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Abstract. Potentially theoretical schemes in the fundamental solutions method will be
proposed for Dirichlet problems of unbounded and bounded Jordan domains. The asymp-
totic theorem on extremal weighted polynomials will play fundamental roles to introduce
a new scheme and to determine the distribution of charge points. Typical examples of
the method will show that the numerical results of higher accuracy than those of the the
conventional one can be obtained.
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1. Introduction. The fundamental solutionsmethod (or charge simulationmethod)
has been applied to the problem in electrical engineering, numerical conformal map-
pings [2, 9] and Dirichlet problems [12, 13, 14, 20, 21, 22, 23, 24, 26]. The principle of
the method is the approximation of the solution by a linear combination of logarith-
mic potentials. Though the method requires only solving a system of simultaneous
linear equations, it is possible to get a rather precise solution for boundary problems
with respect to domains bounded by smooth curves.
In this paper, we study the fundamental solutions method for Dirichlet problems of

unbounded and bounded Jordan domains.
The method established in this paper has the following characteristic: the new

scheme and the distribution of charge points are theoretically proposed using the
asymptotic theorems [4, 5, 7, 6, 8, 10, 11, 9, 16, 17, 19, 18] on extremal weighted
polynomials and their zeros.
Applying the method to typical examples, we will show that numerical results of

higher accuracy than those of conventional ones can be obtained.
The theoretical consideration for the fundamental solutions method of unbounded

Jordan domains will perhaps first appear in this paper.

2. Definition. In this section, we describe the notions of weighted polynomials
(shortlyw-polynomials) and weighted capacity (w-capacity) introduced by the author
[5] and Mhaskar-Saff [17, 19], respectively. The definitions of normalized counting
measures and the weak convergence are also shown.
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Let D denote an unbounded domain whose boundary is a Jordan curve γ. Without
loss of generality, we assume that D contains ∞ and 0 in its interior and exterior,
respectively.
Let w =w(z) be an arbitrary, continuous, positive function defined on γ. For each

integer n≥ 1, we let Pn,w denote the class of all polynomials of the form

pn,w(z)=
n∏
i=1

[
(z−zn,i)w(z)w(zn,i)

]
, (2.1)

which we call w-polynomials of degree n.
Let M(γ) denote the class of all positive unit Borel measures whose support is γ.

We define the w-energy of σ ∈M(γ) and the w-capacity by

Iw(σ)=
∫∫

log
[|z−t|w(z)w(t)]dσ(z)dσ(t) (2.2)

and

cap
(
w,γ

)= exp(Vw), (2.3)

respectively, where

Vw = V
(
w,γ

)= sup
σ∈M(γ)

Iw(σ). (2.4)

We note that the notions of w-energy and w-capacity were introduced in [17, 19].
Throughout the remainder of this paper, we assume that every pn,w(z) has all the

zeros on γ. Though it seems that the assumption is rather strong, it is the key point
to establish the new fundamental solutions method in this paper. It depends on uni-
formly distributed points (which are defined in Section 3) being on the boundary γ.
Since we have defined the w-polynomials by (2.1), it seems that w(z) must be de-

fined in the whole complex plane. However, we will soon understand why the assump-
tion is sufficient in this paper.
Moreover, the form (2.1) instead of

qn,w(z)=
n∏
i=1

[
(z−zn,i)w(zn,i)

]
, (2.5)

(which would require w(z) to be defined only on γ) has the advantage that the in-
equality

limsup
n �→∞

∥∥pn,w(z)∥∥1/nγ ≤ cap
(
w,γ

)
(2.6)

may hold, where ‖pn,w(z)‖γ is the sup norm on γ.
Let µw ∈M(γ) be an extremal measure such that

Iw(µw)= Vw. (2.7)

The existence and the uniqueness of µw were shown in [19, Thm. 3.1(b)]. We assume
that Sw = γ, where Sw is support of µw .
Lastly, we show the notions of the normalized counting measure on the zeros and
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the weak convergence as follows: forw-polynomials pn,w(z) of degree n, the discrete
unit measure defined on compact sets in the complex plane C with mass 1/n at each
zero of pn,w(z) will be denoted by µn,w = µ(pn,w). It will be called the normalized
counting measure on the zeros of pn,w(z). If pn,w(z) has multiple zeros, the obvious
modification will be considered.
The weak convergence of νn to ν as n→∞ will be defined by

lim
n→∞

∫
fdνn =

∫
fdν (2.8)

for every continuous function in the complex plane C with compact support.

