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ABSTRACT. Let (Y,x)be an extension of a space (X,x’). p Y, let Of {WcX:W x,p eW}.

For U x’, let o(U)= {p eY:U Oyr}. In 1964, Banaschweski introduced the strict extension Y, and

the simple extension Y+ of X (induced by (Y,x)) having base {o(U):U x’}and

{Uw {p}:p Y, and U e0}, respectively. The extensions Y and Y+ have been extensively used since

then. In this paper, the open filters ./’’ {W x’:W
_

intx clx(U for some U 0}, and

/P {Wx’:intxclx(W eOr} {Wx’:intxclx(W) ,d’’} =c{/:/ is an open ultrafilter on

X,0, c ’} on X are used to def’me some new topologies on Y. Some of these topologies produce nice

extensions of (X,x’). We study some interrelationships of these extensions with Y, and Y+
respectively.

KEY WORDS AND PHRASES: Extension, simple extension, strict extension, H-closed, s-closed,

almost realcompact, near compact.
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1. INTRODUCTION

A topological space Y is an extension of a spaceX ifX is a dense subspace of Y. If Y1 and Y2 are two

extensions of a space X, then Y: is said to be projectively larger than Y1, written Y > Y (or Y < Y: ),

provided that there exists a continuous map f:Y --> Y such that fl x ix ,the identity map on X. Two

extensions Y1 and Y2 ofX are called equivalent if Y < Y and Y < Y. We shall identify two equivalent

extensions of X. With this convention, the class E(X) of all the Hausdorff extensions of a Hausdorff

space Xis a set. Let (Y,x) E(X)and let p Y. If N, is the open neighborhood filter ofp in Y, the set

0’ {N X:N Nr (called the trace of Nr on X) is an open filter on X. If U is open in X, denote

o(U) {p r:u
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In 1964 Banaschewski [1] introduced the extensions Y# (resp. Y+) the strict extension (resp. the

simple extension) ofX induced by Y satisfying Y" < Y < Y/. The topology x on Y (resp. x on Y+) has

for an open base the collection {or(U):Uopen in X} (resp., the collection {Uw {p}:p Y, and

U 0’ ). The extensions Y, and Y+ have been studied extensively and have proved extremely useful

regarding some properties weaker than compactness, such as nearly compact, almost realcompaet, feebly

compact, H-closed, s-closed, etc.. In this paper we introduce new extensions ]g, Y", 1/’, and ’, study

some of their properties, and compare them with Y, Y, and Y+. All spaces under consideration are

Hausdorff.

2. THE EXTENSIONS I/AND I.

In this section, we introduce several topologies on Y, and compare them with . Some of these

topologies yield interesting extensions of (X,x ’).

DEFINITION 2.1. Let (Y,x) be an extension of a space (X,’). For p eY define

blp {W:W cx’,intX clxW 0’}, (2.1)

Lp {W:W e’,W_intxclxUforsome U (2.2)

LEMMA 2.1.

(a) Both b/p and ’P are open filters on Xsuch that

(b) b/P= {W:W ex’,intx clxW
{b/:b/is an open ultrafilter onX,O; hi}

PROOF. We prove (b). Let l,U= {W:W ’,intxclxW o/’P}. If W }[/, then W ’and

intxclxW_intxclxUfor some U 0’. Therefore, intxclxW 0, whence W P. Thus, W_b/p.

To prove the reverse inequality, let W b/p Then intx clxW 0. Since

intx cl xW
_

intx clx (intx clxW) it follows that intx cl xW ,,P. Hence W e1U. This proves the first

equality in (b). The second equality follows from [9], completing the proofof the lemma.

REMARK 2.1. Since 0’ 0’#= 0’ +[9,10,11], it follows that each one of Y, Y+ and Y yield the

same LP (resp., b/p) for all p eY. Moreover, if Z E(X) has the same underlying set as Y, and is such

that Y" < Z < Y’, then Y and Z induce the same d’p (resp., b/p for all p Y. Also, if p q are distinct

elements of Y then P and b/p //q. Obviously, if U 0’, then intx clx(U) ,d’p. Moreover,

U fJP if and only if intx clx(U eb/p

DEFINITION 2.2. Let (Y,x) be an extension of (X,x’). For G ex’, define

ot(G Gw {p:p eY\X,G ed’p} (2.3)
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ou(G G {.p:p Y\X,G eUp} (2.4)

at(G {p eY:G e,./} (2.5)

au(G {p eY:G e/.,/’} (2.6)

The proofofthe Propositiom 2.1, and 2.2 is straightforward.

