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Abstract. We examine a PDE with piecewise constant time delay. The equation is of neu-
tral type since it contains the derivative ut at different values of the t-argument. Further-
more, the argument deviation changes its sign within intervals of unit length, so that the
given PDE is alternately of retarded and advanced type. It is shown that the argument
deviation generates, under certain conditions, oscillations of the solutions, which is an
impossible phenomenon for the corresponding equation without delay. Of special interest
is the appearance of periodic solutions as well as solutions asymptotically approaching
closed curves which are not solutions of the equation studied.
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1. Introduction. The paper continues our earlier work on boundary value problems
(BVP) for partial differential equations with piecewise constant argument (EPCA) which
was initiated in [1]. These equations appear in an attempt to extend the theory of
functional differential equations to systems with discontinuous argument deviations.
EPCA also arise in the process of replacing some terms of a differential equation by
their piecewise constant approximations. Thus, the equation

ut(x,t)= a2uxx(x,t)−bu(x,t) (1.1)

describes heat flow in a rod with both diffusion a2uxx along the rod and heat loss (or
gain) across the lateral sides of the rod. Measuring the lateral heat change at discrete
moments of time leads to the equation with piecewise continuous delay

ut(x,t)= a2uxx(x,t)−bu
(
x,[t]

)
, (1.2)

which was investigated in [1]. Here [·] designates the greatest integer function and
(x,t)∈ [0,1]×[0,∞). The equation

ut(x,t)= a2uxx(x,t)−bu
(
x,

[
t+ 1

2

])
, (1.3)

with the boundary conditions

u(0, t)= 0, u(1, t)= 0, (1.4)

and the initial condition

u(x,0)=u0(x), (1.5)

was investigated in [2].
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A function u(x,t) is said to be a solution of the above BVP if it satisfies the condi-
tions

(i) u(x,t) is continuous in G = [0,1]×[0,∞);
(ii) ut and uxx exist and are continuous in G, with the possible exception of the

points (x,n+1/2), where one-sided derivatives exist (n= 0,1,2, . . . );
(iii) u(x,t) satisfies equation (1.3) in G, with the possible exception of the points

(x,n+1/2), and conditions (1.4) and (1.5).
Equation (1.3) is of considerable interest since the argument deviation

τ(t)= t−
[
t+ 1

2

]
(1.6)

changes sign in each interval (n−1/2,n+1/2) with integer n. Indeed, τ(t) < 0 for
n−1/2 ≤ t < n and τ(t) > 0 for n < t < n+1/2, which means that equation (1.3)
is alternately of advanced and retarded type. The purpose of this paper is to explore
the influence of terms with piecewise constant time on the behavior of the solutions,
especially their oscillatory properties, for partial differential equations of neutral type.

2. A neutral system of EPCA. Consider the BVP consisting of the equation

Ut(x,t)=AUxx(x,t)+BUt
(
x,

[
t+ 1

2

])
, (2.1)

the boundary condition

U(0, t)=U(1, t)= 0, (2.2)

and the initial condition

U(x,0)=U0(x). (2.3)

Here, U(x,t) and U0(x) are real m×m matrices, A and B are real constant m×m
matrices and [·] denotes the greatest integer function. Equation (2.1) is of neutral type
since it includes the derivative Ut at different values of t.
Looking for a solution in the form

U(x,t)= T(t)X(x) (2.4)

gives

T ′(t)X(x)=AT(t)X′′(x)+BT ′
([
t+ 1

2

])
X(x) (2.5)

whence (
T ′(t)−BT ′

([
t+ 1

2

]))
X(x)=AT(t)X′′(x) (2.6)

and

T−1(t)A−1
(
T ′(t)−BT ′

([
t+ 1

2

]))
=X′′(x)X−1(x)=−P2, (2.7)

which generates the BVP

X′′(x)+P2X(x)= 0, X(0)=X(1)= 0, (2.8)

and the equation with piecewise constant argument

T ′(t)=−AT(t)P2+BT ′
([
t+ 1

2

])
. (2.9)
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The general solution of equation (2.8) is

X(x)= cos(xP)C1+sin(xP)C2, (2.10)

where

cos(xP)=
∞∑
n=0

(−1)nx2nP2n

(2n)!
, sin(xP)=

∞∑
n=0

(−1)nx2n+1P2n+1

(2n+1)! , (2.11)

and C1, C2 are arbitrary constant matrices. From X(0) = 0, we conclude that C1 = 0,
and the condition X(1) = 0 enables us to choose sinP = 0 (although this is not the
necessary consequence of the equation (sinP)C2 = 0). This can be written as

eiP −e−iP = 0, e2iP = I. (2.12)

Assuming that all the eigenvalues p1,p2, . . . ,pm of P are distinct and

S−1PS =D = diag
(
p1,p2, . . . ,pm

)
, (2.13)

we have

exp
(
2iSDS−1

)= I, Se2iDS−1 = I, e2iD = I. (2.14)

Therefore,

D = diag
(
πj1,πj2, . . . ,πjm

)
, (2.15)

where the jk are integers, and

P = SDS−1, (2.16)

P2 = SD2S−1 = Sdiag(π2j21 ,π
2j22 , . . . ,π

2j2m
)
S−1, (2.17)

sin(xP)= S sin(xD)S−1 = Sdiag(sin(πj1x), . . . ,sin(πjmx))S−1. (2.18)

Furthermore, we can put

Pj = diag
(
π
(
m(j−1)+1), . . . ,πmj), j = 1,2, . . . (2.19)

in (2.8) and obtain the following result.