3. Fundamental lemma. In approximation theory, the asymptotic behavior of ex-
tremal polynomials has been studied by a lot of authors [4, 5, 7, 6, 8, 10, 11, 9,
16, 17, 19, 18]. In this section, we present the Fundamental Lemma on extremal w-
polynomials that plays an important role establishing the new fundamental solutions
method.

Fundamental Lemma. The necessary and sufficient condition that

lim
n→∞

∣∣∣∣∣
n∏
i=1
(z−zn,i)w(zn,i)

∣∣∣∣∣
1/n

= exp
{∫

log[|z−t|w(t)]dµw(t)
}

(3.1)

holds uniformly on every compact subset of D is
(A) µn,w converges weakly to µw as n→∞, where µn,w = µ(pn,w) is the normalized

counting measure of pn,w =
∏n
i=1[(z−zn,i)w(zn,i)].

Furthermore, if condition (A) is satisfied, the equality

exp
{∫

log[|z−t|w(t)]dµw(t)
}

cap
(
w,γ

) = 1
w(z)

(3.2)

holds q.e. on γ (we say that a property holds q.e. on γ if the subset γ′ of γ where it
does not hold has capacity zero).

Here, we will sketch the proof of Fundamental Lemma. With the above notation
we state a well-known theorem on the zeros distribution of extremal w-polynomials
which has been established in [17, p. 88–89].

Lemma 3.1. Let

pn,w(z)=
n∏
i=1

[
(z−zn,i)w(z)w(zn,i)

]
(3.3)

be w-polynomials of degree n and let the equality

lim
n→∞

∣∣pn,w(z)∣∣1/n = exp
{
gw(z)

}
(3.4)

holds uniformly on every compact subset of D, where

gw(z)=
∫
log

[|z−t|w(z)w(t)]dµw(t). (3.5)

Then, µn,w converges weakly to µw as n→∞.
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In fact, Lemma 3.1 has been proved for the case when γ lies on the real axis and
w-polynomials

sn,w(z)=
n∏
i=1

[
(z−zn,i)w(z)

]
(3.6)

in [17]. Since the proof for the case of Lemma 3.1 is similar, we will omit it. Since the
equalities (3.1) and (3.4) are equivalent, it has been shown that (A) is the necessary
condition that (3.1) holds uniformly on every compact subset of D.
The following theorem has recently been established by the author. It is easily shown

using [19, Cor. 4.2] and so is omitted.

Lemma 3.2. Let µn,w converge weakly to µw as n→∞ and let γ be of positive capac-
ity at each point (i.e., cap({ζ ∈ γ;|z−ζ| < δ}) > 0 for every z ∈ γ and every δ > 0).
Then, we have

limsup
n �→∞

∥∥pn,w(z)∥∥1/nγ ≤ cap
(
w,γ

)
. (3.7)

Since γ is assumed to be a Jordan curve, it is of positive capacity at each point.
Considering Lemma 3.2, we have the inequality (3.7) when the condition (A) is satisfied.
Here, we note that

limsup
n �→∞

∥∥pn,w(z)∥∥1/nγ ≤ cap
(
w,γ

)
(3.8)

implies

lim
n→∞

∥∥pn,w(z)∥∥1/nγ = cap
(
w,γ

)
. (3.9)

This follows from the result [19, Thm. 2.1(e)] and the definition of cap(w,γ). More
precisely, Theorem 2.1(e) says that the inequality

∫
log |z−t|dµw(t)+Qw(z)≥ Vw−

∫
Qw(t)dµw(t) (3.10)

holds for all z ∈ γ, where Qw(z)= logw(z).
Therefore, from the definition of cap(w,γ) and (3.10), we have

∫
log

[|z−t|w(z)w(t)]dµw(t)≥ Vw (3.11)

for all z ∈ γ, which implies

∥∥pn,w(z)∥∥nγ ≥ cap
(
w,γ

)
. (3.12)

Combining (3.8) and (3.12), we have the equality (3.9).
Under the assumption mentioned above, we state a lemma which was verified in [5].

