumption (x) and
D : M — M be a Jordan generalized derivation with associated derivation d on M. Then D is a
generalized derivation.

Proof. In particular, ryGe(x,y), Ga(x, y)yr € Z(M) for allr € M, a,y € I'. This gives

xaGa (x,y)6Ga(x,y)py = Ga(x,y)6Ga(x, y) fyax
= YPGa(x,v)6Ga(x,y)ax (3.21)
= yaGy(x,y)6Ga(x, y) px.

Then 4D (xaG,(x, y)6G4(x, y)By) = 4D(yPGa(x, y)6G4(x, y)ax). Now we will compute each
side of this equality by using (3.15) and the above relation,

4D (xaGa(x,y)6Ga (%, y)Py)

= 2D (xaGa(x,¥)6Ga (%, y) Py + Ga(x,y)6Ga(x, y) Pyax)

=2D(x)aG,(x,1)6Ga(x,y) By + 2xad (Ga(x, ) 6Ga (x, y) By)
+2D (G (x,y)6Ga(x,y) fy) ax + 2Gu(x, y)6Ga (x, v) fyad(x)

= 2D (x)aGa (%, y)6Ga(x,y) Py + D(Ga(x,y)6Ga(x, y) Py + yPGa(x,y)6Ga(x, y) )ax
+ 2xad (Ga(x, ) 6Ga(x, v)By) + 2G4 (x,y)6Gy (x, y) fyad(x)

=2D(x)aG(x,y)6Ga(x,y) By + D(Ga(x,y))6Ga(x, ) fyax
+ Ga(x,y)6d(Ga(x, y)) Pyax + D(y) pGa(x, y)6Ga (x, y ) ax
+Ga(x,y)6Ga (x, y) pd(y) ax + ypd(Ga(x, y)6Ga(x, y) ) ax

+ 2xad(Gu(x, ) 6Ga (x, v) By) +2Ga(x,v)6Ga(x, y) fyad(x).
(3.22)

So we get
4D (xpGa(x,y)6Ga(x, y)ay)
=2D(x)pGu(x, y)6Ga(x, y)ay + D(Ga(x,y))6Ga(x, y) fyax
+ Ga(x, 1)6d(Ga(x, y)) pyx + D(y) PGa(x, y) 6Ga (x, y) ax
+ G (%, ¥)6Ga(x,y) pd (y) ax + ypd(Ga(x, y)6Ga(x, y) ) ax

+ 2xad(Gu(x, ) 6Ga (x, v) By) +2Ga(x,y)6Ga(x, y) pyad(x), x,yeM, a,p,6€T.
(3.23)

Moreover,
4D (ypGa(x,y)6Ga(x, y)ax)
= 2D (ypGa(x,y)6Ga(x,y)ax + Ga(x,y)6Ga(x, y) pxay)
=2D(y)pGa(x,y)6Ga(x, y)ax + 2ypd(Ga(x,y)6Ga(x, y)ax)
+2D(Ga (%, ¥)5Ga(x, y) px)ay + 2Ga(x, 1) 6Gy (x, ) frxad ()
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=2D(y)pGa(x, y)6Ga(x, y)ax + D(Gu(x, y)6Ga(x, y) px + xpGa(x,y)6Ga(x, y) )y
+2ypd(Ga(x,y)8Ga(x, y)ax) + 2G4 (x,y)6Ga(x, y) pxad(y)
=2D(y)fGa(x,y)6Ga(x,y)ax + D(Gu(x,y))6Ga(x, y) pxay
+Ga(x,y)6d(Ga(x, y)) pray + D(x)BGa(x,y)6Ga(x, y) ay
+Ga(x,1)6Ga(x, y)ad(x)py + xad(Ga(x,y)6Gu(x, ¥)) fy
+2yPd(Ga(x,v)6Ga(x, y)ax) +2G,(x,y)6Ga (x, y) axpd (y).
(3.24)

So we get

4D (yPGa(x,y)6Ga(x, y)ax)
=2D(¥)PGa(x,y)6Ga(x, y)ax + D(Ga(x,y))6Ga(x, y ) axPy
+ Ga (2, 1)6d(Ga(x,v))axpy + D(x)Ga(x, ) 6Ga(x, y)ay
+ Ga (2, y)6Ga(x, y)ad(x) By + xad(Gx(x,y)6G (x,y)) By
+2yPd(Ga(x,y)6Ga(x, y)ax) +2Gu(x,v)6G. (x, y)axpd(y),
x,yeM, a,p,6 €.

