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We study a new continued fraction of Ramanujan. We prove its modular identities and give some
explicit evaluations.

1. Introduction

Throughout the paper, we assume |g| < 1. As usual, for positive integers n and any complex
number a, we write

-

@, = (@), =] [(1-ag),  @.:=(@q), =[]0 -ag). (1.1)
j n=0

-
Il
[}

Ramanujan’s general theta-function f(a,b) is defined by

f(a, b) = i ak(k+1)/2bk(k71)/2’ (12)

k=—00
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where |ab| < 1. After Ramanujan, we define

_ _ & e (09008
¢(q) = f(9.9) 1+2k§=;q G o). (1.3)

2.2
v(@)=f(a4) = 2t = —((Z;';;w, (14)

f(—q) o f(—q, _q2> _ ki(_l)kqu_l)/z +ki(_1)qu(3k+1)/z _ (‘7/"7)90/ (1.5)
=0 =1

[ee]

f(a) >
x(q) = f<—22> = (-a:d)_- (1.6)

Ramanujan recorded many g-continued fractions and some of their explicit values in his
second notebook [1] and in his lost notebook [2]. The following beautiful continued fraction
identity was recorded by Ramanujan in his second notebook and can be found in [3, p. 11,
Entry 11]:

() (b)oy = (@)s(-b)y, _a=b (a-bg)(ag=b) q(a—bq*)(aq’~b)

(-2) o (b) oo + (@) o (-b),,  1-9¢ 1- 1 e, (17)

where either g, a, and b are complex numbers with |g| < 1, or g, a, and b are complex numbers
with a = bg™ for some integer m. Several elegant g-continued fractions have representations
as g-products and some of them can be expressed in terms of Ramanujan’s theta-functions.
An account of this can be found in in Chapter 32 of Berndt’s book [4] (also see [5]). The most
famous one, of course, is the Rogers-Ramanujan continued fraction R(g) defined by

1/5 2 3
MRSLIE R X o0

1

The continued fraction R(g) has a very beautiful and extensive theory almost all of which
was developed by Ramanujan. In particular, his lost notebook [2] contains several results on
the Rogers-Ramanujan continued fraction. We refer to the paper by Berndt et al. [6], Kang
[7, 8] for proofs of many of these theorems.

In this paper, we examine another continued fraction T(q) of Ramanujan arising from
(1.7) and is defined by

| 4q q
T(q).—1_q2+1_q6+1_q10+.... (1.9)

Note that, replacing g by ¢* and then setting a = g and b = 0 in (1.7), we obtain (1.9).

In Section 2, we record some preliminary results. Section 3 is devoted to prove some
modular identities for the continued fraction T'(g). Finally, in Section 4, we give some explicit
evaluations of T(g).
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We complete this introduction by defining Ramanujan’s modular equation from
Berndt’s book [3]. The complete elliptic integral of the first kind K (k) is defined by

Ko r/z

m ( 2l k2> (1.10)

where 0 < k <1, ,F; denotes the ordinary or Gaussian hypergeometric function. The number
k is called the modulus of K, and k' := v/1 - k? is called the complementary modulus. Let
K,K',L, and L' denote the complete elliptic integrals of the first kind associated with the
moduli k, k', [, and I, respectively. Suppose that the equality

! !
n% _ % (1.11)

holds for some positive integer n. Then, a modular equation of degree 7 is a relation between
the moduli k and ! which is implied by (1.11). If we set

q= eXP(-ﬂ%) q= exp(—ar%) (1.12)

we see that (1.11) is equivalent to the relation g" = g'. Thus, a modular equation can be viewed
as an identity involving theta-functions at the arguments g and g". Ramanujan recorded his
modular equations in terms of & and f3, where a = k? and § = I?. We say that f§ has degree n
over a. The multiplier m connecting « and f is defined by

(1.13)
where z, = ¢*(q")

2. Preliminary Results
In this section, we record some results that will be used in the subsequent sections.

Lemma 2.1 (see [3, p. 124, Entry 12(i) and (ii)]). One has
£(q) = vz22 o a1l - a) )2V, f(=q) = vz - ) o (2)
Lemma 2.2 (see [3, p. 214, Entry 24(iii)]). If p has degree 2 over a, then

mva +\/E 1,
m*Va-1+p=1.

(2.2)
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Lemma 2.3 (see [3, p. 230, Entry 5(ii)]). If p has degree 3 over a, then
(ap) " +{a-m)(1- )} =1 (23)

Lemma 2.4 (see [3, p. 215, (24.22)]). If p has degree 4 over a, then
1-(1-a)\?
V= (—“)1/4 , (2.4)
1+(1-a)
Lemma 2.5 (see [3, p. 280-281, Entry 13(v) and (vi)]). If p has degree 5 over a, then

BE ((1 -p)°/- a())l/8
1 {a-ara-p)”

(2.5)
s 1-(a-w/a-p)"
moq {(1 —a)(1 —ﬁ)3}1/8 '
Lemma 2.6 (see [3, p. 314, Entry 19(i)]). If f has degree 7 over a, then
(@B) P+ {1 -a)(1-p)} " =1. (2.6)

3. Modular Identitites for T(g)

In this section, we use Ramanujan’s modular equations to prove certain modular identities
for T'(g).