Theorem 2.1. There exists an infinite sequence of matrix eigenfunctions for BVP
(2.8)

Xj(x)=
√
2diag

(
sin

(
π
(
m(j−1)+1)x), . . . ,sin(πmjx)), j = 1,2, . . . (2.20)

which is complete and orthonormal in the space L2[0,1] ofm×m matrices, that is,

∫ 1

0
Xj(x)Xk(x)dx =


0, j ≠ k,

I, j = k, (2.21)

where I is the identity matrix.

Note that the matrices SXj(x)S−1 satisfy Theorem 2.1 for any nonsingular S.

Theorem 2.2. Let E(t) be the solution of the problem

T ′(t)=−AT(t)P2, T (0)= I (2.22)
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and let

M(t)= I−(
E(t)−I)A−1(B−I)−1A, (2.23)

M0 =M−1
(
− 1

2

)
M
(
1
2

)
. (2.24)

If the matrices A, B− I, and M(−1/2) are nonsingular, then equation (2.9), with the
initial condition T(0)= C0, has on [0,∞) a unique solution

T(t)=M
(
t−

[
t+ 1

2

])
M[t+1/2]

0 C0. (2.25)

Proof. On the interval n−1/2 ≤ t < n+1/2, where n ≥ 0 is an integer, equation
(2.9) turns into

T ′(t)=−AT(t)P2+BT ′(n), (2.26)

with the general solution

T(t)= E(t−n)C+A−1BT ′(n)P−2. (2.27)

At t =n, we find from (2.26) that

BT ′(n)= T ′(n)+AT(n)P2, (2.28)

and substituting in (2.27), we get

T(t)= E(t−n)C+A−1T ′(n)P−2+T(n). (2.29)

Furthermore, from (2.26) we have

T ′(n)=−AT(n)P2+BT ′(n), (2.30)

whence

T ′(n)= (B−I)−1AT(n)P2. (2.31)

At t =n, we find from (2.29) that

C =−A−1T ′(n)P−2 (2.32)

and

T(t)=M(t−n)T(n), (2.33)

where M(t) is defined in (2.23). Letting t→n+1/2 from the left gives

T
(
n+ 1

2

)
=M

(
1
2

)
T(n). (2.34)

Furthermore, on the interval n+1/2≤ t < n+3/2, we have
T(t)=M(t−n−1)T(n+1), (2.35)

and letting t→n+1/2 from the right yields

T
(
n+ 1

2

)
=M

(
− 1

2

)
T(n+1), (2.36)

that is,

M
(
− 1

2

)
T(n+1)=M

(
1
2

)
T(n). (2.37)
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From here,

T(n+1)=M0T(n) (2.38)

and

T(n)=Mn
0 T(0), (2.39)

where the matrix M0 is given in (2.24). Substituting this expression in (2.33) proves
(2.25).

3. A scalar EPCA of parabolic type. We examine the scalar version of the problem
of the previous section and catalog the behavior of the solutions. To be specific, we
examine the boundary value problem (BVP) for the equation with piecewise constant
argument (EPCA)

ut(x,t)= a2uxx(x,t)+but
(
x,

[
t+ 1

2

])
, (3.1)

with homogeneous boundary conditions

u(0, t)= 0, u(1, t)= 0, (3.2)

and initial condition

u(x,0)=u0(x). (3.3)

Note that we have taken A = a2 and B = b in (2.1). If we let P = λ, separation of
variables yields the scalar analog of equation (2.8), namely,

X′′ +λ2X = 0, X(0)=X(1)= 0, (3.4)

with the orthonormal basis of solutions

Xj(x)=
√
2sinλjx, λj =πj, j = 1,2,3, . . . (3.5)

on [0,1]. The scalar version of equation (2.9) is

T ′j (t)=−a2λ2jTj(t)+bT ′j
([
t+ 1

2

])
, (3.6)

where Tj is the solution corresponding to λj . Since (3.1) is a particular case of (2.1),
with A= a2 and B = b, problem (2.22) becomes

T ′j (t)=−a2λ2jTj(t), Tj(0)= 1 (3.7)

whose solution is

Ej(t)= e−djt, (3.8)

where dj = a2λ2j . Then, by virtue of (2.23) and (2.24), it follows that

Mj(t)= b−e
−djt

b−1 (3.9)

and

M0j = b−e
−dj/2

b−edj/2 . (3.10)
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Substituting this into (2.25) produces the solution of (3.6)

