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ABSTRACT. Let (Y,7)be an extension of a space (X,t'). pe¥,let 0] ={WnX:WetpeW}.
For U et’, let o(U)={p €Y:U €0}}. In 1964, Banaschweski introduced the strict extension Y*, and
the simple extension Y* of X (induced by (¥,t)) having base {o(U):U et'}and
{Uu{p}:peY,and U €0/}, respectively. The extensions Y*and Y* have been extensively used since
then. In this paper, the open filters ¥ ={# et W 2int,cl,(U) for some U €0/}, and
Y? = {Wetint,cl, (W) €0} = (W etintycl,(W) eL'} =n{lf:l/ is an open ultrafilter on
X,02 clf}on X are used to define some new topologies on Y. Some of these topologies produce nice

extensions of (X,t’'). We study some interrelationships of these extensions with Y, and Y

respectively.
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1. INTRODUCTION

A topological space Y is an extension of a space X if X is a dense subspace of Y. If ¥, and Y, are two
extensions of a space X, then Y, is said to be projectively larger than Y,, written ¥, 2 ¥ (or ¥;<Y,),
provided that there exists a continuous map f:¥ — ¥;such that f|,=i, ,the identity map on X. Two
extensions Y, and Y, of X are called equivalent if Y, <Y, and Y, <Y,. We shall identify two equivalent
extensions of X. With this convention, the class E£(X) of all the Hausdorff extensions of a Hausdorff
space X'is a set. Let (¥,1) e E(X)and let p €Y. If N, is the open neighborhood filter of p in Y, the set
07 ={NNX:N €N} (called the trace of N, on X) is an open filter on X. If U is open in X, denote

0,(U)={pelUeof}.
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In 1964 Banaschewski [1] introduced the extensions Y* (resp. Y) the strict extension (resp. the
simple extension) of X induced by Y satisfying Y* <Y < Y*. The topology ©* on Y* (resp. T on Y*) has
for an open base the collection {o,(U):U open in X} (resp., the collection {Uu{p}:p €Y, and

U €0/}). The extensions Y*, and Y* have been studied extensively and have proved extremely useful
regarding some properties weaker than compactness, such as nearly compact, almost realcompact, feebly
compact, H-closed, s-closed, etc.. In this paper we introduce new extensions Yl, Y4, b ', and Y“', study
some of their properties, and compare them with ¥, Y*, and ¥*. All spaces under consideration are
Hausdorff.

2. THE EXTENSIONS ¥ AND ¥*.

In this section, we introduce several topologies on Y, and compare them with t. Some of these
topologies yield interesting extensions of (X,t’).

DEFINITION 2.1. Let (¥,7) be an extension of a space (X,t’). For p €Y define
Y? ={W:W et',int , cl W €0]}, Q.1
L = {W:W et',W 2int, cl, U for some U €0/}. 2.2)

LEMMA 2.1.
(2) Both /? and (¥ are open filters on X such that ¥ c0f cY”.

(b) Y?={W:W et',int, cl,W eL"}
=N {Y:Y is an open ultrafilter on X,0f < lf}

PROOF. We prove (b). Let W={W:Wet',int,cl,WeL}. If Well/, then Wet'and
int, cl,W oint, cl,U for some U €0/ . Therefore, int, cl, W €0f, whence W €l”. Thus, W cl/”.
To prove the reverse inequality, let Wel”. Then int xClyW eo?. Since
int, cl,W oint, cl, (int, cl, /) it follows that int, cl,# e.(*. Hence W e/ . This proves the first
equality in (b). The second equality follows from [9], completing the proof of the lemma.

REMARK 2.1. Since 0} = 07#= 07 +[9,10,11], it follows that each one of Y, Y and Y* yield the
same .[” (resp., i) forall p €Y. Moreover, if Z € E(X) has the same underlying set as ¥, and is such
that Y* < Z<Y", then Y and Z induce the same .(” (resp., {”) forall p €Y. Also, if p g are distinct
elements of ¥ then £” # " and U” =U?. Obviously, if U €0f, then int, cl,(U) €.L*. Moreover,
U €l if and only if int, cl, (U) elf”.