(3.25)

Comparing the results of (3.22) and (3.24) and using the above relations

Gu(x, y)Byax = Ga(x,y) pyax

= xaGu(x, y) Py

= xaGq(x,y)Py

= Ga(x,y) pray,
Ga(x,)6d(Ga(x,y))pyax = d(Ga(x,y))6Ga(x, y) fyax
=d(Ga(x,y))6Ga(x, y)axpy
= Ga(x,y)6d(Gu(x,y))axPy,
xPGa(x,y)6d(Ga(x,y))ay = d(Ga(x, y))ax6Ga(x,y) Py
=d(Ga(x,y))6Ga(x, y)pxay
= d(Gu(x,y))6Ga(x, y)aypx
= Ga(x,y) py6d(Gu(x,y))ax
= YPGa(x,y)6d(Ga(x,y))ax,

(3.26)

we obtain

D(x)aGa(x, y)6Ga(x,y) By + xaGa(x,y)6Gau(x, y) fd(v)

3.27
 D(y)aGa(x,y)6Ga(x, y)fx + yaGa(x,1)6Ga (x, )pAC),
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which gives
Pa (X, ¥)BGa(X, ¥)6Ga (X, y) = @u(y, x)aGa(x, y)6Ga(x, ), (3.28)

where @, (x, y) stands for D(x)ay + xad(y).
On the other hand, we have

4D (xayPGu(x,v)6Ga(x, 1)) = 4D (xaG,(x,y)6ypGa(x,y)). (3.29)
Now we use (3.15) and the properties of G,(x, v), to derive

4D (xaypGa(x,y)6Ga(x, y))
= 2D (xaypGa(x,y)6Ga(x,y) + Ga(x,y)6Ga(x, y) axpy)
= 2D (xay) pGu(x,y)6Ga(x, y) + 2xaypd(Ga(x,y)6Ga(x, y))
+2D(Ga(x,y)6Ga(x,y))axPy +2Ga(x,y)6Ga(x, y) fd (xay),

(3.30)

which gives

4D (xaypGa(x,y)6Ga(x,y)) = 2D (xay)pGu(x,y)6Ga(x, y) + 2xaypd(Ga(x, y)6Ga(x, y))
+2D(Gq(x,1)6Gq(x,y))axpy

+ 2G4 (x,y)6Gq(x,y)pd(xay), x,yeM, a,,6€T.
(331)

Moreover,

4D (xaGa(x,y)6YPGCa(x, y))

= 2D (xaGa(x,y)6yPGu(x, y) + ypGu(x, y) 6xaGa(x,y))

= 2D(Ga(x,y)ax)6Ga (%, y) Py +2Ga(x, y) ax6d(Ga(x, y) fy)
+2D(Ga(x,y)By)6Ga(x, y) ax + 2Ga(x, y) pydd(Ga(x, y) ax)

= D(xaGu(x,y) + Ga(x,y)ax)6Ga (x,y) By + 2Ga (x, y) ax6d (Ga(x, y) By)
+ D(yBGa(x,y) + Ga(x,y) By)6Ga (x, y)ax + 2G,(x,y) py6d (Gu(x, y)ax)  (3.32)