Lemma 3.3. Let

pn,w(z)=
n∏
i=1

[
(z−zn,i)w(z)w(zn,i)

]
(3.13)
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be w-polynomials of degree n satisfying the conditions (3.14) and (3.15) below

limsup
n �→∞

∥∥pn,w(z)∥∥1/nγ ≤ cap
(
w,γ

)
. (3.14)

liminf
n �→∞

1
n

n∑
i=1

logw(zn,i)≥
∫
logw(t)dµw(t). (3.15)

Then, there holds the equality

lim
n→∞

∣∣pn,w(z)∣∣1/n = exp
{
gw(z)

}
(3.16)

uniformly on every compact subset of D.

We note that if (3.16) holds uniformly on every compact subset of D, the property
(3.15) follows without inf and with equality. It is easily shown by letting z tend to
infinity in (3.16).
If µn,w converges weakly to µw as n→∞, from the definition of the weak conver-

gence we have the equalities

lim
n→∞

1
n

n∑
i=1

logw(zn,i)= lim
n→∞

∫
logw(t)dµw,n(t)=

∫
logw(t)dµw(t). (3.17)

Therefore, Lemma 3.2 and Lemma 3.3 imply that (A) is the sufficient condition that
(3.1) holds uniformly on every compact subset of D. Thus, the first part of Fundamen-
tal Lemma has been proved.
Next, we sketch the proof of (3.2). [19, Thm. 2.1(d)] says that

∫
log |z−t|dµw(t)+Qw(z)≤ Vw−

∫
Qw(t)dµw(t) (3.18)

holds for q.e. z ∈ γ.
Combining (2.3), (3.10), and (3.18), it is easily shown that (3.2) holds for q.e. z ∈ γ.
We will show here two extremal w-polynomials which satisfy condition (A), which

means that the equality

lim
n→∞

∣∣∣∣∣
n∏
i=1
[(z−zn,i)w(zn,i)]

∣∣∣∣∣
1/n

= exp
{∫

log[|z−t|w(t)]dµw(t)
}

(3.19)

holds uniformly on every compact subset of D.
For each integer n≥ 1, let Qn,w be a set of w-polynomials

qn,w(z)=
n∏
i=1

[
(z−zn,i)w(z)w(zn,i)

]
, (3.20)

where the zeros {zn,i}ni=1 lie on the boundary γ of D.
Let q∗n,w(z) be a polynomial such that

∥∥q∗n,w(z)∥∥γ = inf
qn,w∈Qn,w

∥∥qn,w(z)∥∥γ. (3.21)
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The existence of q∗n,w(z) is easily proved by the usual method. Then, q∗n,w(z) is called
a w-Chebyshev polynomial with zeros on γ. It is known that it satisfies the condition
(A) [7].
To show another polynomial satisfying condition (A), we introduce the definition of

w-transfinite diameter. For each integer n≥ 2, let

δn
(
w,γ

)= sup
zn,1,...,zn,n∈γ




∏
1≤i<j≤n

[∣∣zn,i−zn,j∣∣w(zn,i)w(zn,j)]


2/(n(n−1))

=



∏
1≤i<j≤n

[∣∣z∗n,i−z∗n,j
∣∣w(z∗n,i)w(z∗n,j)]



2/(n(n−1))

.

(3.22)

The sequence {δn(w,γ)}∞n=1 converges and

τ
(
w,γ

)= lim
n→∞δn

(
w,γ

)
(3.23)

is called w-transfinite diameter of γ. It is said that {z∗n,i}ni=1 are w-Fekete points. It is
then known that w-polynomials

kn,w(z)=
n∏
j=1

[(
z−z∗n,j

)
w(z)w

(
z∗n,j

)]
(3.24)

satisfy condition (A) [16].
We will present a polynomial with the extremal points {zn,i}ni=1 that satisfies (3.9)

with w(z)= 1. Here, we review the definition of Fejér points.
For a compact set K, let the conformal mapping