DEFINITION 2.2. Let (Y,t) be an extension of (X,t').For G et’, define

0(G)=GuU{p:peY\X,G el’} 2.3)
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0,(G)=Gu{p:p e\ X,G elf”} (2.9
a,(G)={p e¥:G e.L} @2.5)
a,(G)={pe):Gelf’} (2.6)

The proof of the Propositions 2.1, and 2.2 is straightforward.

PROPOSITION 2.1. Let (Y,7) be an extension of (X,t’). Then forall U,V et’
(@) 0,(D)=D,0(X)=Y,
®) o U)NX=U,
© o, (UnV)=o0,U)No, V),
(d) The family {0,(G):G et'}is an open base for a Hausdorff topology t, on Y and (Y,t,) is an
extension of X.

PROPOSITION 2.2. Let (Y,7) be an extension of (X,t’). Then forall U,V et’,
(@) 0, (D)= and 0,(X) =7,
®) o,(U)nX=U,
© 0,(UNV)=0,(U)No,(),
(d) The family {0,(G):G €1'}is an open base for a Hausdorff topology t,0on Y and (¥,7,)is an
extension of X.

PROPOSITION 2.3. Let (Y,7) be an extension of (X,t’). Then forall U,V et’
@ a,(D)=J,q(X)=Y,
®) o (U)nX U,
©) a(UnV)=a U)Nna,F),
) aq,(U)=U{W:W etand int cl ,(WNX)c U}
(e) The family {a,(G):G e1'} is an open base for a coarser Hausdorf¥ topology t, on Y, X is dense in
(Y,t,),but (¥,7,) may not be an extension of X.

PROOF. We prove (d). The rest is straightforward. Let p €q,(U). Then U e.(”. Therefore,
U oint, cl,V for some V €0). Therefore, there exists W et such that peW and WNnX=V. It
follows that int,cl,(WNX)cU. Conversely, if W et is such that int,cl,(WNnX)cU and
peW, then Wn X €0f. So, int, cl,(Wn X) eL?. This implies that U e.{* and hence p €a,(U).
The proof of the proposition is now complete.

PROPOSITION 2.4. Let (Y,7) be an extension of (X,t’). Then forall U,V et’,
(@) a,(F)=Pandaq,(X)=Y,
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®) a, (V)N X =int ¢l (U),

© a,(UNV)=a,0)Na,F),

) a,(U)=u{W:W etand Wn X cint, cl,(U)}

(€) The family {a,(G):G €1’} is an open base for a coarser Hausdorff topology t_, on Y, X is dense in
(Y,t,),but (¥,1,) may not be an extension of X.

PROOF. We prove (d). The rest is straightforward. Let p €a,(U). Then U €lf?. Therefore,
int,cl,Ueo/. It follows that there exists W etsuch that peW and WnNnXcint,cl,U.
Conversely, if Wet is such that WnXcint,cl,U and peW, then WnXe06]. So,
int, cl,U €07 . Therefore, U €l/” and p €a,(U).

DEFINITION 2.3. The spaces (Y,t,), (¥,t,), (¥,7,), and (¥,t,,) described in propositions 2.1-
2.4 will, henceforth, be denoted by Y, ¥*, ¥* and Y™ respectively. If AC Y, then int,,(A4) (resp.
cl.(4)) will be denoted by int,(A) (resp., cl,(4)). Likewise,
ing, (A4),cl, (4),int,(4),cl,(4),int,(A4), and cl ,(A4) are defined in an analogous manner.

LEMMA 2.2.If U et’, then
@ a,U)coU)co,(U)co,(U)co,(int,cl,U)=a,(U)=a,(nt,cl,l),

) aq,(U)\X =0 (U)\X, and a,(U)\X =0, (U)\ X
(©) o,(intycl,U)\X =0,(U)\ X, and
(d) if U is regular open (i.e. U =int, cl,U), then a,(U) = q,(U), and the equality holds in (a).

PROOF. Part (a): We show that o, (int, cl,U)=a,(U), the rest being straightforward. Certainly,
o (intycl, UynX =intycl,U=a,(U)nX. Let peo,/intycl, U)\X. Then int,cl,Uelf”.
Therefore, U elf?, and pea,(U)\X. Conversely, let pea (U)\X. Then, U ely”. So,
p o, (U)\X co,(int,cl,U)\ X . The above arguments prove (a).

