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An equation d/dt(Φ(t, x′)) + f(t, x) = 0 is considered together with the boundary conditions
Φ(a, x′(a)) = 0, x(b) = 0. This problem under appropriate conditions can be reduced to quasilinear
problem for two-dimensional differential system. The conditions for existence ofmultiple solutions
to the original problem are obtained by multiply applying the quasilinearization technique.

1. Introduction

Consider the Φ-Laplacian type equation

d

dt
Φ
(
t, x′) + f(t, x) = 0, t ∈ I := [a, b], (1.1)

where f ∈ C(I ×R,R) is Lipschitz function with respect to x, Φ ∈ C(I ×R,R) is Lipschitz and
monotone function with respect to x′, together with the boundary conditions

Φ
(
a, x′(a)

)
= 0, x(b) = 0. (1.2)

This equation (even in a greater generality) was intensively studied in the last time
([1–3] and references therein). If Φ(t, x′) = x′ then it reduces to

x′′ + f(t, x) = 0. (1.3)
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The equation (1.1) can also be interpreted as the Euler equation for the functional

J(x) =
∫1

0

(
Ψ
(
t, x′) − F(t, x)

)
dt, (1.4)

where Φ(t, x′) = (∂Ψ(t, x′)/∂x′) and f(t, x) = (∂F(t, x)/∂x).
Our aim is to obtain the multiplicity results. For this we denote y = Φ(t, x′) and rewrite

(1.1) as a two-dimensional differential system of the form

x′ = Φ−1(t, y
)
,

y′ = −f(t, x)
(1.5)

and apply the quasilinearization process described in [4–7]. Namely, we reduce the system
(1.5) to a quasilinear one of the form

x′ − ky = Fk

(
t, y
)
,

y′ + kx = Hk(t, x),
(1.6)

so that both systems (1.5) and (1.6) are equivalent in some domain Ωk = {(t, x, y) : a ≤
t ≤ b, |x| ≤ Nx, |y| ≤ Ny} and moreover the extracted linear part (LX)(t) :=

(
x′−ky
y′+kx

)
is

nonresonant with respect to the boundary conditions

y(a) = 0, x(b) = 0. (1.7)

If any solution of the quasilinear problem (1.6), (1.7) satisfies the inequalities |x(t)| ≤
Nx, |y(t)| ≤ Ny for all t ∈ [a, b], then we say that the original problem for Φ-Laplacian type
equation (1.1), (1.2) allows for quasilinearization.

If a solution (x(t), y(t)) of the problem (1.6), (1.7) is located inΩk, then this (x(t), y(t))
also solves the problem (1.5), (1.7) and therefore the respective x(t) solves the original
problem (1.1), (1.2). Notice that the type of a solution x(t) to the problem (1.1), (1.2) is
induced by oscillatory type of a solution (x(t), y(t)) to the quasilinear problem (1.6), (1.7),
which, in turn, is defined by oscillatory properties of the extracted nonresonant linear part
(LX)(t) (see below).

If the original nonlinear problem allows for quasilinearization with respect to the
linear parts with different types of nonresonance, then this problem is expected to have
multiple solutions.

The paper is organized as follows. In Section 2 definitions are given. In Section 3 the
main result is proved concerning the solvability of a quasilinear boundary value problem.
Section 4 contains application of the main result and the quasilinearization technique for
studying a nonlinear system; the numerical results are provided and a corresponding
example was analyzed.



International Journal of Mathematics and Mathematical Sciences 3

2. Definitions

Consider the quasilinear system (1.6), where functions Fk,Hk are continuous, bounded (i.e.,
there exists a positive constantK such that |Fk| < K and |Hk| < K for all values of arguments)
and satisfy the Lipschitz conditions in y and x, respectively. Consider also the relevant
homogeneous system

x′ − ky = 0,

y′ + kx = 0.
(2.1)

Definition 2.1. A linear part (LX)(t) :=
(

x′−ky
y′+kx

)
is nonresonant with respect to the boundary

conditions (1.7) if the homogeneous problem (2.1), (1.7) has only the trivial solution.