ϕ(w)= dw+d0+ d1w +··· , d > 0 (3.25)

from {w;|w| > 1} onto Kc have a continuous extension to {w;|w| ≥ 1}. Then, the
points

zn,k =ϕ
(
e2πi(k−1)/n

)
, (k= 1,2, . . . ,n) (3.26)

are called Fejér points of order n on K.
Let pn(z) be a polynomial whose zeros are Fejér points. It is known [3, 25] that

pn(z) satisfies

lim
n→∞

∥∥pn(z)∥∥1/nK = cap(K). (3.27)

Therefore, from Lemma 3.3 the equality

lim
n→∞

∣∣∣∣∣
n∏
i=1
pn(z)

∣∣∣∣∣
1/n

= exp
{∫

log
[|z−t|]dµ1(t)

}
(3.28)

holds uniformly on every compact subset of D.
If condition (3.9) is satisfied for w(z)= 1, the zeros {zn,i}ni=1 of pn(z) are called to

be uniformly distributed on γ [3].



MATHEMATICAL APPROACH AND NUMERICAL ANALYSIS . . . 355

4. New scheme. LetD andD1(D ⊂D1) be unbounded Jordan domains with ∂D = γ
and ∂D1 = γ1. Also in this section, we assume that both of D and D1 contain ∞ and 0
in their interiors and exteriors, respectively.
Let the function H(z) be harmonic in D1, where H(z) = h(z) and h1(z) on γ and

γ1, respectively. Then, we apply Fundamental Lemma to the domain D1 and let

w1(z)= exp
{−(h1(z)+ log |z|)}= exp{−h1(z)}

|z| . (4.1)

When the points {zn,i}ni=1 on γ1 satisfying condition (A) are determined, the equalities

H∗(z)= log lim
n→∞

∏n
i=1
∣∣(z−zn,i)w1(zn,1)

∣∣1/n
cap(w1,γ1)

=
∫
log

|z−t|w1(t)
cap(w1,γ1)

dµw1(t) (4.2)

hold uniformly on every compact subset of D1, which follows from Fundamental
Lemma.
Since γ is a compact set in D1, the convergence is uniform on γ. Furthermore,

from (3.2)

exp
{∫
log

[|z−t|w1(t)
]
dµw1(t)

}
cap(w1,γ1)

= 1
w1(z)

(4.3)

holds q.e. on γ1. Combining (4.1), (4.2), and (4.3), the function

H1(z)=H∗(z)− log |z| (4.4)

satisfies H1(z)= h1(z) q.e. on γ1. Since

lim
z→∞H1(z)=

∫
log

w1(t)
cap(w1,γ1)

dµw1(t) (4.5)

is finite, H1(z) is harmonic in D1∪∞ [15, 25].
Applying generalized Maximun Principle (two harmonic functions with q.e. same

boundary values are equal to each other in the domain [15, 25]) for the functionH(z)−
H1(z), we obtain the equality H(z)=H1(z) in D1∪∞.
Let h(z) be a given function which is continuous on γ. The above argument suggests

the following algorithm for the fundamental solutions method of Dirichlet problem
(that is, to find the function H(z) harmonic in D∪{∞} such that H(z)= h(z) on γ).

Algorithm 4.1. The approximation Hn(z) of H(z) is obtained as follows
(4a) The charge points are chosen on γ1 such that condition (A) is satisfied.
(4b) The charge at every charge point is assumed to be 1/n.
(4c) The approximation Hn(z) is represented as

Hn(z)=H(∞)+ 1
n

n∑
i=1

log
∣∣∣∣1− zn,iz

∣∣∣∣ (4.6)

for a sufficient large n.
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By Fundamental Lemma, the approximation Hn(z) converges uniformly to H(z) on
D =D∪γ (not on compact sets of D).

Though the numerical solution of Dirichlet problem is theoretically obtained by the
above fundamental solutions method using (4a), (4b), and (4c), it is generally difficult
to find the charge points satisfying condition (A) and H(∞) is not known.
Therefore, we propose the following Algorithm 4.2. The charge points are chosen

by the same method as the conventional one. For example, the charge points for the
domain D = {z;|z| > 1} are uniformly distributed on a circle γ1 = {z;|z| = r ,r < 1}.
The collocation points are analogously chosen on γ.