Theorem 3.1. One has

_fla) - f(-9)

@ = @+ Cay

(3.1)

Proof. Replacing g by g* and the setting a = g and b = 0 in (1.7) and simplifying, we obtain

-49). - (@), 4 .4

= e 3.2
4Pt @), 1-F 1-g 1-q0" &2
Employing (1.6) and (1.9) in (3.2) and simplifying, we complete the proof. O
Corollary 3.2. One has
1+T
+T(q) _ f() (3.3)

1-T(q)  f(-q)
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Proof. Dividing numerator and denominator on right-hand side of the identity in Theorem
3.1by f(-q) and simplifying, we complete the proof. O

Theorem 3.3. One has
8
. 1-T(q) y 1-T(q")\"
=1-( ——<), =1-(——=), 3.4
(@) <1+T(q)> (0 F <1+T(q")) G4
where B has degree n over a.

Proof. We employ Lemma 2.1 in Corollary 3.2 to complete the proof. O

Theorem 3.4. Let u = T(q) and v = T(—q). Then,
u+v=0. (3.5)

Proof. Replacing q by —g in Corollary 3.2, we obtain

1+T(-q) f(-q)
T(q) F@) 30

Now, eliminating f(q)/ f (-q) between (3.6) and Corollary 3.2 and simplifying, we complete
the proof. O

Theorem 3.5. Let u = T(q) and v = T(g*). Then,
u? —v - 2u*v — utv + 6u*0? - v° - 2P — utvd + Pt = 0. (3.7)
Proof. Eliminating m in (2.2) and then simplifying, we deduce that

(1 +ﬁ+(p—1)m)2—4p=0. (3.8)

From Theorem 3.3(i), we have

1-T(q9)\'
Vi-a= (W) . (3.9)

Now, employing Theorem 3.3(ii) with n = 2 and (3.9) in (3.8) and factorizing using
Mathematica, we obtain

(-1+ v)8<u2 - v - 2u’v - utv + 6uPv? - v° - 2uP0° — ute® + uzv4>

X <1 + 212 + u* — 16020 + 607 + 120207 + 6u*0? — 16120° + v* + 2uP0* + u4v4> =0.
(3.10)
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It can be seen that the first and the last factors in (3.10) do not vanish for |g| — 0. So, by

identity theorem, we have

2

Theorem 3.6. Let u=T(q) and v = T(g°). Then,

3

1 — v = 310 + 3uv® + 3uv? - 3uPV® — utod 4= 0.

+Uuv” =
Proof. From Lemma 2.3, we obtain
4
ap-(1-1-w*(1-p)"*) =0,

From Theorem 3.3, we deduce that

where f has degree 3 over a.

Employing (3.14) in (3.13) and factorizing using Mathematica, we arrive at

<—u3 + 0 + 3u?v - 3uv® - 3uP0? + 3ut0® + uto® — uv4>

3

X <—u + 3120 + uto - Buv? - 3ulv? + 0P + 3uP —u v4> =0.

1?2 — v =210 — utv + 6uP0? — ©° - 21P0° — utod + Pt = 0.

(3.11)
O

(3.12)

(3.13)

(3.14)

(3.15)

It can be seen that the second factor of (3.15) does not vanish for |q| — 0, so by identity

theorem, we have

1 — v = 310 + 3uv® + 3u0? - 3u*0° — u*v® + uvt = 0.

Theorem 3.7. Let u = T(q) and v = T(g*). Then,

4

u* — v — 410 + 2utv — 4ubv — ubv + 28utv? — 7v° - 28uP0° + 14ut0® — 28ulo°

(3.16)
O

- 7u80% + 70utv* — 70° — 281%0° + 14u*0® — 28ulv° — 7ubv® + 28utv® — v — U0

+2utv” — 4ubv” — ubv” + utvd = 0.

(3.17)
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Proof. Squaring the modular equation in Lemma 2.4 and simplifying, we obtain

~ 1- (1_a)1/4>4 ~
p <1+(1—a)1/4 =0

From Theorem 3.3(i), we have

(1-a)/*= <%>2.

(3.18)

(3.19)

Now, employing Theorem 3.3(ii) with n = 4 and (3.19) in (3.18) and simplifying, we complete

the proof.

Theorem 3.8. Let u = T(q) and v = T(g°). Then,

O

1’ — v =510 + 106°0% + 5u°0% — 10u?0° — 10u*0® + 5uv* + 106°0* - 5utv® — 10 + uv® = 0.