In order to classify the linear parts for different values of k let us introduce polar
coordinates as

x(t) = r(t) sinϕ(t), y(t) = r(t) cosϕ(t). (2.2)

Then the angular function ϕ(t) for (2.1) satisfies ϕ′(t) = k. Suppose that k > 0, then
ϕ(t) is monotonically increasing and the boundary conditions (1.7) take the form ϕ(a) =
π/2, ϕ(b) = πn, n ∈ N.

Definition 2.2. One says that a linear part (LX)(t) in (2.1) is i-nonresonant with respect to
the boundary conditions (1.7) if the angular function ϕ(t), defined by the initial condition
ϕ(a) = π/2, takes exactly i times (i = 0, 1, . . .) values of the form πn in the interval (a, b)
and ϕ(b)/=πn, n ∈ N.

The linear part (LX)(t) in (2.1) is nonresonant with respect to the boundary conditions
(1.7) if the coefficient k > 0 satisfies cos k(b − a)/= 0, this means that k belongs to a certain
interval of

(
0,

π

2(b − a)

)
,

(
π

2(b − a)
,

3π
2(b − a)

)
, . . . ,

(
(2i − 1)π
2(b − a)

,
(2i + 1)π
2(b − a)

)
, . . . , (2.3)

i = 1, 2, 3, . . .. So the linear part (LX)(t) is 0-nonresonant with respect to the boundary
conditions (1.7) if 0 < k < (π/2(b − a)) and it is i-nonresonant with respect to the boundary
conditions mentioned above if

k ∈
(
(2i − 1)π
2(b − a)

,
(2i + 1)π
2(b − a)

)
, i ∈ N. (2.4)

Let (ξ(t), η(t)) be a solution of the quasilinear problem (1.6), (1.7).

Definition 2.3. One says that (x(t; δ), y(t; δ)) is a neighboring solution of a solution (ξ(t), η(t)),
if (x(t; δ), y(t; δ)) solves the same system (1.6), satisfies the condition y(a; δ) = 0 and there
exists ε > 0 such that for all δ ∈ (0, ε] x(a; δ) = ξ(a) + δ.
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In order to classify solutions of the quasilinear problem under consideration introduce
local polar coordinates for the difference between neighboring solution (x(t; δ), y(t; δ)) and
investigated solution (ξ(t), η(t)) as

x(t; δ) − ξ(t) = ρ(t) sinΘ(t; δ), y(t; δ) − η(t) = ρ(t) cosΘ(t; δ), (2.5)

where Θ(a; δ) = π/2 and ρ(a) = δ.

Definition 2.4. One says that (ξ(t), η(t)) is an i type solution of the problem (1.6), (1.7), if
there exists ε > 0 such that for any δ ∈ (0, ε] the angular function Θ(t; δ), defined by the
initial condition Θ(a; δ) = π/2, takes exactly i values of the form πn in the interval (a, b) and
Θ(b; δ)/=πn, n ∈ N.

Remark 2.5. If (ξ(t), η(t)) is an i type solution of (1.6), (1.7), then the angular function Θ(t; δ)
in (2.5) satisfies the inequalities

π

2
< Θ(b; δ) < π if i = 0,

iπ < Θ(b; δ) < (i + 1)π if i /= 0.
(2.6)

3. Results for Quasilinear Systems

Consider the quasilinear system (1.6), where the linear part (LX)(t) :=
(

x′−ky
y′+kx

)
is nonresonant

with respect to the boundary conditions (1.7) and functions Fk,Hk are continuous, bounded
and satisfy the Lipschitz conditions with respect to y and x, respectively. By a solution we
mean a two-dimensional vector function (x, y) with continuously differentiable components
an element of the space C1

2([a, b] × R
2,R).

Lemma 3.1. A set S of solutions to the problem (1.6), (1.7) is nonempty and compact in C1
2([a, b] ×

R
2,R).

Proof. The problem (1.6), (1.7) has a solution if the right sides Fk and Hk are bounded. This
can be proved by direct application of Schauder fixed point theorem and follows from the
well-known results ([8, 9], for instance). The Existence Theorem of [9][Ch. 2, § 2] when
adapted for the problem (1.6), (1.7) says that this problem is solvable if the homogeneous
one (2.1), (1.7) has only the trivial solution. This is the case since the nonresonance condition
cos k(b − a)/= 0 fulfils.