Algorithm 4.2. The approximation H∗
n(z) of H(z) is obtained as follows

(4e) Let the charge points {zn,i}ni=1 and the collocation points {ζn,i}ni=1 be appropri-
ately chosen on γ1 and γ, respectively.
(4f) When αi(i = 0,1,2, . . . ,n) are the solution of a system of simultaneous linear

equations

α0+
n∑
i=1
αi log

∣∣∣∣1− zn,iζn,k

∣∣∣∣= h(ζn,k), (k= 1,2, . . . ,n), (4.7)

α1+α2+···+αn = 1, (4.8)

the charges at {zn,i}ni=1 are given by {αi}ni=0.
(4g) The approximation H∗

n(z) is represented by

H∗
n(z)=α0+

n∑
i=1
αi log

∣∣∣∣1− zn,iz
∣∣∣∣ (4.9)

for a sufficient large n.
If the charge points and the collocation points are “theoretically” chosen, we suppose

that the approximations

α0 �H(∞), αi � 1
n
, (i= 1,2, . . . ,n) (4.10)

would hold.
The numerical experiments in Section 5 for some examples show that the approxi-

mations hold with high accuracy.
Now, we consider the case whenD is a “bounded” Jordan domain containing 0 and∞

in its interior and exterior, respectively. Using the transformation ζ = 1/z, we propose
the new scheme (to be called Inoue-Scheme) corresponding to (4.9).
Using the scheme, Algorithm 4.2 is translated to the following one for a bounded

Jordan domain

Algorithm 4.3. The approximation Hn(z) of H(z) is obtained as follows
(4e′) Let the charge points {zn,i}ni=1 and the collocation points {ζn,i}ni=1 be appro-

priately chosen on γ1 and γ, respectively.
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(4f′) When αi(i = 0,1,2, . . . ,n) are the solution of a system of simultaneous linear
equations

α0+
n∑
i=1
αi log

∣∣∣∣1− ζn,kzn,i

∣∣∣∣= h(ζn,k), (k= 1,2, . . . ,n), (4.11)

α1+α2+···+αn = 1, (4.12)

the charges at {zn,i}ni=1 are given by {αi}ni=0.
(4g′) The approximation Hn(z) is represented by

Hn(z)=α0+
n∑
i=1
αi log

∣∣∣∣1− z
zn,i

∣∣∣∣ (4.13)

for a sufficient large n.
Note the difference of the schemes of approximations between (4.9) and (4.13). If

the charge points and the collocation points are “theoretically” chosen, we suppose
that the approximations

α0 �H(0), αi � 1
n
, (i= 1,2, . . . ,n) (4.14)

would hold also for bounded Jordan domains.
The numerical experiments for some examples in Section 5 show that the approxi-

mations hold with high accuracy.
Compare Inoue-Scheme to the conventional scheme (Conv-Scheme) [12, 13, 14, 24,

26] and Murota-Scheme [21, 22]

Hn(z)=
n∑
i=1
αi log |z−zn,i| (4.15)

and

Hn(z)=α0+
n∑
i=1
αi log |z−zn,i| (4.16)

with

α1+α2+···+αn = 0, (4.17)

respectively.
Inoue-Scheme and Murota-Scheme have the advantage satisfying the following

(called “an invariant property”)

z �→ az, zn,i �→ azn,i, H(z) �→H(z)+b (4.18)

implies

Hn(z) �→Hn(az), Hn(z) �→Hn(z)+b, (4.19)

where a(�= 0), b are constant.
The property for the scheme is mathematically and physically natural in the sense

that the approximations remain invariant with respect to trivial affine transforma-
tions.
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Though Murota-Scheme has the property under the condition (4.17), Inoue-Scheme
(4.9) and (4.13) have it without any condition.
Applying Inoue-Scheme to typical examples, we will show that the numerical results

of higher accuracy than those of conventional ones can be obtained.
We remark that Murota-Scheme is a special case of Inoue-Scheme, when D is a disk

with the center at the origin and the charge points are distributed on a circle with
center at the origin. It depends on the equalities

α0+
n∑
i=1
αi log |z−zn,i| =α0+

n∑
i=1
αi log |zn,i|+

n∑
i=1
αi log

∣∣∣∣1− z
zn,i

∣∣∣∣

=α0+
n∑
i=1
αi log

∣∣∣∣1− z
zn,i

∣∣∣∣,
(4.20)

because log |zn,i| = constant and (4.17) is satisfied.

