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ABSTRACT. A perturbation theory for nth order differential operators is developed. For certain

classes of operators L, necessary and sufficient conditions are obtained for a perturbing operator B to

be relatively bounded or relatively compact with respect to L. These perturbation conditions involve

explicit integral averages of the coefficients of B. The proofs involve interpolation inequalities.
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INTRODUCTION AND MAIN RESULTS
We develop a perturbation theory for nth order differential operators. In the following, the

differential operator B will be regarded as a perturbation of a (typically) higher-order differential

operator L. For certain classes of operators L, we obtain necessary and sufficient conditions for B to

be L-bounded or L-compact. We employ the following terminology as given in Kato [5, pp. 190,

194].

DEFINITION A. B is relatively bounded with respect to L or simply L-bounded if D(L)
_

D(B)
and B is bounded on D(L) with respect to the graph norm II. II,. of L defined by Ilyll,. Ilyll / llLyll,
y e D(L), where D(L) denotes the domain of L. In other words, B is L-bounded if D(L) D(B)

and there exist nonnegative constants ct and fl such that

y D(L).

The greatest lower bound /0 of all positive constants/ for which this inequality holds is called the

relative bound ofB with respect to L or simply the L-bound of B. In general, the constant o will

increase without bound as / is chosen closer to/0 (so that the infimum /0 need not be attained). A

sequence {y, } is said to be L-bounded if there exists K > 0 such that Ily.ll, < . _> .
B is called relatively compact with respect to L or simply L-compact if D(L) D(B) and B

is compact on D(L) with respect to the L-norm, i.e., B takes every L-bounded sequence into a
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sequence which has a convergent subsequence. For example, if L is the identity map, then L-
boundedness (L-compactness) of B is equivalent to the usual operator norm boundedness

(compactness) of B.

The function space setting is the weighted Banach space /.(I), where _< p < .o, W is a

positive Lebesgue measurable function defined on an interval I of the real line, and /. (I) denotes

the Lebesgue space of equivalence classes of complex-valued functions y with domain I such that

IIMI := [], w lye" ]"" < .o. If w 1, we denote this space by L"(1). The space of complex-

valued functions y with domain I such that I11. := =ss sop [y(t) < is denoted by L’(1). A

local property is indicated by use of the subscript "loc," and AC is used to abbreviate absolutely
continuous. The space of all complex-valued, n times continuously differentiable functions on I is
denoted by C"(1)" C(1) denotes the restriction of C"(1) to functions with compact support
contained in I; and C0(l is the space of all complex-valued functions on I which are infinitely

differentiable and have compact support contained in the interior of I. We adopt the definitions of
maximal and minimal operators given in Goldberg [4, pp. 127-128, 135].

DEFINITION B. Let be a differential expression of the form
Wilp ai(t)

(D ), where W is a positive Lebesgue measurable function defined on l and each a, is a

complex-valued function on I. Then the maximal operator L corresponding to has domain
D(L) { y I.(I)" y-" AC(1), /[y] e /,(I)} and action

L[y] l[y] ,__oa,(t) (y D(L)). If a, . Cl(1) for 0 < < n and a, 0onl,

then the minimal operator L corresponding to is defined to be the minimal closed extension of L
restricted to those y D(L) which have compact support in the interior of L In the Hilbert space
setting of L=(1), most of the smoothness requirements on the coefficients a, (0 < < n) are not

needed, and the theory is developed in Naimark [7, sect. 17].
We consider perturbations

n-!

B W,I E bj/T (a < < to)
j=O

of the operators

T pn D,
wllp

and

Z
W|/t,

a P," D’
l=O

in the setting of L(a, ,o), where < p < and W is a positive Lebesgue measurable function
defined on (a, *,,). Definitions and conditions for P and P, are given in the hypotheses of Theorems

1.1 and 1.2, respectively. We give conditions on certain averages of the perturbation coefficients
bj (0 < j < n- 1) which are sufficient and, in some cases necessary, for B to be T-bounded or T-
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compact. These results rely heavily on Theorems A and B, which are special cases of Theorem 2.1 in

Brown and Hinton [3]. These two theorems give sufficient conditions for weighted interpolation
inequalities of the form: there exist dj > 0, r/> 0, K > 0, and e > 0 such that for all e (0, eo)
and y in a class D of functions,

where0 <j < n-landl < p < ,,*.

Theorem 1.1 gives integral average conditions on bj (0 < j < n- 1) which are necessary

and sufficient for B to be T-bounded or T-compact in the case when < p < and P and W satisfy

the conditions in Theorem 5 in Kwong and Zettl [6]. When W =- 1, these conditions imply that the

coefficients of T are bounded above by the corresponding coefficients of an Euler operator.
Furthermore, the perturbation conditions for T-compactness of B are sufficient for the essential

spectrum and Fredholm index to be invariant under perturbations of Tby B.
By definition (Goldberg [4, pp. 162-163]), the essential spectrum of T, written tr,(T), is the

set of all complex numbers 2 such that the range R(21 T) of 21 T is not closed. The

essential resolvent of T, written p,(T), is the complement of this set. By definition (Goldberg [4, p.

102]), the Fredholm index to(T) is given by to(T) ct(T) fl(T), where o(T) is the dimension of

the null space of T and fl(T) is the dimension of/.(I) R(T). or(T) is called the kernel index of T,

and fl(T) is called the deficiency index of T.

In Theorem 1.2, the results in Theorem 1.1 for the single-term operator T are extended to the

multi-term operator L. An nth order perturbation of L is considered in Corollary 1.1. Sufficient

conditions are given for invariance of the essential spectrum and Fredholm index of L under such

perturbations.