PROPOSITION 2.1. Let (Y,x) be an extension of (X,x’). Then for all U,V

(a) ot() t,Ol(X) Y,

(b) o,(U) x u,

(c) o(U :v) o(U)mo(V)

(d) The family {ot(G):G ex’}is an open base for a Hausdorff topology x on Y and (Y,zt) is an

extension ofX.

PROPOSITION 2.2. Let (Y,x) be an extension of (X,z’). Then for all U,V

(a) ou( = and ou(X)= Y,

(b) o(U)cx=u,

(c) o(Uv) =o(U)o(V),

(d) The family {o,,(G):G ex’} is an open base for a Hausdorff topology x uon Y and (Y,z u)is an

extension ofX.

PROPOSITION 2.3. Let (Y,z) be an extension of (X,x’). Then for all U,V .’

(a) a() f,at(X) Y,

(b) a,(U):x
_
u,

(c) at(U V) at(U at(V),

(d) at(U) {W:W ex and intx clx(WX)
_
U}

(e) The family {at(G):G Ex’} is an open base for a coarser Hausdorff topology x o on Y, X is dense in

(Y,x or), but (Y,x t) may not be an extension ofX.

PROOF. We prove (d). The rest is straightforward. Let p eat(U Then U ed’’. Therefore,

U_intxclxV for some V eO’. Therefore, there exists W ex such that peW and WX=V. It

follows that intx elx(W X)
_
U. Conversely, if W ex is such that int x clx(WX)

_
U and

p W, then WcX eO. So, intx elx(WcX .P. This implies that U ed’’ and hence p eat(U

The proofofthe proposition is now complete.

PROPOSITION 2.4. Let (Y,x) be an extension of (X,z’). Then for all U,V

(a) a() 0 and a,,(X) Y,
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(b) a,(U)cX intx clx(U),

(c) a,(UV) =au(U)ca(V),

(d) aN(U {W:W ex and WX
_

intx clx(U)}

(e) The family {au(G):G ex’} is an open base for a coarser Hausdorfftopology x on Y, X is dense in

(Y,x,), but (Y,x o,) may not be an extension ofX.

PROOF. We prove (d). The rest is straightforward. Let p ea,(U). Then U e/’ Therefore,

intxclxUeO. It follows that there exists Wexsuch that pew and WX_intxelxU.

Conversely, if Wex is such that WcX_hatxclxU and peW, then WXe0’. So,

intx clxU eO;. Therefore, U el’ and p ea,(U).

DEFINITION 2.3. The spaces (Y,x ), (Y,x), (Y,x o), and (Y,x o) described in propositions 2.1-

2.4 will, henceforth, be denoted by , ]’, t, and F respectively. If A
_

Y, then int r, (A) (resp.

clr, (A) will be denoted by intl (A) (resp., cll (A)). Likewise,

in.(A),cl(A),into(A),cl.t(A),into.(A and cla.(A are defined in an analogous manner.

LEMMA 2.2. If U ex’, then

(a) a(U)
_
o(U)

_
or(U

_
o.(U)

_
o. (intx clxU) a,. (U) a.(intx clxU

0) at(U)\X=ot(U) \X, anda(U)\X=o(U)\X

(c) ot(intxclxU) \X =ou(U) \X, and

(d) if Uis regular open (i.e. U intx elxU then a,(U) a(U), and the equality holds in (a).

PROOF. Part (a): We show that o(intx clxU a.(U), the rest being straightforward. Certainly,

o,(intxclxU)CX=intxclxU =a.(U)X. Let p eo,(intxclxU)\X. Then intxclxU ell’.

Therefore, U e/A’’, and p ea,(U)\X. Conversely, let p ea(U)\X. Then, U e/’. So,

p eo(U) X
_

o,(intx clxU) X. The above arguments prove (a).

To prove (c), let q eo(intx clxG) \X. Then, intx clxG e.l whence, G e/q Therefore,

q eo(G) \X. Thus, o(intxclxG \X

_
o(G) \X. To prove the reverse inequality, let q eo(G) \X.

Then, G e/q whence intx clxG e.[ Therefore, q eOl(int x clxG) X and

o(G)\X_ot(intxclxG)\X. Hence, ot(intxclxG)\X=o,(G)\X. The rest of the lemma is

straightforward.