5. Numerical example. This section deals with some numerical experiments for
a disk D = {z : |z| < 1} with the boundary γ = {z;|z| = 1} in order to estimate the
accuracy of errors of the approximations by Conv-Scheme, Murota-Scheme and Inoue-
Scheme. More precisely, we consider a harmonic function

H(z)= log
∣∣∣∣z−32

∣∣∣∣ (5.1)

in D = {z : |z|< 1}.
Let

γl =
{
z;
∣∣∣∣z−32z

∣∣∣∣= l
}

(5.2)

and

Γl = {z;|z| = l}. (5.3)

The charge points and the collocation points are chosen there. Then, the approxima-
tions Hn(z) of H(z) are obtained by the fundamental solutions method with Algo-
rithm 4.1, 4.2, and 4.3 and the errors Hn(z)−H(z) are estimated.
(5a) Using Inoue-Scheme (4.11) and (4.12), the charges will first be obtained when

the charge points satisfy condition (A).
The charge points {zn,i}ni=1 on γl are the images of the points

lexp
(
2πj(i−1)

n

)
, j =

√
−1, (i= 1,2, . . . ,n) (5.4)

being distributed on {w;|w| = l} under the mapping

z = 3w
2+w . (5.5)

We consider the case when l = 1.9 for (5.4). It is easily shown that the image of the
charge points {zn,i}ni=1 mapped by ζ = 1/z are uniformly distributed on

{
ζ;
∣∣∣∣ 2
1−3ζ

∣∣∣∣= 1.9
}

(5.6)
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(Fejér points) and so satisfy condition (A). It depends on the fact that

H
(
1
ζ

)
+ log |ζ| = log

∣∣∣∣1−3ζ2

∣∣∣∣= constant (5.7)

implies

log
∣∣∣∣z−32z

∣∣∣∣= constant . (5.8)

The collocation points {ζn,i}ni=1 on γ are chosen for l= 1.0 in (5.4).
For n = 10,11 and the charge points with l = 1.9, we solve a system of simultane-

ous linear equations (4.11) and (4.12) and obtain the following results (to know the
distribution precisely, all the charges are denoted)

Table 1. Charges for n= 10 and l= 1.9 by Inoue-Scheme.

α0 0.40547084E+00 α1 0.99539405E−01 α2 0.10009742E+00

α3 0.10045396E+00 α4 0.99316775E−01 α5 0.10073638E+00

α6 0.99251514E−01 α7 0.10073638E+00 α8 0.99316775E−01

α9 0.10045396E+00 α10 0.10009742E+00

Table 2. Charges for n= 11 and l= 1.9 by Inoue-Scheme.

α0 0.40546044E+00 α1 0.99539405E−01 α2 0.92778033E−01

α3 0.89046800E−01 α4 0.92555946E−01 α5 0.89742958E−01

α6 0.91332757E−01 α7 0.91332757E−01 α8 0.89742958E−01

α9 0.92555946E−01 α10 0.89046800E−01 α11 0.92778033E−01

We note that log(3/2)= 0.4054651 . . . holds. We have the approximations (4.14) as

α0 �H(0)= log
3
2
, αi � 1

n
, (i= 1,2, . . . ,n) (5.9)

with high accuracy for n= 10 but for n= 11.
This fact and Sugihara’s paper [24] suggest to adopt the collocation points that

satisfy also condition (A). Hence, we assume that the collocation points {ζn,i}ni=1 are
the images of the points (5.4) being distributed on {w;|w| = 1.0} under the mapping

z = 3w
2+w . (5.10)
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Table 3. Charges for n= 10 by Inoue-Scheme.