Proof. From Theorem 3.3, we obtain

ci=(1-a)/8= <1_—”> d:=(1-p)"% = (1_—0)

1+u 1+v

where f has degree 5 over a.
Employing (3.21) in (2.5), we find that

o c+d
Cc(1+c3d)’

respectively.
Eliminating m between (3.22) and (3.23) and simplifying, we deduce that

sed(1+c%d)(1-cd®) - (c+d)(d-c) =0,

Substituting for ¢ and d from (3.21) in (3.24) and simplifying, we arrive at

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

u® — v - 510 + 10130% + 5u°0? — 101%0® — 10u*0® + 5uv* + 10u0* - 5u*0® — u®0® + uv® = 0.

(3.25)
O
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Theorem 3.9. Let u = T(q) and v = T(q’). Then,
8

u® — uv - 74l - Tudv + T v + 28ub0* — Tuv® — 49uP0® + 7uP0® — 7u7 0% + 70utvt

— 7ut® + 7ul0® — 49u°0° — U7 + 281200 + Tuv” - 7uPv” - TuPo” —uv’ + 08 = 0.

(3.26)
Proof. From Lemma 2.6, we obtain
8
ap-(1-1-w(1-p)"*) =0, (327)
Again, from Theorem 3.3, we deduce that
T-u\® 1-v\°
= _— = 1 -
. <1 + u> ’ P (1 + v> ’
(3.28)
1-u 1/8 1-o0
() o)
(1-a) 1+u (1-$) 1+v)’
where f has degree 7 over a.
Employing (3.28) in (3.27) and simplifying using Mathematica, we arrive at
u® —uv - 710 - 7u’v + Tu’v + 28u°0* - Tuv® - 49007 + 7u’Y? - 7u’v® + 70utv?
(3.29)
- Tuv’ + 7uP0° - 4900’ — 71’ v° + 28u*0° + Tuv’ - 7wy’ - 7w’ —u'v” + v = 0,
O

4. Explicit Evaluations of T(g)

In this section, we establish some general theorems for the explicit evaluations of the
continued fraction T(g) and give examples.
For g := e™”v", Ramanujan’s two class invariants G, and g, are defined by

Gu=2"1x(q),  gu =217 x(-0q). (4.1)
The class invariants G, and g, are connected by the relation [4, p. 187, Entry 2.1]:

an = 21/4gnGn- (42)

The singular modulus a, is defined by a, := a(e"™V"), where n is a positive integer
and unique positive number between 0 and 1 satisfying

2F1(1/2,1/2;,1;1 - ayy)
2F1(1/2,1/2;1; ay,)

V= (4.3)
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Class invariants and singular moduli are intimately related by the equalities [4, p. 185,
(1.6)]:

-1/24
Gn = (dapy(1-ay)) ™V, g, = <4an(1 - an)_2> . (4.4)

An account of Ramanujan’s class invariants and singular moduli can be found in Chapter 34
of Berndt’s book [4].
Theorem 4.1. One has

N e O e T

Proof. We set g := e™”V" in Theorem 3.3(i) and use the definition of singular moduli a, and
simplifying, we complete the proof. O

In the scattered places of his first notebook [1], Ramanujan calculated over 30 singular
moduli a,,. See Chapter 34 of Berndt’s book [4] for details. Thus, one can use Theorem 4.1 to
find the values of T(e~"V") if the corresponding values of a,, are known. For example, from
[4, p. 281, Theorem 9.2], we note that

2
X = <\f2 - 1) . (4.6)
Employing (4.6) in Theorem 4.1, we calculate

1- <—2 + 2\@)1/8

-2\ _
T<e ) = — (4.7)
1+ (-2+2v2)
Many other values of T(e™"V") can be computed by using the known values of a,.
Theorem 4.2. One has
L —2l/4g2
T(gﬂﬁ) _(8nmTc 8n ) (4.8)
8an — 21/43%

Proof. Dividing numerator and denominator of right-hand side of Theorem 3.1 and employ-
ing (1.6), we obtain

~x(@) - x(-9)
1) = x(@) +x(-9)° 42
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Setting g := e~™V", employing the definitions of G, and g, from (4.1) in (4.9) and simplifying,
we obtain

G, -

—rym) - On T &n

T<e ) oy (4.10)
Substituting for G, from (4.2) in (4.10) and simplifying, we complete the proof. O

Theorem 4.2 implies that if we know the values of g, and g4, for any positive number
n, then corresponding values of T (e™” V1) can easily be calculated. Saikia [9] evaluated several
values of g, and gu, for positive number n. For example, noting from [9, Theorem 3.5], we
have

1/8 1/8
g=2"(2+v3) ", gn=2"0(2+V3) " (4.11)
Employing (4.11) in Theorem 4.2, we obtain

2-2%4(2+ \/§)1/8

2 4 23/4 (2 + ﬁ)l/s‘

T<e‘”‘/§> - (4.12)

Many other values of T (e~7¥") can be determined by using the values of g, and g4, evaluated
in [9].
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