Given a space (X,x’), the family {intx clxU:U ex’} forms an open base for a coarser Hausdorff

topology x’son X. The space X, =(X,x]) is called the semiregularization ofX. A space (X,x’) is

called semiregular if (X,x ’) X,
THEOREM 2.1. IfX is semiregular, and (Y,x) (not necessarily semiregular) is an extension ofX,

then i is an extension ofX such that yt < y.

PROOF. IfX is semiregular, then o(U) at(U) for all U ex’. Hence, ]i is an extension ofX such

that Y ya < y.
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THEOREM 2.2. The spaces ’ and yu are homeomorphie.

PROOF. For all U ex’, a(intxelxU)=ou(intxelxU)=au(U implies that xau_xot. Also, if

G ex’ and peat(G), then G_intxelx(U for some UeOf _//P. Now, if q eau(U), then

intx elxU e.m which implies that G ed’, or q eat(G). Therefore, p ea(U)
_
at(G Hence,

x a - This proves the theorem.

LEMMA 2.3. Let (Y,) be an extension of (X,x’). Then, for all G ex’ the following are true.

(a) cl(G)
_

elt(G cl(intx elx(G))

(b) el(G) elow(G el(intx elxG))

(e) clu(G)=clt(G),

(d) ely(G) elo(G) elo(intx elx(G)) and

(e) cl(o(G)) =elo(a(intx elx(G))

PROOF. Part (a): Let p eelo(G), and let ot(U) be a basic open neighborhood of p in yr. If

p eot(U)X, then p U_intxelxU ,P. Therefore, a(intxelxU is an open neighborhood ofp

in ]. Consequently, at(intxclxU)tG(). By Proposition (2.7) (b), intxelxUtG. Hence

UG ). This in turn implies that ot(U)G (), and p cI(G). If p eo(U) \X, then U e.gp.

Now, at(U is an open neighborhood of p in t. Consequently, at(U)G(. Therefore,

or(U) G whence p el(G).

Part (b): Let p Clo(G), and let o(U) be a basic open neighborhood of p in Y. Since

o(U)_a(U),a(U) is an open neighborhood of p in F’. Hence, a(U)cG. Therefore,

intx clxUG , whence UoG . Consequently, ou(U)cG :. Therefore, p ecl(G).

Therefore, clo(G)
_
cI(G). Conversely, let p eel(G), and let a(U) be a basic open neighborhood

ofp in . If p ea(U)cX=intxclxU, then o(intxclxU is an open neighborhood of p in ’.

Therefore, au(U)X=intxclxUCG=o(intxclxU)CG. Hence, p eclo(G). Now, if

pa(U)\X, then U e/ and o(U) is an open neighborhood of of p in Y. Therefore,

o(U)cG : . Consequently, a,.(U)cG : f and p ecl,(G). Therefore, cI(G)
_
clo(G). Hence,

cl(G)
_
cI(G). The other half of(b) is straightforward.

The proofof (c) is straightforward.

Part (d): Let p col,(G), and let Wbe an open neighborhood ofp in Y. Then, WcX0 _t

shows that o(WcX) is an open neighborhood ofp in . Therefore, au(Wc X) . This shows that

WoGf, whence p eclr(G). Conversely, let p eclr(G), and let a(U) be a basic open

neighborhood ofp in F. Then, U e’’. So, or(intx clxU is an open neighborhood ofp in Y such that

or(intxclxU)cG . This implies that a(U)G ,f. Hence, p eClou(G). The rest follows from

(c).

THEOREbl 2.3. The spaces yt X,Y X, and Y" X are pairwise homeomorphic.
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PROOF. To prove the continuity of the identity map i:Y \X--> Y\ X, let o(G)\X be a basic

open neighborhood of p in Yt\X. Then, Ged’’. Hence G_intxclxU for some U eO _/’.

Therefore, or(U) X is an open neighborhood ofp in such that or(U X
_

or(G X. To prove that

the identity map i:Yt\ X yr\X is continuous, let ou(G X be a basic open neighborhood ofp in

Yr\X. Then ol(intxclxG)\X is an open neighborhood of p in Yt\X such that

ot(intx clxG) \X ou(G) \X. Hence, the spaces Y \X, and yr \X are homeomorphic. The rest of the

theorem follows directly from Lemma 2.2.