α0 0.40562781E+00 α1 0.99992591E−01 α2 0.10001225E+00

α3 0.99983012E−01 α4 0.10001133E+00 α5 0.99995881E−01

α6 0.10000248E+00 α7 0.99995881E−01 α8 0.10001133E+00

α9 0.99983012E−01 α10 0.10001225E+00

Table 4. Charges for n= 11 by Inoue-Scheme.

α0 0.40554302E+00 α1 0.90884679E−01 α2 0.90937077E−01

α3 0.90880650E−01 α4 0.90935176E−01 α5 0.90882271E−01

α6 0.90932148E−01 α7 0.90882140E−01 α8 0.90938645E−01

α9 0.90903198E−01 α10 0.90885490E−01 α11 0.90938532E−01

It is known that these points are uniformly distributed on γ1 [3]. By the same method
as above, we obtain the results presented in Tables 3 and 4.
Thus, we have the approximations (4.14) as

α0 �H(0)= log
3
2
, αi � 1

n
, (i= 1,2, . . . ,n) (5.11)

with high accuracy for n= 10, and also for n= 11.
The accuracy of the errors are estimated by

∣∣∣Hn(ζn,i+1/2)−H(ζn,i+1/2)
∣∣∣, (5.12)

where ζn,i+1/2 is the middle point between ζn,i and ζn,i+1.
By the Maximun Principle for the harmonic functions, it is sufficient that the errors

are estimated only on the boundary.
For n= 10,11 and the charge points with l= 1.9 determined above (Tables 3 and 4),

the errors are as follows (to know the distribution precisely, all the errors are denoted
in Tables 5 and 6)
(5b) Using Inoue-Scheme and the charges {αi}ni=0 obtained by the same method as

(5a) (Table 1 and 2), the approximations (4.13) are estimated to know the accuracy
by increasing l near the boundary and for a large l. The cases for n = 10,11 and
l= 1.1,1.3,1.5,1.7,1.9,10 are studied.
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Table 5. Errors for n= 10 by Inoue-Scheme.

9.0822577E−06 7.1078538E−06 1.1324883E−06 4.7683715E−07

3.5762786E−07 4.1723251E−07 5.3644180E−07 1.1622906E−06

7.1078538E−06 9.0450048E−06

Table 6. Errors for n= 11 by Inoue-Scheme.

1.9557774E−06 3.7103891E−06 6.2584877E−07 1.0728836E−06

8.3446502E−07 1.1920929E−07 5.9604644E−07 1.3113021E−06

8.6426734E−07 2.9057264E−06 1.9893050E−06

The accuracy of the errors are estimated by the same method as (5a) at the middle
points ζn,i+1/2 between ζn,i and ζn,i+1. The maximums of n errors for n= 10 and 11
are represented in Table 7.

Table 7. Maximum of n errors for n= 10 and 11 by Inoue-Scheme.

1.1 1.3 1.5 1.7 1.9 10

4.9E−03 1.1E−03 2.8E−04 1.1E−04 5.7E−05 2.1E−06

8.8E−04 6.7E−04 3.8E−04 3.3E−04 5.6E−05 2.7E−05

(5c) Using Conv-Scheme, the accuracy of approximations will next be estimated to
compare to Inoue-Scheme.
The charge points {zn,i}ni=1 and the collocation points {ζn,i}ni=1 are (5.4) for l =

1.1,1.3,1.5,1.7,1.9,10 and for l= 1.0, respectively.
For n= 10,11 and the charge points with each l, we solve a system of simultaneous

linear equations by (4.15) and obtain the charges. Using the charges, we estimate the
errors Hn(z)−H(z) by the same method as (5b).
(5d) Using Murota-Scheme, the accuracy of approximations will next be estimated

to compare to Inoue-Scheme and Conv-Scheme.
The charge points {zn,i}ni=1 and the collocation points {ζn,i}ni=1 are also (5.4) for

l= 1.1,1.3,1.5,1.7,1.9,10 and for l= 1.0, respectively.
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Table 8. Maximum of n errors for n= 10 and 11 by Conv-Scheme.

1.1 1.3 1.5 1.7 1.9 10

6.7E−01 3.5E−01 8.6E−03 3.1E−03 1.4E−03 3.8E−04

4.1E−01 2.6E−02 5.6E−03 1.9E−03 7.8E−04 2.7E−04

Table 9. Maximum of n errors for n= 10 and 11 by Murota-Scheme.