Theorems 1.1 and 1.2 and Corollary 1.1 provide generalizations of results of Balslev and

Gamelin [2] as presented in Goldberg [4, pp. 166-175]. Their work deals with bounded coefficient

and Euler operators in the unweighted setting of LP(a, .,,) for < p < oo.

In Theorem 2.1, the sufficiency conditions in Theorem 1.1 are generalized for operators T
with arbitrarily large coefficients. Again, these conditions involve integral averages of the
perturbation coefficients bj (0 <_ j _< n-l). Theorem 2.2 gives pointwise conditions on

bj (0 _< j _< n- l) under which the conclusions of Theorem 2.1 hold. The case in which p is

covered by Theorem 2.2. Also, perturbation conditions which are sufficient for L-boundedness or L-

compactness of B are obtained for the case p and the case in which the coefficients of L are

arbitrarily large. These theorems rely heavily on investigations by Brown and Hinton [3] on

sufficient conditions for interpolation inequalities. Examples of each theorem are presented and

contrasted for the situation in which the coefficient in T is an exponential function.

The final theorem, Theorem 3.1, deals exclusively with the case p 1. Sufficient, integral

average conditions are given for T-boundedness ofB.

1. INTEGRAL AVERAGE CONDITIONS FOR EULER-LIKE OPERATORS
In this section we consider operators whose coefficients are powers of a fixed function s times a

weight function w and a bounded function. In the simplest case, i.e., w(t) s(t) 1, Theorem 1.2

gives Theorem VI.8.1 of [4]. For tx 0, w(t) 1, and s(t) t, the sufficiency condition of part

(ii) of Theorem 1.2 yields Corollary VI.8.4 of [4] for perturbations of the Euler operator. Since we
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do not require w(t) or a 0, we refer to the unperturbed operator of Theorem 1.2 as Euler-

like.

THEOREM 1.1. Let < p < and I [a, **). Let s and w be positive, AC,o (I) functions such

that Is’(/)l <_ No and Is(l)w’(t)l <- Mo w(t) a.e. on I for some constants N and Mo. Let ot R,
W w sap, and P w s+"). Let T, B: l.(a, **) ---> l.(a, **) be the maximal operators

corresponding to the differential expressions z -7 D" D and

n-I

Z bj D, respectively, where each by o(l). For 0 < j < n- and t > O, defineD= j=O

g,. n(t)
w() s()

dT.

Then thefollowing hold:
(i) B is T-bounded ifand only if b L I) and

sup g,(t) < (0 < j < ,-1) (1.1)
aStS*.

(ii)

for some e O, l/(2N0) ). When (1.1) holds, the relative boundfor B is O. Furthermore,

the maximal operator corresponding tot + v is Tr+ T + B.
B is T-compact ifand only if bj l.(I) and

lim g,.(t) 0 (0 < j < n-l) (1.2)

for some ( O, l/(2N0)). When (1.2) holds, r and Tr+ have the same essential

spectrum and I e p,(T) to(M-T) r(M-T/o), where p,(T) is the

essential resolvent of T and to(T) is the Fredholm index of T.

The following theorem is part of Theorem 2.1 in Brown and Hinton [3]. It gives sufficient

conditions for weighted interpolation inequalities.

THEOREMA. Let < p <.0, l=[a, ..), and 0 < j < n-1. Let iV, W, and P be positive
.nu,zJ.,zd,J ,.sio .j.ab .h, . :(:),. j’" " " L II-q’, ,’-’’ ,,(,5

+ 1" for p 1, W-j, P- are locally essentially bounded on L Suppose there exists
P q
e > 0 and a positive continuousfunction f f(t) on I such that

:= .,,,,,-,,,

and
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for all e (0, eo), where

llP-’il..,,.,/,,.

Lef Jt J

p=l

<p<.,,

with similar definitions for T.(W). Then there exists K > 0 such that for all e (0, eo) and

yeD,

where D { y" y(n-,, AC,(1), I WlyIP < *,,, and I Ply’’’I < "}"
PROOF OF THEOREM 1.1.

(i) Sufficiency. Suppose (1.1) holds for some d/ 0,1 ). We will show that

Theorem A applies to the choices f s, N Ibj[’ e //, and Wand P as in Theorem 1.1. Basic

estimates are obtained from the following lemma in [3, pp. 575-576].

LEMMAA. Let s and w be as in Theorem 1.1. Then for fixed I, 0 < e < 1/N and
< < t+es(t), we have that (1-eNo)s(t) <_ s(r) <_ O+eNo)s(t) and

exp/-o) wCt)< wCz)< exp(-o) w(t).