Compactness follows from the integral representation of a solution of the problem
(1.6), (1.7) via the Green’s matrix (4.14) and standard evaluations in order to show that the
Arzela-Ascoli criterium is satisfied.

Lemma 3.2. There exists a maximal solutionXmax = (x∗, y∗) of quasilinear problem (1.6), (1.7)with
the property that y∗(a) = 0 and x∗(a) = max{x(a) : (x, y) ∈ S, y(a) = 0}. Similarly there exists a
minimal solution Xmin = (x∗, y∗) of (1.6), (1.7) with a property y∗(a) = 0 and x∗(a) = min{x(a) :
(x, y) ∈ S, y(a) = 0}.
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Proof. A set S1 = {(x(a), y(a)) ∈ R2 : (x, y) ∈ S} is the image of a continuous map M :
C1

2([a, b]) → R2 defined by M(x, y) = (x(a), y(a)). Since S is compact S1 is compact also.
Moreover S1 is compact in a straight line y = 0. Thus S1 is bounded and closed and therefore
there exist the maximal and the minimal elements. The case of Xmax = Xmin corresponds to a
unique solution of the BVP (1.6), (1.7).

Lemma 3.3. Suppose that the linear part (LX)(t) in (1.6) is i-nonresonant with respect to the
boundary conditions (1.7). Let (ξ(t), η(t)) be any element of S. Then the angular function Θ(t; δ)
introduced by (2.5) for large enough δ takes exactly i times values of the form πn, n ∈ N in the
interval (a, b) and Θ(b; δ)/=πn.

Proof. Consider the neighboring solution (x(t; δ), y(t; δ)) (see Definition 2.3). Notice that both
(ξ(t), η(t)) and (x(t; δ), y(t; δ)) are solutions of (1.6) and Θ(a; δ) = π/2. The normalized
functions u = (1/δ)(x(t; δ) − ξ(t)) and v = (1/δ)(y(t; δ) − η(t)) satisfy the system

u′ − kv =
1
δ

[
Fk

(
t, y(t; δ)

) − Fk

(
t, η(t)

)]
,

v′ + ku =
1
δ
[Hk(t, x(t; δ)) −Hk(t, ξ(t))].

(3.1)

The right sides in (3.1) tend to zero uniformly in t ∈ [a, b] as δ → +∞ since Fk and Hk are
bounded functions. The functions u(t), v(t) tend to solutions x(t), y(t) of the homogeneous
equation (2.1), which satisfy the initial conditions ϕ(a) = π/2, x(a) = 1, where ϕ(t) is the
angular function for (x(t), y(t)). ThereforeΘ(t; δ) → ϕ(t) as δ → +∞, uniformly in t ∈ [a, b].
As a consequence, Θ(b; δ) takes exactly i times values of the form πn together with ϕ(b).

The main theorem follows.

Theorem 3.4. If a linear part (LX)(t) in the quasilinear system (1.6) is i-nonresonant with respect
to the boundary conditions (1.7), then the quasilinear problem (1.6), (1.7) has an i type solution.

Proof. Consider a solution Xmax = (ξ∗, η∗), mentioned in Lemma 3.2 and neighboring
solutions (x(t; δ), y(t; δ)) (see Definition 2.3). We claim that Xmax is an i type solution to the
problem. Suppose that this is not true. According to (2.6) there are two possibilities.

Case 1. For any ε > 0 there exists 0 < δ < ε such that Θ(b; δ) = πn (for some natural value of
n). Therefore (x(t; δ), y(t; δ)) solves the BVP (1.6), (1.7) as well. Since x(a; δ) − ξ∗(a) = δ > 0
by virtue of (2.5), that is, x(a; δ) > ξ∗(a), a solution Xmax = (ξ∗, η∗) is not maximal in the sense
of Lemma 3.2 This case is ruled out.