Let Z1 and Z2 be spaces. A map f:Z -- Z is called 0 -continuous [3] if for every p eZt and for

every open neighborhood V off(p) in Z2, there exists an open neighborhood U ofp in Zi such that

f(clz,U
_

clz2 (V). fis ealledperfect iffis a closed map (not necessarily continuous) such that f’-(z)

is compact in Z for every z CZ Also,fis called irreducible iffis closed and there is no proper closed

subset K ofZ1 for which f(K) Z Two extensions Z, and Z2 of a space Xare called 0 -equivalent if

there exists a 0 homeomorphism ffrom Z onto Z2 such that fl x ix, the identity map on X.

The next theorem depicts some of the several interrelationships between the spaces Y, Y, I;, Y", and

t.
THEOREM 2.4. Let (Y,x) be an extension of a space (X,x’). The following statements are true.

(a) The identity map i: ya y is perfect, irreducible and 0 -continuous.

(b) The identity map i:Y yu is perfect, irreducible and 0-continuous.

(c) The identity map i: Y’Z -- Y is 0-continuous.

(d) The identity map i: Y -- yt is 0 -continuous.

(e) The identity map i: Y" ---> yr is 0-continuous.

(f) The identity map i:Y -- Y" is 0 -continuous.

(g) The identity map i: Y" ---> Y" is 0-continuous.

(h) The identity map i:Y -- Y" is 0-continuous.

(i) The identity map i: F’ Y is 0-continuous.

(j) The identity map i: yt y is 0-continuous.

(k) The identity map i:Y Y is 0 -continuous.

(1) The identity map i: Y’--- Ya is 0-continuous.

PROOF. Below, we outline the proofs of some parts of the theorem. The rest of the proofs are

analogous.

Part (a) Since x at T. ,i: Y- Y’ is continuous. Hence, i: Y -- Y’ is irreducible and perfect. To prove

the 0-continuity of i:Ya- Y, let V be an open neighborhood of p in Y. Then I,’X 0’ and

intx clx(VX) d’ Therefore, a(intx clx(V" X)) is an open neighborhood ofp in t such that
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clat(a,(intxclx(VcX)) clr(at(intxclx(VX)) clr[al(int x clx(VX))cX]
clr(int x clx(VX))

_
clr(V Hence i:Y ---) Y is 0 -continuous.

Part (b): For all G x’,au(G ou(intx clxG x shows that i:Y ---) Y is continuous. Therefore,

i:Y--) Y is irreducible and perfect. Let o(G) be a basic open neighborhood of p in F’. Since

ou(G)_a(G),a(G) is an open neighborhood of p in I such that Clo(a(G))=clu(ou(G)),

establishing the 0 -continuityof i: Y" --) Y.

Part (c): To prove the 0-continuityof i:Y ---) Y#, let p Y and let or(G),G x’ be a basic open

neighborhood ofp in Y#. Then, G 0’ _t/’ implies that a,(intx clxG is an open neighborhood ofp in

Ft such that cl(a(intx clxG))
_

clr#(or(G))

Part (d): Let ot(G be a basic open neighborhood ofp in A. Then, or(G is all open neighborhood of

p in Y# such that clr#(or(G))
_

clt(o(G)), establishing the 0 -continuity of i: Y" --) Yt.
Part (h): Let o(G) be a basic open neighborhood of p in 7". Then, o(intxclxG is an open

neighborhood ofp in A satisfying cl(ot(intx clxG))
_
cl(o(G))

Part (1): Let p Y and let at(G),G x’ be a basic open neighborhood of p in 7at. Then,

G
_

int x clxU for some U e)’. So, p or(U Now,

elf(or(U)) clr(or(U X) clr(U
_
cla(U

_
clo,(at(G)).

We now summarize the results proved above in the following theorem.

THEOREM 2.5. The spaces Y, Y#, IA, I’, and Fat, are pairwise 0- homeomorphic. The spaces A,
and Y" are 0-equivalent extensions ofXwith homeomorphic remainders.

It is well known that spaces Y and Z are 0 -homeomorphic if and only if their semiregularizations

are homeomorphic. 11 Hence, we have the following corollary.

COROLLARY 2.1. Let (Y,x) be an extension of a space (X,x). Then, the spaces

Y,,Y,",Ys, Y,, and Y,’ are pairwise homeomorphic. Moreover, Y,,Y/,. and y,u are equivalent extensions of

x.
3. THE EXTENSIONS YS’, AND Y".