This implies that both positive and negative powers of s(z) and w(z) are essentially constant for
< < + e s(t) and fixed t. By l.emma A and the definitions of P and W,

T.(P) [:/.,o) w(.)-qp s(.)-+,) d’t" <- Ct w(t)-’ s(t)-+’) (1.3)

and similarly

Tt. e(W < C w(t)-’ s(t) (1.4)

for all e I and e (0, d/), where C, and C2 are independent of and e. Using Lemma A again,
we obtain for a constant C

ef(t) e s(t) e s(t) w s

< C3 w(t) s(t)(a+) g.(t)

for all I, e (0, g;). Hence, by (I. 1), there is a constant C > 0 such that
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[,+cf(, C
N < w(t) s(t)<=*j) (1.5)

.f(t)

for all e 1, t e (0, 6). Thus

S(e) < sup,,, { s(t)<"-J) C w(t)-’ s(t)-a+") C__e w(t)S(t)("m)p }
so that

S,(e) _< CC,, 0 < e < 6. (1.6)

Similarly,

S(e) < CC:, 0 < e < 6. (1.7)

Hence, by Theorem A, there is a constant K such that for all y e D D(T),

Use oftheelementary inequality (a + bP)’i < a + b (a, b > 0) gives

for all y e D(T), 0 <j < n-l, where K, K’. Restrict e < 1. Then the right side can be

bounded above independently ofj, and the triangle inequality gives

for all y e D(T). Since p > 1, it follows that B is T-bounded with relative bound 0. The result

Tr/ T + B follows by an argument given on pp. 169-170 in Goldberg [4].

Necessity. Suppose B is T-bounded. Let be a function in C’(R) such that on [0, 1]

and support(0) t-2, 21. Fix 6 0, l/(2No) ). For each r > a, define

t > a. (1.9),(t)
6s(r)

Then Cr on [r, r+6s(r)] and support(0,) [r-26s(r), r+26s(r)]. We proceed by an

induction argument. First consider j 0 in (1.1). Fix r > a. Note that B 0r Wt,, b0 on
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[r, r + t s(r)], so that go.(r) s-r) WS
ap

constant C independent of r such that

Now, applying Lemma A, there is a

go. (r) < C Ir+s(r) C
w(r)s(r)+ap

W IB rl <
w(r)s(r)/ap lIB ,11’

(11 ,11" + lit rl[p) (1.10)<
w(r) s(r)’+ap

for some constant K independent of r, where the last inequality follows from the hypothesis that B is

T-bounded.

Using the compact support of ,, Lemma A, a change of variable, and the fact that

C0 (R), we have for some constant C0,

< Cw(r)s(r)a" Ii I (u)l" ,(r)du

< C w(r) s(r)aE+ (1.11)

for some constant CI independent of r. Similarly, for some C0,

lIT IrlIP I:w IT rlP fP n)lP Jr-2cs(r)
W

dt< Cow(r) s(r)’a+",

C w(r) s(r)(a+")’ 6 s(r) dtp<")(u)
"s(r)"

< C w(r) s(r)a+’ (1.12)

for some constant C2 independent of r. Use of (1.11) and (1.12) in (1.10) yields

go.,(r) < K(C + C), r [a, **). Therefore,(1.1)holdsforj=0andall d; 0, l/(2N0)).
Next fix k _< n- 1. Suppose (1.1) holds for 0 < j _< k- and some d; 0, 1/(2No) ).

k-I

Let a be the maximal operator with action given by a 17 bj D By the sufficiency
1--0

argument above, A is T-bounded. Thus since B is T-bounded, Minkowski’s inequality implies that A
n-!

+ B is T-bounded. Note that (A + B)y
W/,

, bj yO), y D(T). With and , defined
l=k

as above (see (1.9)), define
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h(t) O(t) ., t>a.

Then h C’(R) and h(k) -= on[0,1]. For each r > a, define

(1.13)

hr(t s(r) h(u), > a, (1.14)

hk)(t)t-r
where u

ds(r)"
Then h:)(t) h()(u),

support( h [r-2ds(r), r + 26s(r)]. Thus

b on [r, r + 6 s(r)].(A + B)h,= Wp

for r < < r+s(r), and

(1.15)

By Lemma A, we obtain for a constant C,

g. (r) r) w s(+*m s(r--- W S
(Ot+k)p

C [r+;(r)
w(r) s(r)(a+*m+’

WI(A + B) h,]" < C
w(r) s(r)<a/*’’/’

II(a + m h,ll’

C<
w(r) s(r)’+’)’+’

llh,’ + liT hrllp ), (I. 16)

where the last inequality follows from the relative boundedness of A + B with respect to T. By
calculations like those used in deriving (1.11) and (1.12), we obtain for r >_ a,

Ilh, il" <_ c, w(r) s(r) (1.17)

and

where C and C are constants independent of r. Thus (1.6) implies that (1.1) holds forj k and any

d (0, 1/(2N0)). This establishes necessity of(1.1).

(ii) Sufficiency. Suppose (1.2) holds for some 6 0, 1/(2No) ). We will use an

argument similar to that in Goldberg [4, pp. 171-172]. For each positive integer N > a, define B#

{yon[a,N],on D(T) by By We show that BN converges to B in the space of
on (N, .o).

bounded operators on D(T) with the T-norm. First note that T is closed. To see this, let f, -- fand Tf. --. g in /.,(a, .,,). Let J be a compact subinterval of [a, *,,) and restrict the functions f,

f,, and g to J. Define Tj /.(J) ---) /.(J) to be the maximal operator corresponding to z on J.

Clearly, f. --4 f in /,(J) and f. D(T). Since Tf, (Tf.)l,, Tf. g in L(J). By

Theorems VI.3.1 and IV.1.7 in Goldberg [4], T is closed. Therefore, f D(T) and Tjf g.