Case 2. Θ(b; δ) /∈ [iπ, (i + 1) π]. Then there exists small positive δ1 such that jπ ≤ Θ(b; δ1) ≤
(j + 1) π , where j /= i. By Lemma 3.3 exists δ2 such that for all δ ≥ δ2Θ(b; δ) satisfies

iπ < Θ(b; δ) < (i + 1)π. (3.2)

Since Θ(b; δ) is continuous then there exists δ∗ ∈ [δ1, δ2] such that Θ(b; δ∗) = πn. It follows
again that (x(t; δ∗), y(t; δ∗)) is a solution of the BVP (1.6), (1.7). Therefore x(a; δ∗) − ξ∗(a) =
δ∗ > 0 and Xmax is not a maximal solution. The obtained contradiction completes the proof.



6 International Journal of Mathematics and Mathematical Sciences

4. Application

Consider the differential equation

d

dt
Φ
(
t, x′) + f(t, x) = 0, (4.1)

where Φ(t, x′) = r(t)|x′|1/p sgn x′, f(t, x) = q(t)|x|p sgn x, t ∈ I := [a, b], p > 1, r, q ∈
C(I; (0,+∞)) together with the boundary conditions

Φ
(
a, x′(a)

)
= 0, x(b) = 0, (4.2)

which in polar coordinates take the form ϕ(a) = π/2, ϕ(b) = πn, n ∈ N.
It is worth mentioning that the problem of minimizing the functional

J(x) =
∫b

a

[
pr(t)

∣∣x′∣∣((1+p)/p) − q(t)|x|p+1
]
dt, (4.3)

with respect to the class of curves joining an arbitrary point of the line t = a with a given
point (b, 0) leads just to the boundary value problem (4.1), (4.2) [10][Ch. 1, Sec. 6].

Denote Φ(t, x′) = y, then obtain a two-dimensional differential system

x′ = (r(t))−p
∣∣y
∣∣p sgn y,

y′ = −q(t)|x|p sgn x,
(4.4)

together with the boundary conditions

y(a) = 0, x(b) = 0. (4.5)

The obtained system (4.4) is equivalent to a system

x′ − ky = (r(t))−p
∣∣y
∣∣p sgn y − ky,

y′ + kx = kx − q(t)|x|p sgn x,
(4.6)

where the coefficient k > 0 satisfies cos k(b − a)/= 0. This means if coefficient k ∈ (((2i −
1)π/2(b − a)), ((2i + 1)π/2(b − a))), i ∈ N then extracted linear part (LX)(t) in (4.6) is i-
nonresonant with respect to the boundary conditions (4.5).

Denote Uk(t, y) := (r(t))−p|y|p sgn y − ky.
Function Uk(t, y) is odd in y for fixed t = t∗. We calculate the value of this function at

the point of local extremum y0. Set

my(t∗) =
∣∣Uk

(
t∗, y0

)∣∣ =
(
k

p

)p/(p−1)(
p − 1

)
(r(t∗))p/(p−1). (4.7)
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Choose ny(t∗) such that |y| ≤ ny(t∗) ⇒ |Uk(t∗, y)| ≤ my(t∗). Computation gives that

ny(t∗) = k1/(p−1)(r(t∗))p/(p−1)γ, (4.8)

where a constant γ is a root of the equation γp = γ + (p − 1)p(p/(1−p)).
Similarly we transform the function Vk(t, x) := kx − q(t)|x|p sgn x and instead of the

functions Uk(t, y), Vk(t, x) consider

̂Uk

(
t, y
)
:= Uk

(
t,Δ
(−Ny, y,Ny

))
,

V̂k(t, x) := Vk(t,Δ(−Nx, x,Nx)),
(4.9)

where the truncation function Δ is given by

Δ
(
x, y, z

)
=

⎧
⎪⎪⎨

⎪⎪⎩

x, y < x

y, x ≤ y ≤ z

z, y > z,

(4.10)

Ny = min{ny(t) : t ∈ [a, b]} and Nx = min{nx(t) : t ∈ [a, b]}, besides

sup
∣∣∣ ̂Uk

(
t, y
)∣∣∣ = My = max

{
my(t) : t ∈ [a, b]

}
,

sup
∣∣∣V̂k(t, x)

∣∣∣ = Mx = max{mx(t) : t ∈ [a, b]}.
(4.11)

