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This paper deals with anisotropic obstacle problem for the A-harmonic equation∑n
i=1Di(ai(x,Du(x))) = 0. An integrability result is given under suitable assumptions, which

show higher integrability of the boundary datum, and the obstacle force solutions u have higher
integrability as well.

1. Introduction and Statement of Result

Let Ω be a bounded open subset of Rn. For pi > 1, i = 1, 2, . . . , n, we denote pm = maxi=1,2,...,npi
and p is the harmonic mean of pi, that is,

1
p
=

1
n

n∑

i=1

1
pi
. (1.1)

The anisotropic Sobolev spaceW1,(pi)(Ω) is defined by

W1,(pi)(Ω) =
{
v ∈W1,1(Ω) : Div ∈ Lpi(Ω) for every i = 1, 2, . . . , n

}
. (1.2)

Let us consider solutions u ∈W1,(pi)(Ω) of the following A-harmonic equation:

n∑

i=1

Di(ai(x,Du(x))) = 0, (1.3)
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whereD = (D1, D2, . . . , Dn) is the gradient operator, and the Carathéodory functions ai(x, ξ) :
Ω × Rn → R, i = 1, 2, . . . , n, satisfy

|ai(x, z)| ≤ c2(h(x) + |zi|)pi−1, (1.4)

for almost every x ∈ Ω, for every z ∈ Rn, and for any i = 1, 2, . . . , n, and there exists ν̃ ∈ (0,+∞)
such that

ν̃
n∑

i=1

|zi − z̃i|pi ≤
n∑

i=1

(ai(x, z) − ai(x, z̃))(zi − z̃i), (1.5)

for almost every x ∈ Ω, for any z, z̃ ∈ Rn. The integrability condition for h(x) ≥ 0 in (1.4)will
be given later.

Let ψ be any function in Ω with values in R ∪ {±∞} and θ ∈ W1,(pi)(Ω), and we
introduce

K(pi)
ψ,θ (Ω) =

{
v ∈W1,(pi)(Ω) : v ≥ ψ, a.e. and v − θ ∈W1,(pi)

0 (Ω)
}
. (1.6)

Note that

W
1,(pi)
0 (Ω) =

{
v ∈W1,1

0 (Ω) : Div ∈ Lpi(Ω) for every i = 1, 2, . . . , n
}
. (1.7)

The function ψ is an obstacle and θ determines the boundary values.

Definition 1.1. A solution to the K(pi)
ψ,θ

-obstacle problem is a function u ∈ K(pi)
ψ,θ

(Ω) such that

∫

Ω

n∑

i=1

ai(x,Du(x))(Div(x) −Diu(x))dx ≥ 0, (1.8)

whenever v ∈ K(pi)
ψ,θ

(Ω).

Higher integrability property is important among the regularity theories of nonlinear
elliptic PDEs and systems, see the monograph [1] by Bensoussan and Frehse. Meyers and
Elcrat [2] first considered the higher integrability for weak solutions of (1.3) in 1975. Iwaniec
and Sbordone [3] obtained a regularity result for very weak solutions of the A-harmonic
equation (1.3) by using the celebrated Gehring’s Lemma. Global integrability for anisotropic
equation is contained in [4]. As far as higher integrability of ∇u is concerned, in problems
with nonstandard growth a delicate interplay between the regularity with respect to x and
the growth with respect to ξ appears: see [5]. For a global boundedness result of anisotropic
variational problems, see [6]. For other related works, see [7]. We refer the readers to the
classical books by Ladyženskaya and Ural’ceva [8], Morrey [9], Gilbarg and Trudinger [10]
and Giaquinta [11] for some details of isotropic cases.

In the present paper, we consider integrability for solutions of anisotropic obstacle
problems of theA-harmonic equation (1.3), which show higher integrability of the boundary
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datum, and the obstacle force solutions u, have higher integrability as well. The idea of this
paper comes from [4], and the result can be considered as a generalization of [4, Theorem2.1].

Theorem 1.2. Let u ∈ K(pi)
ψ,θ

(Ω) be a solution to the K(pi)
ψ,θ

obstacle problem and θ ∈ W1,(qi)(Ω),
qi ∈ (pi,+∞), i = 1, 2, . . . , n, 0 ≤ h ∈ Lqm(Ω) with qm = maxi=1,...,nqi, ψ ∈ [−∞,+∞] is such that
θ∗ = max{ψ, θ} ∈ θ +W1,(qi)

0 (Ω). Moreover, p < n. Then

u ∈ θ∗ + Ltweak(Ω), (1.9)

where

t =
p∗

1 − (bp∗/p)(pm/pm − 1
) > p∗, (1.10)

and b is any number verifying

0 < b ≤ min
j=1,...,n

(

1 − pj

qj

)(

1 − 1
pj

)

,

b <
pm − 1
pm

p

p∗
.