Thus, f D(T) and Tf g. Hence T is dosed.
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Therefore D(T) is complete under the T-norm.
D(T) D(B). For y D(T),

From (i), B is T-bounded. So

(1.19)

By the argument used in proving sufficiency in (i), Theorem A applies to the interval I [N, .o)
with the same choices for the weights, f, and e0. By (1.3) and (1.4), for 0 < e <

S(e) < C sup {w(t)-’s(t)-/) [,/.,O)]bl,}Iv. **) e s(t)
(1.20)

and the same estimate holds for S(e) up to a multiplicative constant. By Lemma A, for

O<e<d/,

[,+.,,,, -< c w(t) s(t),a/,,, g,.n(t) IN, oo). (1.21)
es(t) e

Hence

C
S(e) <_ sup g,.n(t) (1.22)

E

with a similar estimate for S:(e), 0 < e < 6, where C is a constant independent of N and e. It

follows from Theorem A that for all y e D(T),

I’ b, Y"’I" <- - I W IY[p + I? P ’(’)

where Cj is independent of y and N (but depends on e). Use of (1.23) in (1.19) gives

IIy- >1 _< Z c, sup gj.,(t)Ily]l ,=o ,,,.-,
(1.24)

for all y D(T) such that y 0. By (1.2), the term on the right side approaches 0 as N ---> ,,*.

Therefore, Bu ---> B in the space of bounded operators on D(T) with the T-norm.

Next, we show that each Bu is T-compact. Let {ft} be a T-bounded sequence, say

IIf,L -< ’ for all I. We will show that {fJ’}, 0 < j < n-1, is uniformly bounded on [a, N].

Partition I [a,N] by J, [t,,t,+], < < k, with t a, t,+ t, + es(t,), and

e e (0, d) chosen such that N tk+ tk + es(t). From the proof of Theorem 2.1 in Brown

and Hinton [3], with J,,

fIf,,,,<,)l _< [s<,,>]-" z (w> I,, wlf, l" + [es(t,)]’"-’)p T ,(P) s(t,) I,," e s(t,) e
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Use of (1.3) and (1.4) yields for some C (depending on e),

w(t,) s(t,) {I,, wlzr + I,,

for E J,. Since w and s are positive, continuous functions on [a, ) and t, J, c: [a, N], we

have for some C depending on e,

(1.25)

for [a,N], 0 <j < n-l. Since {f}isT-bounded, {f(’)}, 0 <j < n-l, is uniformly

bounded on [a, N].
Next we show {f(s)}, 0 < j < n-1, is equicontinuous on [a, N]. Let r/ > 0 be given.

For t, s e [a, N],

If,<"(:t, -< LFI IS: w ’’"

by Holder’s inequality, where + 1. Since w and s are positive, continuous functions on
P q

[a, oo), W w s"’ is bounded above and below on [a, N]. Hence for t, s e [a, N],

If,<’>(t) -f,<"(:’)t < c lt- " (1.26)

where the constant C depends on W. For the case 0 < j _< n 2, the argument used to obtain

(1.25) applies to j + < n and yields If,/"(t _< c IV,L, [a, N]. This implies that,

since W is bounded on [a, N], with a new C,

ils,<,+’>ll < c ILf,L., o < j < n- 2 (1.27)
L;(a.N)

For the case j n 1,

(")Ils,<’+"ll,,.<o.,, Ils, L.<o.,, <- wiry, < c rs, < c IIs,L (1.28)

since W/P is bounded on [a, N]. Thus, in any case, (1.28) holds for 0 < j < n 1. So (1.26)

implies that

If/"(’) -f,("(s)! -< c lt- ,1" IIs;,ll,, <- M it- 1", (1.29)

where M c s.p{ IiZL 1> 1}, since {fl} is T-bounded. Since p > 1, llq > O.

Therefore, {f(J)} is equicontinuous and bounded on [a, N], 0 < j < n 1. By the Arzela-Ascoli

Theorem, {f} has a subsequence {f, 0} which converges uniformly on [a, N], and {f0} has a

subsequence {fl} which converges uniformly on [a, N]. Hence {f,,} and {f,} converge
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uniformly on [a, N]. Repeating this procedure, a subsequence {g,} of {ft} is obtained such that for

0 < j < n 1, {gJ)} converges uniformly on [a, Nq. By definition of B,,

(1.30)

It follows that {B g,} converges in/_.(a, .0) as ---> **. Thus Bn is T-compact for each N, and so B

is T-compact, being the uniform limit of T-compact operators.
Necessity. Suppose B is T-compact. First we show that (1.2) holds for j 0. We proceed

by a contradiction argument. Suppose that for any d; 0, l/(2N0) ), there exists e > 0 and a

sequence {r}7__i of positive numbers such that r --> and

> e, > 1. (1.31)

Fix t O, 1/(2No) ). Let {,} be the functions defined by (1.9). As before,

Bi, W,, b0, on [r, r + 6s(r)]. (1.32)

It follows from (1.31) and Lemma A that

[ I’e <_
r,+,<r,

W l,, <
s(r) w S w(r,) s(r,)’+a"

where C is a constant independent of I. For each r > a, define

I[Ir(t) w’r’l/’t s
,(t),

_
[a, 0.). (1.34)

Then

and (1.33) implies that

(1.36)
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subsequence. Relabel indices so that {Br } converges in L(a, **) to some Yo. We show that

Yo 0 a.e. in [a, *,,). Let Jo be a finite subinterval of In, -0). Since r ---> as --)*,, and

support(Vr,) [r 2 ts(rt), r + 2 ts(r)], we have I//r, m 0 on Jo and Br 0 on Jo for

< IlYo BI//,,Ii. Since

Brr, -’> Yo as --> and the term on the left side is independent of l, Ilyoll ,,o, o. This holds

for an arbitrary finite subinterval Jo of In, -0), and so Yo 0 a.e. in In, -0). Therefore, Blp’,, --> 0

in L(a, *,,) as --> .,,. This contradicts (1.36). Thus (1.2) holds for j 0.