To prove (c), let g eo,(int,cl,G)\X. Then, int,cl,G eLl* whence, G elY?. Therefore,
q €0,(G)\X . Thus, o,(int, cl,G)\ X c 0,(G)\ X . To prove the reverse inequality, let g €0,(G)\ X .
Then, Gelf?,  whence int,cl,Ge?.  Therefore, g €o,(int , cl, G)\ X and
0,(G)\X co,(int, cl,G)\X. Hence, o(int,cl,G)\X =0,(G)\X. The rest of the lemma is
straightforward.

Given a space (X,t'), the family {int, cl,U:U €1’} forms an open base for a coarser Hausdorff
topology t.on X. The space X, =(X,t}) is called the semiregularization of X. A space (X,t') is
called semiregular if (X,1")= X,

THEOREM 2.1. If X is semiregular, and (Y¥,t) (not necessarily semiregular) is an extension of X,
then Y is an extension of X such that Y' < Y.

PROOF. If X is semiregular, then o,(U) =a,(U) for all U e1’. Hence, Y is an extension of X such
that Y/ =Y“ <7Y.
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THEOREM 2.2. The spaces Y* and ¥ are homeomorphic.

PROOF. For all U et’, ag(intycl,U)=0,(int,cl,U)=a,(U) implies that 1, c1,. Also, if
Get' and pea/(G), then Gint,cl,(U) for some U eof clYY”. Now, if qea,(U), then
int, cl,U e{" which implies that G e.?, or ¢ €q,(G). Therefore, p ea,(U)<a,(G). Hence,

o ST, - This proves the theorem.

LEMMA 2.3. Let (¥,t) be an extension of (X,t’). Then, forall G et’ the following are true.
@ cl,(G)cel,(G)=cl,(int, cl,(G),
®) cl,(G)=cl,(G)=cl,(int,cl,G)),
© ©L(G)=cl,(G),

(@) cly(G)=cl,,(G)=cl,(int,cl,(G)), and
(e) cl,(0,(G)=cl,(a,(intycl,(G))

PROOF. Part (a): Let p ecl,(G), and let o(U) be a basic open neighborhood of p in Y. If
peo(U)NnX, then p eUcinty,cl, U eL”. Therefore, a,(int, cl,U) is an open neighborhood of p
in Y. Consequently, a,(int, cl,U)NG = @. By Proposition (2.7) (b), int, cl, UG =J. Hence
UNG=#J. This in turn implies that 0, (U)NG =D, and p ecl,(G). If p eo,(U)\ X, then U e(”.
Now, a,(U) is an open neighborhood of p in ) Consequently, a,(U)NG# Q. Therefore,
0,(U)NG # @ whence p ecl,(G).

Part (b): Let pecl,(G), and let o, (U) be a basic open neighborhood of p in Y“. Since
0,(U)ca,(U),a,(U) is an open neighborhood of p in ¥*. Hence, a,(U)NG=#=D. Therefore,
intycl,UNG=#Q, whence UnG=J. Consequently, o0,(U)NG=#D. Therefore, pecl(G).
Therefore, cl,,(G) < cl,(G). Conversely, let p ecl,(G), and let a,(U) be a basic open neighborhood
of pin Y. If pea,(UynX =int,cl, U, then o,(int,cl,U) is an open neighborhood of p in ¥*.
Therefore, a,(U)NX =int,cl, UNnG=o,(int,cl ,U)NG#. Hence, pecl,(G). Now, if
pe€a,(U)\X, then U elYf’ and o,(U) is an open neighborhood of of p in Y. Therefore,
0,(UYNnG # Q. Consequently, a,(U)NnG =, and p ecl,(G). Therefore, cl,(G)<cl,,(G). Hence,
cl,(G) c ¢l (G) . The other half of (b) is straightforward.

The proof of (c) is straightforward.

Part (d): Let p ecl_(G), and let W be an open neighborhood of p in Y. Then, WN X eof cY*
shows that o, (W N X) is an open neighborhood of p in Y*. Therefore, a,(W N X) # @& . This shows that
WNG=Q, whence pecl,(G). Conversely, let pecl,(G), and let a,(U) be a basic open
neighborhood of p in Y*. Then, U €!/”. So, o,(int,, cl,U) is an open neighborhood of p in ¥ such that
oy(int, cl ,U)NG = . This implies that a,(U)NG =D . Hence, p ecl_ (G). The rest follows from
©.