(1.11)

Remark 1.3. Take the obstacle function ψ to be minus infinity in Theorem 1.2, and the
condition (1.4) replaced by

|ai(x, z)| ≤ c2(1 + |zi|)pi−1 (1.2)′

for almost every x ∈ Ω, for every z ∈ Rn, and for any i = 1, 2, . . . , n, then we arrive at
Theorem2.1 in [4].

2. Proof of the Main Theorem

Proof of Theorem 1.2. Let u ∈ K(pi)
ψ,θ

(Ω) be a solution to the K(pi)
ψ,θ

-obstacle problem. Take θ∗ =

max{ψ, θ} ∈ θ +W1,(qi)
0 (Ω). Let us consider L ∈ (0,+∞) and

v =

⎧
⎪⎪⎨

⎪⎪⎩

θ∗ − L, for u − θ∗ < −L,
u, for − L ≤ u − θ∗ ≤ L,
θ∗ + L, for u − θ∗ > L.

(2.1)

Then v ∈ K(pi)
ψ,θ (Ω). Indeed, for the second and the third cases of the above definition for v,

we obviously have v ≥ ψ, and for the first case, u − θ∗ < −L, we have θ∗ > u + L ≥ ψ + L; this
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implies v = θ∗ −L ≥ ψ. Since u = θ∗ = θ on ∂Ω, then v = u on ∂Ω, this implies v = θ on ∂Ω. By
Definition 1.1, one has

0 ≤
∫

{|u−θ∗|>L}

n∑

i=1

ai(x,Du(x))(Div(x) −Diu(x))dx

=
∫

{|u−θ∗|>L}

n∑

i=1

ai(x,Du(x))(Diθ∗(x) −Diu(x))dx.

(2.2)

Monotonicity (1.5) allows us to write

ν̃
n∑

i=1

∫

{|u−θ∗|>L}
|Diu(x) −Diθ∗(x)|pidx

≤
∫

{|u−θ∗|>L}

n∑

i=1

(ai(x,Du(x)) − ai(x,Dθ∗(x)))(Diu(x) −Diθ∗(x))dx,

(2.3)

which together with (2.2) implies

ν̃
n∑

i=1

∫

{|u−θ∗|>L}
|Diu(x) −Diθ∗(x)|pidx

≤ −
∫

{|u−θ∗|>L}

n∑

i=1

ai(x,Dθ∗)(Diu(x) −Diθ∗(x))dx.

(2.4)

We now use anisotropic growth (1.4) and the Hölder inequality in (2.4), obtaining that

ν̃
n∑

i=1

∫

{|u−θ∗|>L}
|Diu −Diθ∗|pidx

≤ −
n∑

i=1

∫

{|u−θ∗|>L}
ai(x,Dθ∗)(Diu −Diθ∗)dx

≤ c2
n∑

i=1

∫

{|u−θ∗|>L}
(h + |Diθ∗|)pi−1|Diu −Diθ∗|dx

≤ c2
n∑

i=1

(∫

{|u−θ∗|>L}
(h + |Diθ∗|)pidx

)(pi−1)/pi(∫

{|u−θ∗|>L}
|Diu −Diθ∗|pidx

)1/pi

.

(2.5)

Let ti be such that

pi < ti ≤ qi, (2.6)
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for every i = 1, . . . , n; ti will be chosen later. We use the Hölder inequality as follows:

(∫

{|u−θ∗|>L}
(h + |Diθ∗|)pidx

)(pi−1)/pi

≤
(∫

{|u−θ∗|>L}
(h + |Diθ∗|)tidx

)(pi−1)/ti
(|{|u − θ∗| > L}|)(ti−pi)(pi−1)/tipi .

(2.7)

The following proof is similar to that of [4, Theorem2.1]; we only list the necessary changes:
instead of [4, (3.14)] by

(∫

{|u−θ∗|>L}
(h + |Diθ∗|)pidx

)(pi−1)/pi

≤
(∫

{|u−θ∗|>L}
(h + |Diθ∗|)tidx

)(pi−1)/ti
|{|u − θ∗| > L}|b

≤M|{|u − θ∗| > L}|b,

(2.8)

where

M = max
j=1,...,n

(∫

Ω

(
h + |Djθ∗|

)tj dx

)(pj−1)/tj
<∞, (2.9)

and instead of [4, (3.19)] we use anisotropic Sobolev Embedding Theorem for v − u,

(∫

Ω
|v − u|p∗dx

)1/p∗

≤ c∗
[

n∏

i=1

(∫

Ω
|Di(v − u)|pidx

)1/pi
]1/n

≤ c∗
⎡

⎣
n∏

i=1

(∫

{|u−θ∗|>L}
|Diu −Diθ∗|pidx

)1/pi
⎤

⎦

1/n

.

(2.10)

By |v − u| = (|u − θ∗| − L)1{|u−θ∗|>L}, we obtain

(∫

{|u−θ∗|>L}
(|u − θ∗| − L)p

∗
dx

)1/p∗

=
(∫

Ω
|v − u|p∗dx

)1/p∗

. (2.11)

Following the idea of the proof of Theorem2.1 in [4], we complete the proof of Theorem 1.2.
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