Tj(t)=
(
b−e−dj/2
b−edj/2

)[t+1/2](
b−e−dj(t−[t+1/2])

b−1

)
Tj(0). (3.11)

The value Tj(0) can be obtained from the initial condition. This follows when we write
the solution u(x,t) to (3.1) as a superposition of the functions Xj and Tj giving

u(x,t)=
∞∑
j=1
Tj(t)

√
2sin(πjx). (3.12)

When t = 0, we have

u(x,0)=u0(x)=
∞∑
j=1
Tj(0)

√
2sin(πjx). (3.13)

Hence, Tj(0) is simply the Fourier coefficient of u0(x), i.e.,

Tj(0)= û0(j)=
√
2
∫ 1

0
u0(x)sin(πjx)dx. (3.14)

With this description, we can now summarize in the theorems below the behavior
of the solutions to problem (3.1) and illustrate the far more complicated behavior of
solutions to EPCA problems as compared to problems without a time delay.

Theorem 3.1. The time functions Tj(t) in the separation of variables solution (3.12)
to the boundary value problem (3.1) with b < 0 tend to zero monotonically as t →∞.
(See Figure 3.1.)

1.0

0.8

0.6

0.4

0.2

1 2 3 4 5 6 7

Figure 3.1. Tj(t) for b(t)= b, b =−0.9, j = 2, a= 1/π .

Proof. For the proof of Theorem 3.1 as well as the proofs of the next two theo-
rems, we must examine the ratio

r(j)≡ b−e
−dj/2

b−edj/2 (3.15)

which appears in (3.11). Also, note that the other factor in (3.11),

Hj(t)≡
(
b−e−dj(t−[t+1/2])

b−1

)
(3.16)
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is a function of period 1 and is monotone on each interval of the form [n− 1/2,
n+1/2),n= 0,1,2, . . . .
If b < 0, the ratio satisfies the inequality 0< r(j) < 1. The left inequality is obvious.

The right inequality holds because if r(j)≥ 1, then we have the impossibility edj ≤ 1.
Furthermore, Hj(t) is monotonically decreasing on each interval [n−1/2,n+1/2),
so Tj(t) → 0 monotonically as t → ∞. See Figure 3.1 for a typical example of a Tj
function for b < 0. Note the discontinuities in the derivatives at the points n+1/2,
n= 0,1,2,3, . . . where we have jumps in the piecewise constant argument [t+1/2]. In
this case, the corresponding solutions to the nondelay equation (see (3.26) and (3.27)
below) are also monotonically decaying to zero.

Theorem 3.2. For 0 < b < 1, the behavior of the time functions Tj(t) in (3.12) de-
pends on the relative values of j and

W ≡
√
−2lnb
a2π2

. (3.17)

Specifically,
(a) If j <W , then Tj(t)→ 0 monotonically as t→∞.
(b) If j = W , Tj(t) = 0 for t ≥ 1/2 and Tj(t) → 0 monotonically as t → 1/2− on

[0,1/2].
(c) If j > W , then Tj(t) → 0 as t → ∞, but oscillates (crosses the time axis in each

interval [n−1/2,n+1/2), n= 0,1,2, . . . ). (See Figure 3.2.)

20

10

−10

−20

−30

1 2 3 4 5 6 7

Figure 3.2. Tj(t) for b(t)= b, b = 0.99, j = 1, a= 1/π .

Proof. The ratio defined above satisfies−1< r(j) < 1 for 0< b < 1, as can be seen
by arguments similar to those used in the proof of Theorem 3.1. This means that the
solutions Tj dampen with increasing time. If, in addition, j <W , then 0< r(j) < 1 so
that the solutions Tj monotonically dampen to zero.
On the other hand, if j > W , the ratio satisfies −1 < r(j) < 0 so that solutions

dampen to zero and oscillate. See Figure 3.2.
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Finally, for j =W , we have the equivalent condition

b−e−dj/2 = 0, (3.18)

and so r(j) = 0 for this value of j. By equation (3.11), we see that Tj(t) = 0 for all
t ≥ 1/2. On the initial interval [0,1/2], Tj(t) goes to zeromonotonically becauseHj(t)
is monotone on [0,1/2).

The Tj functions for the nondelay equation, given below in (3.27), monotonically
dampen to zero for all j and so do not oscillate when 0< b < 1.

Theorem 3.3. For b > 1, the behavior of the time functions Tj(t) in (3.12) depends
on the value of j and the numbers

Q≡
√

2lnb
a2π2

, R ≡
√
2cosh−1(b)
a2π2

. (3.19)

(a) If j < Q, then Tj(t) grows monotonically and without bound as t →∞ provided
Tj(0)≠ 0. (See Figure 3.3.)