To establish (1.2) for _<j_< n- 1, we use an induction argument. Fix k _< n- 1.

Suppose (1.2) holds for 0 _< j _< k and some t 0, 1/(2No) ). Suppose (1.2) does not hold

for j k. Then there exists e > 0 and a sequence {rt} of positive numbers such that r -- as

g,.(r) >_ eo, >_ 1. (1.37)

As in the proof of necessity in (i), let A be the maximal operator with action defined by
k-i

A ,, X bj D. Then A is T-compact by the sufficiency argument in (ii). Since B is T-

compact, B is T-bounded. Therefore, the estimate preceding (1.16) yields, with h, as in (1.14),

w(r) s(r)"+)/’

For each r > a, define

pr(t)
w(r),/, s(r)++j/" h,(t), > a. (1.39)

Then

g. ,(rt) < C (A + B),r, ll’ (1.40)

and

I,,, w<r, ,<r, :"/"’ (liar, + limb’, II)" .41)

By (1.17) and (1.18), {p,, } is T-bounded. Since A and B are both T-compact, A + B is T-compact.

Therefore, {(A + B)p,,} contains a convergent subsequence, say (after relabeling indices)

(A + B)p,, --> zo in/.(a, **). We show that zo 0 a.e. on [a, **). Let Jo c [a, **)be a finite

interval. Since support(p,) [r 2 d;s(r), r + 2 d;s(r)], p,, =- 0 on Jo and hence

(A + B)p,, 0 on J0 for all sufficiently large. For such l,

IlZol[t4,o., Ijo Wlzo(t) (A + B)Pr, (t)[’ dt < [Izo (A + B),11’ o (l -->
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Thus j,, W Izo] 0 for any finite subinterval Jo of [a, ,). Therefore, Zo 0 a.e. on [a, oo) and

(A + B)p,, 0 in L(a, .,,). Hence (1.40) implies that gk.(r) ---> 0 as

contradicting (1.37). Therefore, (1.2) holds for k. This establishes necessity of (1.2) for T-
compactness of B. Thus Theorem 1.1 is proved. 1

Note that Theorem 1.1 deals with perturbations of a single-term operator T. In the next

theorem, we extend Theorem 1.1 to a multi-term operator L.

THEOREM 1.2. Let p, s, w, W, P, B, and gj.s be as in Theorem 1.1.

L" Ifw(a, **) --> Ifw(a, **) be the maximal operator corresponding to

Let

lip

W,p a, P, D’,

where m, ai (0 < < n) L"(a, **) and P, w st/p. Then thefollowing hold:
an

(i) B is L-bounded ifand only if bj o(a, **) and

sup gj.s(t) < (0 <j < n 1) (1.42)
at<*

for some d (0, l/(2N0)). When (1.42) holds, the relative bound for B is O.

Furthermore, the maximal operator corresponding to + v is /v L + B.

(ii) B is L-compact ifand only if bj o(a, .0) and

lim gj.s(t) 0 (0 < j < n- 1) (1.43)

for some (0, l/(2No)). When (1.43) holds, L and Lt/ have the same essential

spectrum and /% p,(L) r(M- L) r(M- Lt/,).

To prove Theorem 1.2, we will use the following lemmas.

LEMMA 1.1. Suppose A, C, and D are linear operators such that D is C-bounded with relative

bound less than 1.

(i) IfA is C-bounded, then A is (C + D)-bounded. Furthermore, if the relative bound ofA with

respect to C is O, then the relative bound ofA with respect to C + D is O.

(ii) IfA is C-compact, then A is (C + D)-compact.
PROOF. For (i), we have D(C)

_
D(D), D(C) c: D(A), IlDyll-< K, IlYtl / e llcMI

(y D(C)) forsome K > 0 and e (0, 1), and IIal -< K= IlYtl / ,llcti (y D(C)) for

some K=, d > 0. Therefore, D(C + D) D(C) c:_ D(A). Fix y D(C). Then

IIAyll-< K INI + all(c + O)y- o>tl-< c Ilyll + &lKc + o)ytl + &lloyll

_< (m:= + z<’,)Ilyli + Zll(c + o)Yll + ,llcyll.
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Noting that Ilcyll-< IIc + D)I + IIZl -< IC + oYll + K, IlYll + ecl, , obtain

Ilcyll-< II(c + D) + IlYl. Hence IIAyll K IlYll + I[(c + D)MI, where
1- 1- 1-

K is indendent of y. Therefore, A is (C + D)-bounded and the statement concerning relative

bounds follows easily.

For (ii), suppose {Yn} is (C + D)-bounded, i.e., y, D(C + D) and

]lYnll + [[(C + D)yn[ <_ K for some constant K independent of n. Then Yn D(C) and

Ilcyll <-II<c + D)y, + Dynll < K + K, Ily, + e]Cy, by the C-boundedness of D. Since

0 < e < and ilY, II-< K w ha IICy, < K (1 + K,) Therefore, {Yn} is C-bounded.
1-e

Since a is C-compact, {ayn} contains a convergent subsequence. Since {Yn} was an arbitrary (C +

D)-bounded sequence, A is (C + D)-compact. 1

LEM1VIA 1.2. Let B, L and Tbe the operators in Theorems 1.1 and 1.2. Then:

(i) B is L-bounded if and only ifB is T-bounded. Further, the relative boundfor B with respect

to L is 0 ifand only if the relative boundfor B with respect to T is O.

(ii) B is L-compact ifand only ifB is T-compact.