The nonlinear system (4.6) and the quasilinear one,

x′ − ky = ̂Uk

(
t, y
)
,

y′ + kx = V̂k(t, x),
(4.12)

are equivalent in a domain

Ωk =
{(

t, x, y
)
: a ≤ t ≤ b, |x(t)| ≤ Nx,

∣∣y(t)
∣∣ ≤ Ny

}
. (4.13)

The modified quasilinear problem (4.12), (4.5) is solvable if k belongs to one from the
intervals mentioned above. The respective solution (xk(t), yk(t)) can be written in the integral
form

xk(t) =
∫b

a

(
G11

k (t, s) ̂Uk

(
s, y(s)

)
+G12

k (t, s) ̂Vk(s, x(s))
)
ds,

yk(t) =
∫b

a

(
G21

k (t, s) ̂Uk

(
s, y(s)

)
+G22

k (t, s) ̂Vk(s, x(s))
)
ds,

(4.14)
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where G
ij

k (t, s) (i, j = 1, 2) are the elements of the Green’s matrix to the respective homoge-
neous problem

x′ − ky = 0,
y′ + kx = 0,

y(a) = 0, x(b) = 0. (4.15)

Then

|xk(t)| ≤ (b − a)
(
Γ11(k) ·My + Γ12(k) ·Mx

)
,

∣
∣yk(t)

∣
∣ ≤ (b − a)

(
Γ21(k) ·My + Γ22(k) ·Mx

)
,

(4.16)

where Γij(k)(i, j = 1, 2) are the best estimates (which are known precisely) of the respective
elements Gij

k (t, s) of the Green’s matrix.
If the inequalities

(b − a)
(
Γ11(k) ·My + Γ12(k) ·Mx

)
< Nx,

(b − a)
(
Γ21(k) ·My + Γ22(k) ·Mx

)
< Ny

(4.17)

hold then the nonlinear problem (4.6), (4.5) (or, equivalently, the original problem (4.1), (4.2))
allows for quasilinearization and therefore has a solution of definite type.

Since the Green’s matrix of the homogeneous linear problem (4.15) is given by

Gk(t, s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
�

(
− sin(k(s − a)) sin(k(b − t)) − cos(k(s − a)) sin(k(b − t))
sin(k(s − a)) cos(k(b − t)) cos(k(s − a)) cos(k(b − t))

)

ifa ≤ s ≤ t ≤ b,

1
�

(
− cos(k(t − a)) cos(k(b − s)) − cos(k(t − a)) sin(k(b − s))
sin(k(t − a)) cos(k(b − s)) sin(k(t − a)) sin(k(b − s))

)

ifa ≤ t < s ≤ b,

(4.18)

where �= cos k(b − a), therefore

∣∣∣G
ij

k (t, s)
∣∣∣ ≤ 1

|cos k(b − a)| =: Γk,
(
i, j = 1, 2

)
. (4.19)

Suppose that 0 < r1 ≤ r(t) ≤ r2 and 0 < q1 ≤ q(t) ≤ q2 for all t ∈ [a, b].
Taking into consideration the expressions for My, Mx, Ny, Nx, γ , and the estimate Γk

we obtain that both inequalities in (4.17) hold if the following inequality is fulfilled

k(b − a)
|cos k(b − a)| · p

p/(1−p) · (p − 1
) ·
(
r
p/(p−1)
2 + q

1/(1−p)
1

)
< A · γ, (4.20)

where A = min{rp/(p−1)1 , q
1/(1−p)
2 }.
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Thus a fulfilment of the inequality (4.20) is a sufficient condition for existence of a
solution of definite oscillatory type to the problem (4.1), (4.2).

Depending on the functions r(t) and q(t) and parameter p there are 4 different possible
cases. Denote:

μ =
1

r
p

2 · q2
, if r−p1 < q2, r

−p
2 < q1

μ = r
p

1 · q1, if r−p1 > q2, r
−p
2 > q1

μ =
(
r1
r2

)p

, if r−p1 > q2, r
−p
2 < q1

μ =
q1
q2

, if r−p1 < q2, r
−p
2 > q1,

(4.21)

then inequality (4.20) is fulfilled if the following inequality holds

2k(b − a)
|cos k(b − a)| · p

p/(1−p) · (p − 1
) · μ1/(1−p) < γ. (4.22)

The following theorem is valid.