(b) If j =Q, then Tj(t)= 0 for all t ≥ 0 provided u0(x) is orthogonal to
√
2sin(πjx);

otherwise the separation of variables method does not provide a solution.
(c) If Q < j < R, then Tj(t) grows without bound and oscillates provided Tj(0) ≠ 0.

(See Figure 3.4.)
(d) If j = R, then Tj(t) is periodic and oscillating for all t ≥ 0. (See Figure 3.5.)
(e) If j > R, then Tj(t)→ 0 as t→∞, but oscillates. (See Figure 3.6.)

2

4

6

8

10

1 2 3 4

Figure 3.3. Tj(t) for b(t)= b, b = 3, j = 1, a= 1/π .

Proof. If j < Q, the ratio r(j) > 1 so that solutions Tj grow monotonically and
without bound provided Tj(0)= û0(j)≠ 0, but do not oscillate. See Figure 3.3 for an
illustration of this.
When Q < j < R, the ratio r(j) < −1. So solutions Tj grow without bound and

oscillate provided Tj(0)= û0(j)≠ 0. See Figure 3.4.
If j = R, then r(j)=−1 so that we have oscillating, periodic solutions with period 2.

See Figure 3.5.
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Figure 3.4. Tj(t) for b(t)= b, b = 1.2, j = 1, a= 1/π .
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Figure 3.5. Tj(t) for b(t)= b, b = cosh[2], j = 2, a= 1/π .
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Figure 3.6. Tj(t) for b(t)= b, b = 1.1, j = 1, a= 1/π .

If j > R, as is the case for all large j, the ratio satisfies−1< r(j) < 0. So our solutions
Tj oscillate and dampen with time to zero. See Figure 3.6.
Finally, if j = Q, then Tj(t) = 0 for all t ≥ 0 for certain initial condition u0(x). To
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see this, realize that this condition is equivalent to

b−edj/2 = 0, (3.20)

and so we cannot use equation (3.11) for Tj(t), but equation (2.33) does apply and
becomes, in the scalar case,

Tj(t)= b−e
−dj(t−n)

b−1 Tj(n). (3.21)

Because we require Tj(t) to be continuous,

T(n+1)j
(
n+ 1

2

)
= lim
t→(n+1/2)−

Tnj(t)≡ Tnj
(
n+ 1

2

)
, (3.22)

where Tnj denotes the restriction of the solution Tj to the interval n− 1/2 ≤ t <
n+1/2. Therefore, by our assumption b > 1 and equation (3.21),

T(n+1)j
(
n+ 1

2

)
= b−e

dj/2

b−1 T(n+1)j(n+1)= 0, (3.23)

and so

0= Tnj
(
n+ 1

2

)
= b−e

−dj/2

b−1 Tnj(n). (3.24)

Since

b−e−dj/2 ≠ 0 (3.25)

for b > 1, Tnj(n) = 0. Hence, by equation (3.21), Tnj(t) = 0 for all t in the interval
n−1/2 ≤ t < n+1/2. As this argument applies for any n, we have Tj(t) = 0 for all
t ≥ 0.
Since Tj(0) = 0 and since Tj(0) is the Fourier coefficient of the initial condition by

equation (3.14), we conclude that u0(x) must be orthogonal to Xj(x)=
√
2sin(πjx).

Otherwise, the superposition series of equation (3.12) cannot represent u0(x) as we
do not have equality when t = 0. The separation of variables method fails to yield a
solution if the initial condition u0(x) is not orthogonal to sin(πjx) for this value of j.

The nondelay equation (3.26), described below, has solutions Tj (3.27) which in-
crease monotonically and without bound for all j if b > 1 and Tj(0)≠ 0.

Remark. For comparison, the nondelay equation

ut(x,t)= a2uxx(x,t)+but(x,t) (3.26)

has, upon application of separation of variables, solution functions

Tj(t)= edjt/(b−1)Tj(0). (3.27)

Since dj > 0 for all j = 1,2,3, . . . , the Tj(t) functions are either monotonically increas-
ing without bound or monotonically decaying to zero, depending on whether b > 1
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or b < 1. Therefore, the appearance of oscillations in the EPCA problem (3.1) is a
fundamental difference of this type of problem from problems without delay. This
phenomenon has been observed before in [1, 2]. However, what is unique about the
work of this paper is the appearance of periodic solutions. As we will see in the follow-
ing examples, some of the periodic solutions involve oscillation (crossing of the time
axis for arbitrarily large t), while others do not cross the axis at all. Also, the period
of the periodic solutions become an issue as we exhibit a problem which has sev-
eral periodic solutions with periods different from the piecewise constant argument
t−[t+1/2], which has period 1.