PROOF. Consider the differential expression l-’r WIp p,tl, D’. Its
I--0

coefficients satisfy the perturbation conditions (1.1) since for e I and 0 < < n 1,

p, < (constant).
s(t) la, w s"+’) s(t)

--, a, (0 < < n- 1) e L"(1). Hence by Theorem 1.1(i), L- T
an

is T-bounded with relative bound 0. Application of Lemma 1.1 (with A D /-_}L- T

and C T) yields that L- Tis T + L- T L-bounded with relative

bound 0.

(i) Suppose B isL-bounded. Then B is (-,/L-bounded since L"(1). Another
an

application of Lemma 1.1 (withA =B, C ml L, and D T- __1 L) shows thatB isT-

bounded.

Next, suppose B is T-bounded. By Lemma 1.1 (with A B, C T, and D

is The statementaboutzerorelative

bounds also follows from Lemma 1.1.

(ii) This part is proved in a similar manner using Lemma 1.1 (ii). I

PROOF OF THEOREM 1.2.
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(i) Sufficiency. Suppose (1.42)holds for 0 _< j _< n land some t$ 0, 1/(2N0)). By

Theorem 1.1(i), B is T-bounded with relative bound 0. Hence Lemma 1.3 implies that B is L-
bounded with relative bound 0. The result D(//v) D(L) follows by the same argument used in

showing that D(T/v) D(T) in the proof of Theorem 1.1.

Necessity. Suppose B is L-bounded. Then B is T-bounded by Lemma 1.2. Hence by
Theorem 1.1, bj (0 _< j _< n 1) satisfy (1.42) forsome t$ 0, 1/(2N0)).

(ii) Sufficiency. S.lppose (1.43) holds for 0 j P- and some /0, No) Then

by Theorem 1.1, B is T-compact and hence L-compact by Lemma 1.2. The invariance of the essential

spectrum and Fredholm index of L under perturbations by B follow as in the proof of Theorem 1.1.

Necessity. Suppose B is L-compact. Then B is T-compact by Lemma 1.2. By Theorem 1.1,

there exists t$ 0, 1/(2N0) suchthat bj (0 _< j _< n 1) satisfy(l.43). 1

REMARK. Theorems 1.1 and 1.2 apply to operators T and L with coefficients eventually bounded

above by the corresponding coefficients of an Euler operator. To see this, note that the hypothesis
s’(t)l -< No a.e. on I implies that there exists a positive constant C such that s(t) < C for all

sufficiently large. Now, by definition of P, and W and the hypothesis that a, (0 < < n)

L"(1), we have

la,(t)l ,(t) s(t)’ < C, t’ (1.44)

for all sufficiently large, where C, are constants independent of and 0 < < n.

EXAMPLE 1.1. Let n 2, p 2, w 1, tz 0, and s be any positive, AC,o([a,**)) function

such that Is’(t)] _< No for I [a, **). Then W and P,(t) s(t)2’ for i= 0, 1, 2.

Consider

Ly a2(t) s(t) y" + a,(t) s(t) y" + ao(t y (1.45)

and

By b(t) y" + bo(t) y, (1.46)

where --, ao, a, a L** (I) and b0, b /. (I). Then
a2

f’/’"’" Ib(’r
d’rgj. (t) s- s(’r)2j

(j=O, ). (1.47)

By Theorem 1.2, B is L-bounded if and only if sup g. (t) < (j 0, and L-compact if and
tel

onlyif lim g.,(t) 0 if=0, 1) forsome d (0, l/(2N0)).
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Next we prove a corollary of Theorem 1.2 in which an nth order perturbation B of L is

considered. The perturbation is such that the coefficients of the highest-order terms in L and L + B
obey the same hypotheses. Before stating the corollary, we prove a lemma concerning the domains

of the single-term operator T and multi-term operator L.

LEMMA 1.3. Let Tand L be as in Theorems 1.1 and l.2. Then D(L) D(T).
PROOF. First consider the case in which a -= 1. By Theorem 1.1 with

v Wtp a,P,PD’,B is T-bounded and L T/ T+B. Thus D(T) D(B), and so

D(L) D(T + B) D(T). For general a such that an, 1/a L’(1), we may replace T by

a, T without affecting T-boundedness of B. It follows that D(L) D(a T) D(T). I

COROLLARY 1.1. Let p, s, w, W, P,, and L be as in Theorem 1.2. Let B: lYw(a, **) --> IYw(a, 0.)

be the maximal operator corresponding to

WIIp

where bn, L’(I), bj I.(I) (0 < j < n),
an + b

(1.48)

and

:rn. s(t--S w(r) sfr)’a+’)’
dr 0 (0 < j < n-l) (1.49)

for some (0, l/(2N0)). Let R" l.(a, **) --> l.(a, **) be the maximal operator

corresponding to + v. Then D(L) D(R), r,(L) eye(R), and
/% pc(L) r(M- L) r(M- R).