Theorem 4.1. Suppose that functions r(t) and q(t) in the Φ-Laplacian type equation (4.1) are such
that 0 < r1 ≤ r(t) ≤ r2 and 0 < q1 ≤ q(t) ≤ q2 for all t ∈ [a, b]. If there exists some number
k ∈ (((2i − 1)π/2(b − a)), ((2i + 1)π/2(b − a))), i ∈ N, which satisfies the inequality

2k(b − a)
|cos k(b − a)| · p

p/(1−p) · (p − 1
) · μ1/(1−p) < γ, (4.23)

where γ is a root of the equation γp = γ + (p − 1) · pp/(1−p) and μ is number of the form (4.21), then
there exists an i type solution of the nonlinear problem (4.1), (4.2).

Corollary 4.2. If there exist numbers kj ∈ (((2j−1)π/2(b−a)), ((2j+1)π/2(b−a))), j = 1, 2, . . . , n,
which satisfy the inequality (4.23), then there exist at least n solutions of different types to the problem
(4.1), (4.2).

Denote: τi is a root of the equation τ = −cot τ , which belongs to the interval (((2i −
1)π/2), πi), i ∈ N. If the inequality

2τi · pp/(1−p) ·
(
p − 1

) · μ1/(1−p) < γ (4.24)

holds then (4.23) is fulfilled also. The results of calculations are provided in Table 1. For
certain values of p and μ this table shows which numbers ki−1 of the form ki−1 = (τi/(b − a)),
i ∈ N satisfy the inequality (4.23). The subscript of number k in Table 1 indicates that
nonlinear problem under consideration has a solution of definite type, for instance, k0, k1
show that there exist 0 type and 1 type solutions.
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Table 1: Results of calculations for the problem (4.1), (4.2).

p γ μ ki

3/2 1.2509 μ ≥ 0.8390 k0; k1

4/3 1.2703 μ ≥ 0.7903 k0; k1

5/4 1.2813 μ ≥ 0.7852 k0; k1
μ ≥ 0.9437 k0; k1; k2

μ ≥ 0.7907 k0; k1
6/5 1.2884 μ ≥ 0.9161 k0; k1; k2

μ ≥ 0.9949 k0; k1; k2; k3

μ ≥ 0.7991 k0; k1
7/6 1.2933 μ ≥ 0.9034 k0; k1; k2

μ ≥ 0.9702 k0; k1; k2; k3

0.2 0.4 0.6 0.8 1

t

η
ξ

1

0.5

−0.5

−1

(a) ξ0(t) ≡ 0

0.2 0.4 0.6 0.8 1

t

10

5

−5

−10

η
ξ

(b) ξ′1(0) = 0, ξ1(0) = 10.77

0.2 0.4 0.6 0.8 1

t

2000

1000

−1000
−2000

η
ξ

(c) ξ′2(0) = 0, ξ2(0) = 2733.569

Figure 1: Different type solutions of the problem (4.25).

4.1. Example

Consider the problem

d

dt

(∣∣x′∣∣5/6 sgn x′
)
+ 0.04(cosπt + 25)|x|6/5 sgn x = 0, x′(0) = 0, x(1) = 0, (4.25)

which is a special case of the problem (4.1), (4.2) with p = 6/5, r(t) ≡ 1, and q(t) =
0.04(cosπt + 25).
For all t ∈ [0, 1] 0.96 ≤ q(t) ≤ 1.04, since q2 > 1 = r

−p
1 and q1 < 1 = r

−p
2 , then μ = q1/q2,

μ ≈ 0.923.
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Figure 2: Phase portraits of the differences between solution ξi (i = 0, 1, 2) of (4.25) and respective
neighboring solution in the interval t ∈ [0, 1].

In accordance with calculations (see Table 1) there exist at least three different
solutions of the problem (4.25) of 0 type, 1 type and 2 type, respectively. We have computed
them (see Figures 1 and 2).
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