Remark. For b = 1, equation (3.9) is not defined and our assumption in Theorem
2.2 that B−I = b−1 be nonsingular does not hold. In fact, our problem (3.1) does not
have a nonzero solution that is a superposition of solutions of the form described
above. The same is true of the nondelay equation as the reader can verify for himself.
To see this for the delay equation, let b = 1 and substitute n for t in equation (3.6) to
obtain

T ′j (n)=−djTj(n)+T ′j (n), j = 1,2,3, . . . (3.28)

or

Tnj(n)= 0, n= 0,1,2, . . . , j = 1,2,3, . . . . (3.29)

In particular, Tj(0)= T0j(0)= 0 for all j = 1,2,3, . . . . Hence, when we substitute t = 0
into the superposition equation (3.12) of the solutions Xj(x)Tj(t), we have

u(x,0)=u0(x)=
∞∑
j=1
Xj(x)Tj(0)= 0 (3.30)

and we see that the separation of variables does not provide a solution for u0(x)≠ 0,
but does yield the trivial solution for u0(x)≡ 0.
Note that the nondelay equation (3.26) has no solution for u0(x) ≠ 0 and only the

trivial solution for u0(x)= 0.
4. Generalizations to scalar time-dependent B = b(t). We can generalize our prob-

lem (2.1), (2.2), and (2.3) in the scalar case by replacing the constant matrix B with
scalar function b(t) to obtain

ut(x,t)= a2uxx(x,t)+b(t)ut
(
x,

[
t+ 1

2

])
, (4.1)

where we impose the same homogeneous boundary conditions

u(0, t)= 0, u(1, t)= 0, (4.2)

and the same initial condition

u(x,0)=u0(x). (4.3)

Solving this by using separation of variables, as before, produces the following ver-
sions of the corresponding equations from Section 2

T ′(t)−b(t)T ′
([
t+ 1

2

])
a2T(t)

= X
′′(x)
X(x)

=−P2. (4.4)
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As in Section 2, the boundary conditions require that P be any of the numbers λj =πj,
j = 1,2,3, . . . , and that for P = λj

Xj(x)=
√
2sin(πjx) j = 1,2,3, . . . . (4.5)

Also, for P = λj the time equation becomes

T ′j (t)=−a2λ2jTj(t)+b(t)T ′j
([
t+ 1

2

])
. (4.6)

This can be easily solved on the individual time intervals n−0.5≤ t < n+0.5 because
[t+1/2]=n, a constant, on these intervals. If we denote by Tnj(t) the solution of this
equation on the interval n−0.5≤ t < n+0.5 and if we let dj = a2λ2j , then

Tnj(t)= Cnje−dj(t−n)+Bnje−djt
∫
b(t)edjtdt, (4.7)

where the integral on the right-hand side represents any antiderivative of b(t) and
where Bnj is a constant that is defined by

Bnj ≡ T ′nj
([
n+ 1

2

])
= T ′nj(n). (4.8)

To find a more useful formula for Bnj , we let t =n in (4.6) to obtain

Bnj = djTnj(n)b(n)−1 , (4.9)

provided b(n) �= 1 for all n= 0,1,2,3, . . . . Furthermore, if we define the function

Enj(t)≡ dje−djt

b(n)−1
∫
b(t)edjtdt, (4.10)

we can write our time solutions on [n−0.5,n+0.5) as

Tnj(t)= Cnje−dj(t−n)+Enj(t)Tnj(n) (4.11)

for b(n) �= 1 and n= 0,1,2,3, . . . .
To find a formula for Cnj , we let t =n in (4.11) to obtain

Cnj =
[
1−Enj(n)

]
Tnj(n). (4.12)

If we define the constant

Dnj = 1−Enj(n), n= 0,1,2,3, . . . , (4.13)

we can write

Tnj(t)=
[
Dnje−dj(t−n)+Enj(t)

]
Tnj(n), (4.14)

provided b(n) �= 1 for n= 0,1,2,3, . . . .
In order to preserve continuity, we must have the solutions Tnj(t) and T(n−1)j(t) to

be equal at t =n−0.5. Therefore,

Tnj(n−0.5)=
[
Dnjedj/2+Enj(n−0.5)

]
Tnj(n) (4.15)
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must equal

lim
t→(n−0.5)−

T(n−1)j =
[
D(n−1)je−dj/2+E(n−1)j(n−0.5)

]
T(n−1)j(n−1) (4.16)

yielding

Tnj(n)= Fj(n)T(n−1)j(n−1), (4.17)

where we have defined the function

Fj(n)≡ D(n−1)je
−dj/2+E(n−1)j(n−0.5)

Dnjedj/2+Enj(n−0.5)
, (4.18)

provided

Dnjedj/2+Enj(n−0.5)≠ 0 for all n= 0,1,2,3, . . . . (4.19)

This relation allows us to relate Tnj(n) to Tj(0) = T0j(0) by the following calcula-
tions

Tnj(n)= Fj(n)T(n−1)j(n−1)
= Fj(n)Fj(n−1)T(n−2)j(n−2)
= Fj(n)Fj(n−1)Fj(n−2)T(n−3)j(n−3)
= ···
= Fj(n)Fj(n−1)Fj(n−2)···Fj(2)Fj(1)T0j(0)

=

 n∏
k=1
Fj(k)


Tj(0).