PROOF. In view of Theorem 1.2, it suffices to prove the corollary for the operator

R L + b. P2/’ Dn. As in Theorem 1.1, let T" L(a, ,,*) ---> L(a, .,,) be the maximal

lipoperator corresponding to r P Dn. Then R L + b T. By Lemma 1.3,

D(L) D(T) and D(R) D(T). Hence D(L) D(R). For any scalar A and

y D(R) D(L),

(M- R)y .y- Ly- bnP’.‘"

/%y_Ly+ b {A.y_Ly+ n-,

an ,=oZa’P"’Y<" Zy Axy + Say
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where At and S;t are the maximal operators associated with (1 + a/(AJ- and- a , D A
WI/p bn p b I, respectively. An application of Theorem 1.2 (with L, B, and

an an
L/ replaced by A;t, St, and AJ- R, respectively) yields that Sx is Aa-compact,
cr,(Ax) O’,(M- R), and

0 p,(Aa) = K’(Ax) g’(:l/- R). (1.50)

By definition of Ax, RI_L= ( a, I a,
an + bn

A. Let h Then h,
an +bn

1/h L’(1) and R(R/- L) {hg" g R(A)}. Theresultthat R(A) isclosedifandonlyif

R(M L) is closed follows from the next lemma.

LEMMA 1.4. Let M be a closed subspace of lfw(a, **) and N hM {hg" g M}, where

h, 11 h L"(a, oo). Then N is closed.

PROOF. Suppose hg N with gn e M and hg -- z. Since 1/h L"(a, 00),
’gn -’> z/h. Since Misclosed, z/h M. Therefore, z h.(z/h) N. So Nisclosed. 1

Since tr,(Ax) o’,()I/- R), p,(Ax) p,(itl- R), i.e.,

{/z" R(/Z/ A)is closed} {/2" R(/z/ (R/ R))is closed}.

Therefore, R(A:t closed =:, R(,qJ R) closed. It follows that p,(L) p,(R); and so

o’,(L)=
It remains to show that it e p,(L) =# (AJ- L) ()d- R). Let it e p,(L).

Then R(A/- L)is closed and L(a, *,,) R(it/- L) M, where M N(I- I.:). Since

L*y ity has at most n L(a, oo) solutions, M is finite-dimensional.

an+bLet gt= Then , L"(1) and A (;t/- L). Any f /.(a,*,,) can
a

be written as f (:hr L)g + m, where g e D(L) and m M. Thus

with vf l.(a, **), (/1I- L)g R(A), and gan vM. Now, since R(ft/- L) closed

(a) losd, <a, **) (a) * N wh S-- Vt {" m

L’*(a, *,,), dim N dim M. By definition, the deficiency index of A is

fl(Ax) dim[/.(a,-0) R(Ax) dim N dim M

dim[/.(a, oo) R(t/- L)] fl(:t/- L).

Since A;t gt(M L) and Ig ,: 0 (because L’(a, **)), N(Ax) N(Zt- L). Therefore,

ct(Aa) ct(M L). Thus tc(At K’(M- L). Since R(Ax)is closed, 0 p,(ax). Hence by

<.5o), (a) (Z- ). Threor, :(Z- .) :(Z- ).
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REMARK. Note that (1.49) and (1.43) are identical conditions on the lower-order perturbation
coefficients bj, 0 < j < n 1. Theorem 1.2 is a result for lower-order perturbations of

L
Wi/p a,P, D’, whereto, a, (0 < < n 1) E L’(a,**). Corollaryl.lappliesto

nthorderperturbationsofLoftheform R a + bn) P" D + 2 (a, P,l’" + b,)O’
I=0

where b satisfies (1.48) and a, + b,, L’(a, **) (in analogy to the conditions on a

in the operator L).

2. CONDITIONS FOR OPERATORS WITH LARGE COEFFICIENTS
Recall that Theorem 1.1 applies to operators

such that

P(t) ]’ < Ct
W(t)J

for some constant C and all sufficiently large. The following theorem generalizes the sufficiency
conditions in Theorem 1.1 for operators T with arbitrarily large coefficients.

THEOREM 2.1. Let < p < and I [a, **). Let P and W be nondecreasing, positive

continuous functions on I such that W-qlp, p-q/i, L(1), where --+-- 1. Let T,
P q

B L(I) --> Ifw (I) be the maximal operators corresponding to

pIIp7 - D

and

n-I

j=O

respectively, where each b E o(l). For 0 < j < n and > O, define

(0 Ifthere exists 5 > 0 such that

sup/z.(t) < (0 < j < n- 1), (2.1)
tel

then B is T-bounded with relative bound O.
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(ii) Ifthere exists > 0 such that

lim /j.(t) 0 (0 < j < n 1), (2.2)

then B is T-compact.
PROOF. (i) Suppose (2.1) holds for some > 0. We will show that TheoremA applies to

the choices f= N ’, and e . Fix I and e (0,). SincePis

nondecreasing on I, it follows that

/,)

dr <T,,,(P)
ef(t) P(’)/" P(t)

Similarly, T, (W) < The choice f is made so that certain upper bounds on
w(t)

S,(e) and S2(e) are equal: Sk(e) < sup/zj.(t) (k 1, 2). By (2.1), there exists a, tl

,constant C independent of such that Sk() < for k 1, 2 and (0, ). Hence by

Theorem A, there is a constant K such that

for all y D(T). By the same calculations used to obtain (1.8) in the proof of Theorem 1.1,

IIyll-< K, ’-+’-"" IlYll / K, :-"" IITMI, K, K’’p, for all y D(T). Since p > 1, the

coefficient of IITMI can be made arbitrarily small by choosing e e (0, ) sufficiently small.

Therefore, B is T-bounded with relative bound 0.