= D(x)aG,(x,y)6Ga(x, y) By + D(Ga(x, ¥))6Ga(x, y) axPy
+xad(Ga(x,1))6Ga(x, y) By + Ga(x,y)ad(x)6Ga(x,y) fy
+2Ga(x, y)ax6d(Ga(x, y)Py) + D(y)PGa(x,y)6Ga (x, y)ax
+D(Ga(x,y))0Ga(x, y) Byax + ypd(Gu(x,y) ) 6Ga(x, y ) ax
+ Ga(x,y)pd(v)6Ga(x, y)ax + 2G,(x,y) fy6d(Ga (x, y) ax).
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So we obtain
4D (xaGa(x,y)6ypGa(x, )
= D(x)aGu(x,y)0Ga(x,y)py + D(Ga(x,y))6Gu(x, y) pxay
+xad(Ga(x,1))6Ga(x, v) By + Ga(x, y)ad (x)6Ga(x, y) By
+2Gq (%, y)ax6d(Gu(x, v)By) + D(y) BGa(x, y)6Ga(x, y)ax (3.33)
+ D(Ga(x,¥))6Ga(x, y) fyax + ypd(Ga(x,y))6Ga(x, y)ax

+Ga(x,y)pd(y)6Ga(x, y) ax +2Ga (x, y) fy6d(Ga(x, y) ax),
x,yeM, a,p,6 €.

Comparing (3.31) and (3.33), we derive

2D (xay)pGa(x,y)6Ga(x, )

= 9u (%, ) BGa(x,¥)6Ga(x,y) + 9ua (v, X) BGu(x, y)6Gu(x,y), x,y €M, a,p,6 €T,
(3.34)

Finally using (3.31) we get D(xay)pGea(x,y)0Ga(x,y) = ¢a(x,y)pGa(x,y)6G4(x, y). But
Gu(x,y) = D(xay) — pa(x,y). By the semiprimeness of M, we have ¢, (x,y)BGq(x,y) = 0.
Again by the primeness of M, we get G,(x, y). The proof is complete. O

It is clear that if we let the derivation d to be the zero derivation in the above theorem,
we get the following result.

Theorem 3.11. Let M be a 2-torsion-free semiprime I'-ring and D : M — M be an additive
mapping which satisfies D(xax) = D(x)ax forall x € M, a € T. Then D is a left centralizer

Proof. We have
D(xax) = D(x)ax. (3.35)
If we replace x by x + y, we get
D(xay + yax) = D(x)ay + D(y)ax. (3.36)
By replacing y with xay + yax and using (3.5), we arrive at

D(xa(xay + yax) + (xay + yax)ax) = D(x)axay + D(x)ayax + D(x)ayax + D(y)axax.
(3.37)

But on the other hand,

D(xaxay + yaxax) + 2D (xayax) = D(x)axay + D(y)axax + 2D (xayax). (3.38)
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Comparing (3.37) and (3.38) we obtain
D(xayax) = D(x)ayax. (3.39)
If we linearize (3.39) in x, we get
D(xayaz + zayax) = D(x)ayaz + D(z)ayax. (3.40)

Now we shall compute D(xayazayax + yaxazaxay) in two different ways. If we use (3.39)
we have

D (xayazayax + yaxazaxay) = D(x)ayazayax + D(y)axazaxay. (3.41)

But if we use (3.40) we have

D(xayazayax + yaxazaxay) = D(xay)azayax + D(yax)azaxay. (3.42)

Comparing (3.41) and (3.42) and introducing a bi-additive mapping G,(x,y) = D(xay) —
D(x)ay we arrive at

Ga(x,y)azayax + Go(y, x)azaxay = 0. (3.43)

Equality (3.36) can be rewritten in this notation as G, (x,y) = —G4(y, x). Using this fact and
(3.43) we obtain

Ga(x,y)azalx,y], = 0. (3.44)
Using first Lemma 3.2 and then Lemma 3.1 we have

Gu(x,y)azalu,v], =0. (3.45)

Now fix some x, y € M and using Lemma 3.3 we get G,(x,y) € Z.
In particular, 7fGa(x,y), Gu(x, y)pr € Z for all r € M. This gives

xPGa(x,y)6Ga(x,y) By = Ga(x, y)I Ga(x, y)TyIx
= yYI'Ga(x, y)IGa(x, y)Tx (3.46)
= yI'Ga(x, y)IGa(x, y)T'x.
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Therefore 4D(xI'Gu(x, y)I'Ga(x, y)[y) = 4D(yI'Ga(x,y)I'Ga(x, y)I'x). Both sides of this
equality will be computed in few steps using (3.36),