(4.20)

Therefore, we can write the solution Tnj(t) on the interval n−0.5≤ t < n−0.5 as

Tnj(t)=
[
Dnje−dj(t−n)+Enj(t)

] n∏
k=1
Fj(k)


Tj(0), (4.21)

where dj = a2λ2j , n= [t+1/2],

Enj(t)≡ dje−djt

b(n)−1
∫
b(t)edjtdt, (4.22)

Dnj ≡ 1−Enj(n), (4.23)

Fj(n)≡ D(n−1)je
−dj/2+E(n−1)j(n−0.5)

Dnjedj/2+Enj(n−0.5)
, (4.24)

and where we define

0∏
k=1
Fj(k)≡ 1. (4.25)

We also require that b(n) �= 1 for all n= 0,1,2,3, . . . and that

Dnjedj/2+Enj(n−0.5) �= 0 for all n= 1,2,3,4 . . . . (4.26)

We complete our discussion of the solution to problem (4.1) by summarizing our
calculations in the following theorem.
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Theorem 4.1. The solution to BVP (4.1) can be written as

u(x,t)=
∞∑
j=1
Xj(x)Tj(t), (4.27)

where Xj is given by

Xj(x)=
√
2sin(πjx), j = 1,2,3, . . . (4.28)

and Tj is given by

Tj(t)=
[
Dnje−dj(t−n)+Enj(t)

] n∏
k=1
Fj(k)


Tj(0), (4.29)

with dj = a2π2j2 and n = [t + 1/2]. The functions Enj , Dnj , and Fj are given in
(4.22), (4.23), (4.24), (4.25), and (4.26). Also, the initial value Tj(0) is determined, as
in Section 3, by

Tj(0)= û0(j)=
√
2
∫ 1

0
u0(x)sin(πjx)dx. (4.30)

Remark. The reader can verify for himself that formula (4.29) reduces to (3.11)
for b(t)= b.

Remark. In the previous discussion, we required that condition (4.26) holds for all
n = 1,2,3,4, . . . . We show that should this condition be violated, the Fourier method
does not provide solutions except for restricted conditions on u0(x). To see this,
suppose

Dnjedj/2+Enj(n−0.5)= 0 (4.31)

for n= k, but that

Dnje−dj/2+Enj(n+0.5) �= 0 (4.32)

for all n= 0,1,2,3, . . . ,k−1. If we let t = k−0.5 in (4.14), we get

Tkj(k−0.5)=
[
Dkjedj/2+Ekj(k−0.5)

]
Tkj(k)= 0. (4.33)

Since the solutions Tkj and T(k−1)j must be equal at k−0.5, then
0= Tkj(k−0.5)
= lim
t→(k−0.5)−

T(k−1)j(t)

= [
D(k−1)je−dj/2+E(k−1)j(k−0.5)

]
T(k−1)j(k−1),

(4.34)

so that by our assumptions T(k−1)j(k−1) = 0. Therefore, by (4.14), for all t ∈ [k−
1.5,k−0.5],

T(k−1)j(t)=
[
D(k−1)je−dj(t−k+1)+E(k−1)j(t)

]
T(k−1)j(k−1)= 0. (4.35)
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In particular, T(k−1)j(k−1.5)= 0. Now, if we match our solutions at t = k−1.5, we get
0= T(k−1)j(k−1.5)
= lim
t→(k−1.5)−

T(k−2)j(t)

= [
D(k−2)je−dj/2+E(k−2)j(k−1.5)

]
T(k−2)j(k−2),

(4.36)

and so T(k−2)j(k−2) = 0 and also T(k−2)j(t) = 0 for all t ∈ [k−2.5,k−1.5] by (4.14).
Continuing in this fashion, we have Tj(t) = 0 on the interval [0,k−0.5] and, in par-
ticular, Tj(0) = 0. So, by (4.29), Tj(t) = 0 for all t ≥ 0. Also, by letting t = 0 in (4.27),
we get

u0(x)=
∑
i�=j
Ti(0)Xi(x). (4.37)

If u0(x) cannot be completely expressed by this series, i.e., if û0(j) ≠ 0, then the
Fourier method described in this paper does not provide the solution since û0(j) =
Tj(0).
For the example of b(t)= b, we saw the consequences of the violation of condition

(4.26). Indeed, this condition does not hold for b > 1 when j satisfies

−edj/2+b = 0, (4.38)

i.e., when

j =
√

2lnb
a2π2

, (4.39)

(see Section 3). As noted in Section 3 and above, we must have û0(j)= 0 in order for
ourmethod to describe the solution. More importantly, the value of j above represents
a sharp division between Tj solutions with monotonic growth (for j smaller), and Tj
solutions with growth and oscillation (for j larger). For j assuming this critical value,
Tj(t)≡ 0.