THEOREM 2.3. The spaces Y'\ X,Y“\ X, and Y*\ X are pairwise homeomorphic.
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PROOF. To prove the continuity of the identity map i:Y*\ X — ¥'\ X, let 0,(G)\ X be a basic
open neighborhood of p in Y'\X. Then, G €.L*. Hence G 2int,cl,U for some U €0l clf”.
Therefore, 0,(U)\ X is an open neighborhood of p in ¥* such that o,(U)\ X < 0,(G)\ X . To prove that
the identity map #:Y'\ X — Y“\ X is continuous, let 0,(G)\ X be a basic open neighborhood of p in
Y“\X. Then of(intycl,G)\X 1is an open neighborhood of p in Y'\X such that
o,(int ; c1,G)\ X =0,(G)\ X . Hence, the spaces Y'\ X, and ¥“\ X are homeomorphic. The rest of the
theorem follows directly from Lemma 2.2.

Let Z, and Z, be spaces. A map f:Z — Z, is called 8 - continuous [3] if for every p €Z, and for
every open neighborhood ¥V of f(p) in Z,, there exists an open neighborhood U of p in Z; such that
Sl U)ccl, (V). fis called perfect if fis a closed map (not necessarily continuous) such that f*(z)
is compact in Z, for every z € Z,. Also, fis called irreducible if f is closed and there is no proper closed
subset K of Z; for which f(K) = Z,. Two extensions Z, , and Z, of a space X are called 0 - equivalent if
there exists a § - homeomorphism ffrom Z; onto Z, such that f|, =i, , the identity map on X.

The next theorem depicts some of the several interrelationships between the spaces Y, Y, ¥, v, and
Y.

THEOREM 2.4. Let (Y,7) be an extension of a space (.X,t’) . The following statements are true.
(a) The identity map i:Y* — Y is perfect, irreducible and 6 - continuous.

(b) The identity map i:Y™ — Y* is perfect, irreducible and 0 - continuous.
(c) The identity map i:Y* — Y* is 0 - continuous.
(d) The identity map i:Y* — ¥’ is 6 - continuous.
(e) The identity map i:Y* — Y* is 0 - continuous.
(f) The identity map i:Y' — Y* is 0 - continuous.
(g) The identity map i:Y“ — Y* is 0 - continuous.
(h) The identity map i:Y' — Y* is - continuous.
(i) The identity map i:Y* — ¥’ is @ -continuous.
(i) The identity map i:Y' — Y is - continuous.
(k) The identity map i:Y* — Y is 0 - continuous.
(1) The identity map i:Y*— Y is 0 - continuous.

PROOF. Below, we outline the proofs of some parts of the theorem. The rest of the proofs are
analogous.

Part (a) Since T, c1,i:¥ — Y* is continuous. Hence, i:Y — Y* is irreducible and perfect. To prove
the O -continuity of i:Y* — Y, let ¥ be an open neighborhood of p in Y. Then ¥ "X €0 and

int, cl, (V¥ N X) e L?. Therefore, a,(int, cl (¥ N X)) is an open neighborhood of p in Y* such that
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oy (atintycl, (VA X)) = cly(aintycl, (" A X)) = clla,int,cl, (¥ A X)AX]
= cly(int, cl, (¥ " X)) ccl, (V). Hence i:Y* = Y is 6 - continuous.

Part (b): For all G et',a,(G) =0, (int, cl,G) et, shows that i:Y* — Y is continuous. Therefore,
i:Y™ 7Y is immeducible and perfect. Let o,(G) be a basic open neighborhood of p in Y“. Since
0,(G)ca,(G),a,(G) is an open neighborhood of p in Y™ such that cl (a,(G))=cl, (0,(G)),
establishing the 6 - continuity of i:Y* — Y*.

Part (c): To prove the 8 -continuity of i:Y* — ¥*, let p €Y and let 0,(G),G et’ be a basic open
neighborhood of p in Y*. Then, G €67  {/* implies that a,(int , cl,G) is an open neighborhood of p in
Y% such that cl,,(a,(int , ¢l ,G)) < cl, #(o,(G))

Part (d): Let 0,(G) be a basic open neighborhood of p in Y Then, 0,(G) is an open neighborhood of
pin Y* such that cl,#(0,(G)) < cl,(0,(G)), establishing the 6 - continuity of i:Y* — ¥".