2D (xTGa(x, y)TGa (x, y)Ty + Ga(x, y)[Ga (x, y)TyL'x)
=2D(yI'Gu(x, ¥)TGa(x, y)Tx + Ga(x, y)TGa (x, y)TxTy),
2D(x)IGa(x, y)IGa(x, )Ty + 2D (Ga(x, y) [ Ga(x, y)[y)I'x
=2D(y)TGa(x, y)TGa(x,y)Tx + 2D (Ga(x, )T Ga(x, y)Tx)Ty,
2D(x)TGy(x, y)TGa(x, y)Ty + D(Ga(x, y)TGa(x, ¥)Ty + yT'Ga(x, y)[Ga(x, y) )[x
=2D(y)I[Ga(x, y)ITGa(x,y)Tx + D(Ga(x, 1)) TG (x, y)Tx + xT Gy (x, )T Ga (x, y)Ty,
2D(x)TGu(x, ¥)TGa (%, y)Ty + D(Ga(x,y) ) TGa(x, y)TyI'x + D(y)TGa(x, y)TGa(x, y)I'x
=2D(y)TGa(x, y)ITGa(x,y)Tx + D(Ga(x,y))TGa(x, y)IxT'y
+ D(xX)I[Ga(x,y) TGy (x, y)Ty,
D(x)I'Ga(x, y)TGa(x, y)Ty + D(Ga(x,y))TGa(x, y)TyI'x

=D (y)TGa(x,y)TGa(x,y)[x + D(Ga(x,y))[Ga(x, y)IxTy.
(3.47)

Since Gu(x, Y)[yI'x = Gu(x, y)TyI'x = xIT'Gu(x, y)[y = xTGa(x, y)Ty = Ga(x, y)[xT'y, we
obtain

D(x)I'Ga(x,y)Ty = D(y)I'Ga(x, y)TGa(x, y)Tx. (3.48)

On the other hand, we also have

4D (xTyI'Gu(x, y)TGa(x,y)) = 4D (xTGa(x, y)TyT'Ga(x,y)),
2D (xTyT'Gu(x, y)TGa(x,y) + Ga(x, y)TGa(x, y)IxT'y)
=2D(xI'G,(x, y)TyI'Gu(x,v) + yI'Ga(x, y)TxIGu(x, 1)),
2D (xTy)TGu(x, y)TGa(x,y) + 2D (Ga(x,y) ) TGa(x, y)[xTy
=2D(Ga(x, y)ITx)TGa(x,y)Ty + 2D(Ga(x, y)Ty)IGa (x, y)Tx,
2D (xTy)TGa(x, ¥)TGa(x,y) + 2D (Ga(x,y) ) TGa(x, y)[xTy
=D(xI'Gu(x,y) + Ga(x, y)IX)[Go(x,y)Ty + D(yI'Ga(x,y) + Ga(x, y)Ty)IGa(x, y)I'x,
2D (xTy)TGu(x, y)TGa(x,y) + 2D (Ga(x,y) ) TGa(x, y)[xTy
= D(xX)I[Ga(x,y)TGa(x,y)Ty + D(Ga(x,y))TGa(x, y)TxT'y
+D(y)TGa(x, y)TGa(x,y)Tx + D(Ga(x,y) ) TG (x, y)IxTy,
2D (xTy)TGa(x, )T Ga(x,y)

= D(x)TyTGy(x, y)ITGa(x,y) + D(y)TxTGa(x, y)TGa(x,y).
(3.49)
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Finally using (3.48) we arrive at D(xI'y)I'Gn (x, y)I'Ga(x, y) = D(x)TyI'Gy(x, y)T G (x, y), but
this means that G, (x, y)I'Ga (x, y)I'Gx(x,y) = 0. Hence,

Ga (%, Y)TGa(x, y)TMIGa(x, y)TGa(x, ) = Ga(x, ¥)TGa (x, y)TGa (x, y)TGa(x, y)TM =0,

Ga(x, ) TMIG,(x,y) = Ga(x,y)TGa(x,y)TM =0,
(3.50)

which implies G4 (x, y) = 0. The proof is complete. O
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