5. A scalar EPCA for b(t) = bcos(2πt). As we seek periodic solutions, a natural
time-dependent function b(t) to consider is b(t)= bcos(αt), which has period 2π/α,
for some real number α. In this section, we discuss in detail cos(2πt), which has the
same period as does the expression t−n = t− [t+1/2] found in (4.29). We do not
discuss the cases whenα is amultiple of 2π as they generate similar solution behavior.
However, in the next section we discuss α=π which exhibits very different solution
properties.
To begin, we first write explicitly the solution (4.29) to the BVP (4.1) with b(t) =

bcos(αt) for any α. We need the indefinite integral∫
b(t)edjtdt = bedjt√

d2j +α2
cos(αt−γ), (5.1)

where γ is defined by

cosγ = dj√
d2j +α2

, sinγ = α√
d2j +α2

(5.2)
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to yield, by (4.22),

Enj(t)= bdj√
d2j +α2

cos(αt−γ)
bcos(αn)−1 , (5.3)

which for α= 2π becomes

Enj(t)=
bd2j

(b−1)(d2j +α2)

[
cos(αt)+ α

dj
sin(αt)

]
, (5.4)

provided b �= 1. In what follows it is convenient to define the parameter

pj =
d2j +α2(1−b)

bd2j
. (5.5)

This allows us to write

Enj(t)= −1
pj−1

[
cos(αt)+ α

dj
sin(αt)

]
(5.6)

and since Dnj = 1−Enj(n), by (4.23), we have

Dnj = pj
pj−1 . (5.7)

Hence,

Hj(t)≡
[
Dnje−dj(t−n)+Enj(t)

]
= 1
pj−1

[
pje−dj(t−n)−cos(αt)− α

dj
sin(αt)

]
.

(5.8)

The ratio function Fj(n), given by (4.24), in this case, turns out to be independent of
n since

Fj(n)= pje
−dj/2+1

pjedj/2+1
. (5.9)

Therefore, by (4.29),

Tj(t)= 1
pj−1

[
pje−dj(t−n)−cos(αt)− α

dj
sin(αt)

](pje−dj/2+1
pjedj/2+1

)n
Tj(0)

=Hj(t)
(
pje−dj/2+1
pjedj/2+1

)n
Tj(0).

(5.10)

Since α = 2π and n = [t + 1/2], Hj(t) is 1-periodic and so the behavior of the
solutions Tj(t) is primarily governed by the ratio

r(j)= Fj(n)= pje
−dj/2+1

pjedj/2+1
, (5.11)

though we shall see that the behavior of Hj(t) will also play a role, something that
was not the case for b(t)= b.
To analyze the behavior of the solutions Tj(t), we make use of the parameters dj

and pj to classify the solutions. This is possible because only dj and pj appear in
the ratio r(j) above. This is also necessary as it is not possible in all cases to solve
for j explicitly in terms of a and b as was done for b(t)= b. To determine how Tj(t)
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behaves, use j, a, and b to compute dj and pj , and then determine which relationship
below dj and pj satisfy. The behavior of Tj is described in the text accompanying the
relation.

Theorem 5.1. The solution to BVP (4.1) with b(t) = bcos(2πt), b ≠ 0, 1, is as de-
scribed in Theorem 4.1 with Tj(t) given by (5.10). The time functions Tj(t) behave as
follows:
(a) For pj <−edj/2, Tj(t) dampens to zero and may or may not oscillate.
(b) For pj =−edj/2, Tj(t)= 0 for all t ≥ 1/2.
(c) For −edj/2 <pj <−1/cosh(dj/2), Tj(t) oscillates and dampens to zero as t→∞.
(d) For pj =−1/cosh(dj/2), Tj(t) is an oscillating, 2-periodic solution.
(e) For −1/cosh(dj/2) < pj <−e−dj/2, Tj(t) is oscillating and unbounded as t→∞.
(f) For pj = −e−dj/2, Tj(t) ≡ 0 for all t ≥ 0 if u0(x) is orthogonal to

√
2sin(πjx);

otherwise separation of variables does not provide a solution.
(g) For −e−dj/2 <pj < 0, Tj(t) is oscillating and unbounded as t→∞.
(h) For pj = 0, Tj(t) is an oscillating, 1-periodic solution.
(i) For 0<pj < 1, Tj(t)→ 0 as t→∞ and oscillates.
(j) For pj = 1, separation of variables does not provide a solution.
(k) For pj > 1, Tj(t)→ 0 as t→∞ and may or may not oscillate.