(ii) Suppose (2.2) holds for some d > 0. T-compactness of B follows by the argument used

in proving sufficiency in Theorem 1.1 (ii). 1
-I

EXAMPLE 2.1. Let W(t) =- and P(t) e’. Then T e’/’D" and B bD. In this
j--0

case, condition (2.1)precludes exponential growth of bj. Suppose

Ibm(t) < Cjta’, a < < 00, 0 < j < n-I, A > O,

for some constants C and A. Fix j and let A A and C C:. Then by the definition of/z. in

Theorem 2.1,

e(S/,, /(,,,)) [.: z dz

(Ap + I) e0/" ’/"))’ + de’/’))

For sufficiently large, we obtain (with a different constant)

e(p i)tl(np) C e(a-J)t/n/1. (t) <
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n-I

Hence (2.1) holds if A _< j, and (2.2) holds if A < j. For example, the Euler operator D’ is
1--0

T-bounded, and the operator [ j- D (e > 0) is T-compact. I
j=0

We state here another part of Theorem 2.1 from Brown and Hinton [3] mentioned earlier.

THEOREMB. Let _< p < ,,o, I [a,,), and 0 <_ j <_ .-1. Let N, W, and P be positive
measurable functions such that N e Lt.(1); for p > 1, W-"1, P-q I.(1) where

+ 1;for p 1, W-, P-| are locally essentially bounded on I. Define
P q

T,. (t’)

p=l

<p<,,

with similar definitionsfor T. (W). Suppose there exists e > 0 and a positive continuousfunction
f f(t) on I such that f’(t) > O,

R,(e) := sup{f(,)("-) N(t) T.t(P)} <
tl

and

R2(e) := sup{f(t)-’ N(t) T,. ,(W)} <
t!

for all e (0, e0). Then there exists K > 0 such thatfor all e (0, Co)and y D,

I, rCly’ ’l <- r I, W[Y] + et’-"P R,(e)It P

where D {y" y"-" ACto(’), t WlY <**, and I, <**}
This result can be used to prove the following theorem, which givea pointwise conditions

sufficient for relative boundedness and relative compactness.

THEOREM 2.2. Suppose the conditions in Theorem 2.1 are satisfied with the definition of lz.
replaced by

In addition, suppose
P

AC(I) with
d P(t) >- 0 for I. Then the conclusions inw L-j

Theorem 2.1 hold for <_ p < provided that for the case p 1, W- and P-| are locally
essentially bouled on I.

PROOF. (i) Suppose sup uj (t) < for 0 _< j _< n- 1. We will show that Theorem B

applies to the choices f-- N= ’, and any e > 0. Fixt I and e > 0. Since
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P and W are nondecreasing on I, T,.(P) < and T,.(W) < Hence
P(t) W(t)

R,(E) <_ Tpt f(t)("-’)" [0,(t)l’ e--SS and P(t;) _< sup f(t)-’" [0,(t)[" By the choice

off, R(e) _< sup pj(t) < (k I, 2). Therefore, Theorem B applies. The rest of the proof,
tel

including (ii), follows as in the proof of Theorem 2.1. I

EXAMPLE 2.2. Let W(t) and P(t) e ct > 0. Then T e=’/’D and

B bj/Y. Let < p < ,. Suppose lb,</)l _< c, ca,’ a < < 0 < j < n-1 for
j=O

Ib,</)l < c; e(#j’-’’")’ Thus by Theorem 2.2,some constants Cj and fls" Then /s(t) ,,/,e

fl < otj BisT-bounded and fl < ctj => BisT-compact.
np np

So the pointwise conditions on b in Theorem 2.2 allow b to grow exponentially. In
contrast, the integral average conditions of Theorem 2.1 applied to Example 2.1 allow polynomial,but not exponential, growth of b. 1

,3. INTEGRAL AVERAGE CONDITIONS FOR THE CASEp 1
The following theorem gives sufficient conditions for T-boundedness for the case p for integral
averages.
THEOREM 3.1. Let P and Wbe nondecreasing, positive continuousfunctions such that

1
and 1__

P W
are locally essentially bounded on [a, **). Let T, B: l(a, **) --> lJw(a, **) be the maximal.
operators corresponding to

and

"c PD"
W

n-I

V=
W bDJ

respectively, where each b is a measurable function on [a, ,). For 0 < j < n- and > O,

define

r,,,,,,,:,:,l<,+,,,: ,,+.,r,.<,,1
,’,..":’:>: j, ,-’<,>-,

If there exists > 0 such that

sup /z,.(t) < (0 <j < n-l),

then B is T-bounded. If in addition b_ =- O, then the relative bound ofB with respect to T is O.

PROOF. We show that Theorem A applies to the choices f p 1, N

and any e t. Fix e [a, .,,) and e (0, t). Using the hypothesis that P is nondecming,

Similly, (W)< These inequalitieswe have .,(P)
-.It.,+ef(,)l P(t) W(t)

yield upper bounds for S(t) d S(t). The choice f is made so that these upr

bounds e equal: for k or 2, S(e) sup g.n(t) < M
where the last inequality

E at<- E
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follows by hypothesis (for some constant M > 0). By Theorem A, there exists K > 0 such that for

all e (0, iS) and y e D(T),

Let denote the norm of/2w(a, ,,,,). Then

j=O j=O

n-1 n-!

< g y. { - S=<> IM / - s,<> IITM! } < gg { --’ IlYil / --’ IITMI }
j=O 1=0

where we have used the estimates on St and S=. Hence B is T-bounded.

If bn_ 0, then the previous sum can be truncated at j n- 2:

KMf e*"/IITy{I for all y D(T), where C(e)is independent ofC(e) y.
\j--0

Restrict e (0, d) such that e < I. Then IIB3I < C(e)I13I + KM (n I)ellT3l for all

y D(T), from which it follows that the relative bound of B with respect to T is 0.
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