Part (h): Let 0,(G) be a basic open neighborhood of p in ¥*. Then, o,(int, cl,G) is an open
neighborhood of p in ¥’ satisfying cl,(o,(int , c1,G)) < cl, (0,(G))

Part (I): Let peY and let a,(G),G et’ be a basic open neighborhood of p in Y. Then,
Goint,cl U for some Ueoj. So, peo,(U). Now,
cly(o,(U)) =cly (0, (V)N X) =cl, (U) ccl ,(U) el (a,(G)).

We now summarize the results proved above in the following theorem.

THEOREM 2.5. The spaces Y, Y Y’, Y“, and Y", are pairwise 6 - homeomorphic . The spaces Y‘,
and Y are O - equivalent extensions of X with homeomorphic remainders.

It is well known that spaces Y and Z are 0 - homeomorphic if and only if their semiregularizations

are homeomorphic. [11] Hence, we have the following corollary.
COROLLARY 2.1. Let (Y,t) be an extension of a space (X,t). Then, the spaces

Y, ¥ Y,Y*, and ¥* are pairwise homeomorphic. Moreover, ¥, ¥/, and ¥* are equivalent extensions of
X,
3. THE EXTENSIONS Y, AND ¥Y*.
In this section, we define extensions Y‘(', and ¥* °, analogous to the simple extension Y of (X,t')
induced by an extension (Y,7) of X. The spaces Y, ¥*, ¥**, and Y™ all have the same underlying set
as the set Y. An open base for the topology T, on Y (respectively, T, on Y"I') is the family
TU{GU{p}:p eY\X,G eL*} (respectively, T'U{G U {p}:G €L*}). An open base for the topology
1,. on Y (respectively, T, on Y**) is the family t'U{GuU {p}:p €Y\ X,G elf?} (respectively,
' U{GU{p}:G €lf*}). For any AcY,cl,(4) will denote the closure of 4 in ¥, with analogous
notations in other cases. The proofs of the following statements are straightforward, and we omit the
details. Obviously, the spaces Y\ X, Y\ X,Y**\ X, and Y™ \ X are all discrete.

THEOREM 3.1. The spaces ¥, and ¥*" are extensions of (X,t') such that Y** > Y* > Y”. The set
X s dense in the spaces Y*", and Y** . But, ¥** and Y*** may not be extensions of X.
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LEMMA 3.1. Foreach G et’, cl,.(0,(G)) =¢l,(o,(G), and cl,.(0,(G)) =cl,(0,(G)).

THEOREM 3.2. Each one of the identity maps i:Y* — Y, and i:¥"* — Y" is O - continuous.

THEOREM 3.3. The spaces ¥, ¥, ¥*", ¥*", and Y*" are 6 - homeomorphic . Moreover, Y*, ¥,
and 1" are 6 -equivalent extensions of X with homeomorphic remainders.

COROLLARY 3.1. If (Y,r) is an extension of a space (X,t’), then the spaces
YY", 7, ¥, and Y™ are homeomorphic in pairs. Moreover, the spaces Y',¥”, and ¥*" are
equivalent extensions of X

REMARKS 3.1. (a) If P is any property of topological spaces which is preserved under
0 -continuous surjections, and if (¥,t) is a P-extension of (X,t'), then ¥, ¥*, ¥, and ¥*" are also P-
extensions of X.