In this section, we define extensions A*, and F", analogous to the simple extension Y+ of (X,x’)

induced by an extension (Y,x) ofX. The spaces/*, 7t, F", and u* all have the same underlying set

r’"as the set Y. An open base for the topology xz. on (respectively, x or. on Ft*) is the family

x’{G {p} :p eY\ X,G edv (respectively, x’o {G {p} :G Cd’’} ). An open base for the topology

*x on (respectively, x on ya*) is the family x {G{p} p eY\X,G ’’} (respectively,

x’ {Go {p}’G /’}). For any A Y, cI.(A) will denote the closure of A in /’, with analogous

notations in other cases. The proofs of the following statements are straightforward, and we omit the

details. Obviously, the spaces Y X, Y" X, Y’" X, and Y*" X are all discrete.

THEOREM 3.1. The spaces A*, and Y"* are extensions of (X,x’) such that Y" > Y+ > Y" The set

X is dense in the spaces t*, and Y"*. But, I/’a* and "* may not be extensions ofX.
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LEMMA 3.1. For each G z’, cl.(o(G)) cl(o(G), and cl.(ou(G)) clu(%(G)).

THEOREM 3.2. Each one ofthe identity maps i: Y+ Y’, and i: Y" ---) Y/ is 0 -continuous.

THEOREM 3.3. The spaces Y, Y*, Y*, Y*, and yu. are 0- homeomorphic. Moreover, Y+, Y’,
and Y"* are 0 equivalent extensions ofXwith homeomorphic remainders.

COROLLARY 3.1. If (Y,) is an extension of a space (X,’), then the spaces

Y+,Y/’,’,Y:’, and Y.,’" are homeomorphic in pairs. Moreover, the spaces Y,+, Y/’, and "" are

equivalent extensions ofX
REMARKS 3.1. (a) If P is any property of topological spaces which is preserved under

0-continuous surjections, and if (Y,x) is a P-extension of (X,x’), then Y, Y", F", and Y"" are also P-

extensions ofX.

(b) The extensions Y, Y", I/’, and I’" introduced above are, in general, all distinct from Y, Y#, and

Y+. It would be interesting to find a characterization of spaces Y for which Y# Y. A space Z is called H-

closed if it is closed in every Hausdorff space in which it is embedded [see 11 for more details]. The

Katetov (respectively, Fomin) extension of a space (X,x ’) is the space v,X (respectively, oX whose

underlying set is the set X {p:p is a free open ultrafilter onX), and whose topology has for an open

base the family z’{U{p}:U ep, andp er,X\X} (respectively, the family {o(U):U z’}). The

spaces r, and oX are H-closed extensions ofX such that (6X) =r,.X, and (r,X) 6X [3, 6, 11 ]. In

general (oX) ;oX,(rX) ,r,,(oX)’;oX, and(rX)’*r.X. Analogous remarks apply to the

Banaschewski-Fomin-Shanin extension pX 13] ofa Hausdorff spaceX

(c) A space Z is called compact like, or nearly compact if every regular open cover ofZ is reducible

to a finite subcover. A space X has a compactlike extension if and only if X is Tychonoff [14].

Compactlike extensions (=near compactifications) of Hausdorff almost completely regular spaces X

(whence, X is Tychonoff) have been constructed in [2] via EF-Proximities. For a Hausdorff space X

whose semiregularization X is Tychonoff, a maximal compactlike extension BX of X, satisfying

(BX). fld(, is constructed in [14]. If (X,’) is any Hausdorff almost compl6tely regular space, and if

(Y,) is any near compactification of (X,x ’), then so are , I/’, I/’, and g".

(d) A space Z is called almost real compact if every open ultrafilter on Z with countable closed

intersection property in Z converges in Z[4]. A space Z is almost realcompact if and only ifZ is almost

realcompact [12]. Almost realcompactifications of a Hausdorff space have been constructed (among

others) in [7], and [12]. If (X,’) is any Hausdorff space, and if (Y,z) is any almost

realcompactification of (X, ’), then so are I/, ’, l/’, and ’.
(e) A Hausdorff space Z is called extremally disconnected if for each open subset U of Z, clz(U) is

open. A space Z is extremally disconnected if and only if each dense subspace ofZ [respectively, if and

only ifZ] is extremally disconnected [see 11 for more details]. A Hausdorff space Z is called s-closed if

it is H-closed and extremally disconnected [8]. A Hausdorff space Z is s-closed if and only if Z is s-

closed. It is shown in [8] that every extremally disconnected spaceXadmits an s-closed extension ,viz.
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moreover, an extension Y ofX is s-closed if and only ifX is C’-embedded in Y. If (X,x’) is any

extremally disconnected Hausdorff space, and if (Y,x) is any s-closed extension of (X,z’), then so are

y, y, y*, and y*
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