1.1 1.3 1.5 1.7 1.9 10

1.3E−01 2.8E−02 3.2E−03 3.3E−03 1.5E−03 3.7E−04

1.1E−01 2.1E−02 5.6E−03 2.0E−03 8.3E−04 2.5E−04

For n= 10,11 and the charge points with each l, we solve a system of simultaneous
linear equations by (4.16) and (4.17) and obtain the charges. Using the charges, we
estimate the errors Hn(z)−H(z) by the same method as (5b).
(5e) Using Fundamental Lemma with mathematical scheme (4.6), the accuracy of

approximations will last be estimated to compare to the above errors in (5a)–(5d).
The charge points {zn,i}ni=1 are same as (5a). The collocation points {ζn,i}ni=1 are not

used.
For n = 10,11, we apply Algorithm 4.1 with the charge at every charge point being

1/n. We need not solve a system of simultaneous linear equations.
We estimate the errors Hn(z)−H(z) by the same method as (5b).

Table 10. Errors for n= 11 and l= 10, by Math-Scheme at middle points.

1.8626451E−08 2.9802322E−08 2.9802322E−08 0.0000000E+00

5.9604644E−08 5.9604644E−08 1.1920929E−07 0.0000000E+00

0.0000000E+00 1.4901161E−08 8.9406967E−08

It is necessary to estimate the errors at the collocation points in (5a) for this case.

6. Concluding remark. Some remarks on the above numerical experiments will be
given in this section
(6a) In all the cases, the accuracy is not improved by increasing the distance of the

charge points from the boundary when they are not too near to the boundary.
(6b) The accuracy of (5e) is superior to (5b), (5c) and (5d). By the new scheme intro-

duced in this paper, numerical results of higher accuracy than the conventional one
are obtained.
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Table 11. Errors for n= 11 and l= 10 by Math-Scheme at collocation points.

1.4901161E−08 2.2351741E−08 5.9604644E−08 1.1920929E−07

1.7881393E−07 0.0000000E+00 0.0000000E+00 0.0000000E+00

1.7881393E−07 2.9802322E−08 2.9802322E−08

(6c) The difference of the accuracy cannot be found between even n and odd n in
the above cases.
(6d) Numerical experiments show that the approximations are impossible to get for

a small l−1 (for example l= 1.01) in (5c) and (5d). However, the errors for n= 10 and
l= 1.01 in (5e) are as follows

Table 12. Errors for n= 10 and l= 1.01 by Math-Scheme at middle points.

9.4208717E−03 4.7457519E−03 5.8910250E−04 7.2479248E−05

4.8339366E−05 4.8279762E−05 7.2658061E−05 5.8916211E−04

4.7457665E−03 9.4208717E−03

Table 13. Errors for n= 10 and l= 1.01 by Math-Scheme at collocation points.

1.6323477E−04 4.0158629E−05 4.5597553E−06 5.9604644E−07

0.0000000E+00 1.7881393E−07 1.1920929E−07 5.9604644E−07

4.5001506E−06 4.0069222E−05

(6e) The distribution of the charge points for (5e) is quite different from the conven-
tional one. More precisely, the circle {z;|z−25/8| = 5/8}(l = 10) containing all the
charge points does not bound the domain D.
(6f) The main object of this paper is to consider the fundamental solutions method

mathematically. Therefore, the accuracy has been estimated forn= 10,11 and by sim-
ple precision (Runfor f-77, PC-486AV). The numerical experiments for n = 20,30, . . .
and by bouble precision will appear in a future paper.
(6g) The new method, especially (5e), introduced in this paper gives higher accuracy

than the conventional one.
(6h) The conventional method is superior in the sense that it can be applied to any

harmonic function with a same distribution of the charge points and the regularity of
the coefficient matrix is verified for the domain with an analytic boundary data.
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(6i) Though the numerical examlpes have been shown only for bounded Jordan do-
mains, the analogous results can be obtained also for unbounded Jordan domains.
We wish that the method mathematically introduced in this paper would contribute

to the developement of conventional fundamental solutions method.
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