(b) The extensions Y, ¥*, ", and ¥** introduced above are, in general, all distinct from Y, ¥*, and
Y. It would be interesting to find a characterization of spaces Y for which =Y. A space Z is called H-
closed if it is closed in every Hausdorff space in which it is embedded [see 11 for more details]. The
Katetov (respectively, Fomin) extension of a space (X,t’) is the space kX (respectively, cX ) whose
underlying set is the set X U {p: p is a free open ultrafilter on X} , and whose topology has for an open
base the family t' U {U U {p}:U e€p, and p exX \ X} (respectively, the family {o,(U):U et'}). The
spaces kX , and oX are H-closed extensions of X such that (cX)* =xX , and (xX)* =cX [3, 6, 11]. In
general (6X)' #0X,xX)* #xX,(cX)" #6X, and (X)"” #xX . Analogous remarks apply to the
Banaschewski-Fomin-Shanin extension pX [13] of a Hausdorff space X

(c) A space Z is called compact like, or nearly compact if every regular open cover of Z is reducible
to a finite subcover. A space X has a compactlike extension if and only if X is Tychonoff [14].
Compactlike extensions (=near compactifications) of Hausdorff almost completely regular spaces X
(whence, X, is Tychonoff) have been constructed in [2] via EF-Proximities. For a Hausdorff space X
whose semiregularization X; is Tychonoff, a maximal compactlike extension BX of X, satisfying
(BX), = BX, , is constructed in [14]. If (X,t') is any Hausdorff almost complétely regular space, and if
(Y,t) is any near compactification of (X,t'), then so are ¥, ¥, ¥, and ¥*".

(d) A space Z is called almost real compact if every open ultrafilter on Z with countable closed
intersection property in Z converges in Z[4]. A space Z is almost realcompact if and only if Z; is almost
realcompact [12]. Almost realcompactifications of a Hausdorff space have been constructed (among
others) in [7], and [12]. If (X,t') is any Hausdorff space, and if (¥,t) is any almost
realcompactification of (X,t'), then so are ¥, ¥*, ¥, and ¥*".

(e) A HausdorfT space Z is called extremally disconnected if for each open subset U of Z, cl,(U) is
open. A space Z is extremally disconnected if and only if each dense subspace of Z [respectively, if and
only if Z,] is extremally disconnected [see 11 for more details]. A Hausdorff space Z is called s-closed if
it is H-closed and extremally disconnected [8]. A Hausdorff space Z is s-closed if and only if Z; is s-

closed. It is shown in [8] that every extremally disconnected space X admits an s-closed extension ,viz.
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xX ; moreover, an extension Y of X is s-closed if and only if X is C’-embedded in Y. If (X,t') is any

extremally disconnected Hausdorff space, and if (¥,t) is any s-closed extension of (X,t’), then so are
Y, ¥, ¥, and ¥".

REFERENCES

(1]
[2]

(3]
(4]

(5]

(61

(7

(8]
9]

[10]

(11]

(12]

[13]

(14]

BANASCHEWSKI, B., Extensions of topological spaces. Canad. Math. Bull. 7 (1964), 1-22.

CAMMAROTO, F. and NAIMPALLY S., Near Compactifications, Math. Nachr. 146 (1990),
133-136.

FOMIN, S. V., Extensions of topological spaces. Ann. Math., 44 (1943), 471-480.

FROLIK, Z., On almost realcompact spaces, Bull. De Lcademeie Polonaise Des Sciences Math.,
Astr. et Phys. IX: 49 (1961), 247-250.

KATETOV, M., A note on semiregular and nearly regular spaces. Cas. Mat. Fys. 72 (1947), 97-
99.

KATETOV, M., On H-closed extensions of a topological spaces. Cas. Mat. Fys. 72 (1947), 97-
99.

LIU, C. T. and STRECKER, G. E., Concerning almost real compactifications, Czech. Math. J. 22
(1977), 181-190.

PORTER, J. R., Hausdorff s-closed spaces, Q&4 in General Topology, Vol. 4 (1986/87)

PORTER, J.R. and VOTAW, C., H-closed extensions 1. General Topology and Appl., 3 (1973),
211-224.

PORTER, J.R. and VOTAW, C., H-closed extensions II. Trans. Amer. Math. Soc., 202 (1975),
193-209.

PORTER, J. R and WOODS, R. G., Extensions and absolutes of Hausdorff spaces. Springer-
Verlag, New York, 1987.

TIKOO, M., Absolutes of almost realcompactifications, J. Austral. Math. Soc.(series A),
41(1986), 251-267.

TIKOO, M., The Banaschewski-Fomin-Shanin Extension uwX , Topology Proceedings, Vol. 10
(1985), 187-206.

VERMEER, J., Minimal Hausdorff and compactlike spaces, Top. Structures II, Math. Centre
Tracts 116 (1979), 271-283.