Proof. The cases listed in the theorem canmost readily be discerned by examining
the graph of the ratio function r(j), not as a function of j, but as a function of pj .
This is done in Figure 5.1. Again, if |r(j)|> 1, then Tj(t) grows without bound while
if |r(j)| < 1, then Tj(t) dampens to zero. If |r(j)| = 1, the solutions are periodic. If
r(j) < 0, then we are guaranteed to have oscillations while if r(j) > 0, then we may
or may not have oscillations depending on the behavior of Hj(t). These remarks are

−1
−e

dj
2 −e−

dj
2

e−dj
1

r(j)

pj

Figure 5.1. Ratio function r(j) for b(t)= bcos(2πt), j = 1, a= 1/π .

sufficient to completely prove (c), (d), and (e) of the theorem as r(j) is negative for
these values of pj . See Figure 5.1. In fact, the ratio r(j)=−1 in case (d) guaranteeing
that Hj(t) must cross the time axis an odd number of times in each interval [n−
1/2,n+1/2). To see this, recall that in order to ensure continuity of Tj at the endpoints
of these intervals, the ratio r(j)must act in a way so as to join together the segments
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ofHj(t) in adjacent intervals of the form [n−1/2,n+1/2). Since the ratio is negative,
the values of Hj(t) near the endpoints of each of these intervals must be of opposite
sign and, consequently, Hj(t) must cross the axis an odd number of times. Hence,
Tj(t)must be 2-periodic, not 1-periodic, asHj(t) requires two unit intervals to repeat.
Also, from Figure 5.1, the ratio r(j) = 0 for pj = −edj/2 so that Tj(t) ≡ 0 for all

t ≥ 1/2, as can be seen from (5.10). On [0,1/2), Tj(t)=Hj(t)Tj(0). This gives (b).
In case (f) the ratio r(j) is not defined since condition (4.26) is violated, i.e.,

Dnjedj/2+Enj(n−0.5)= pje
dj/2+1
pj−1 = 0, (5.12)

and so by the second remark following Theorem 4.1, we see that Tj(t)≡ 0 for t ≥ 0 if
u0(x) is orthogonal to sin(πjx). If u0 is not orthogonal to

√
2sin(πjx), the Fourier

method does not provide a solution.
In the remaining six cases, (a) and (g) through (k), the ratio is positive and so wemust

examine the function Hj to see if there are oscillations. For the problem b(t)= b, the
function (3.11),

(
b−e−dj(t−[t+1/2])

b−1

)
(5.13)

is always increasing or decreasing on [n−1/2,n+1/2) so that if the corresponding
Tj function oscillates, it is because this function has crossed the axis once and once
only. The ratio function in that case must be negative to ensure continuity. However,
for b(t) = bcos(2πt), the function Hj(t) may cross the axis 0, 1, or 2 times on a
single unit interval [n−1/2,n+1/2). If it crosses twice, the ratio function must be
positive for the solutions to match up at n+1/2, n = 0,1,2, . . . . Therefore, we must
look closely at the behavior of Hj to determine if there are oscillations.
To illustrate, consider case (a), where 0< r(j) < e−dj < 1 so that the solutions Tj(t)

dampen to zero. Whether the Tj(t) solutions oscillate depends on dj and pj . For all
values of dj and pj , we have

Hj
(
n− 1

2

)
= pje

dj/2+1
pj−1 , Hj(n)= 1,

lim
t→(n+1/2)−

Hj(t)= pje
−dj/2+1
pj−1 .

(5.14)

For pj <−edj/2, these are all positive. However, for t =n−1/4,

Hj
(
n− 1

4

)
= 1
pj−1

[
pjedj/4+ α

dj

]
, (5.15)

soHj(n−1/4) < 0 for small dj > 0 and, therefore, Tj(t) oscillate and dampen to zero.
On the other hand, Hj(t) > 0 for large dj and all t so that Tj(t) go to zero without
oscillation.
For case (g), r(j) > 1 and, hence, Tj(t) is unbounded. In this case, we note by (5.14)

that Hj(n−1/2) and limt→(n+1/2)−Hj(t) are negative, but that Hj(n)= 1 so that Tj(t)
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crosses the axis twice on the interval [n−1/2,n+1/2). Therefore, Tj(t) has growing
oscillations.
For case (h), the ratio r(j) = 1 so that Tj(t) = Hj(t)Tj(0), i.e., Tj(t) is a 1-periodic

function. This function crosses the axis twice on each interval [n−1/2,n+1/2) since
Hj(n−1/2)=−1, Hj(n)= 1, and limt→(n+1/2)−Hj(t)=−1. Hence, Tj(t) is an oscillat-
ing, periodic solution.
Cases (i) and (k) can be handled by noting that, regardless of the value of b, if pj > 0

and pj ≠ 1, then the ratio r(j) satisfies 0 < e−dj < r(j) < 1 so that the solutions
dampen to zero as t→+∞. To see whether they go to zero with or without oscillation,
we must considerHj(t). For 0<pj < 1, formulas (5.14) giveHj(n−1/2)<0,Hj(n)=1
and limt→(n+1/2)−Hj(t) < 0 so that Hj(t) must cross the axis twice on each interval
[n−1/2,n+1/2). Hence, Tj(t) must oscillate as well as dampen to zero.
For pj > 1, Tj(t) may or may not oscillate. Generally, if pj is large, Tj(t) goes to

zero without oscillation. For example, if pj = 20 and dj = 10, then b = 0.068, Hj(t)is
positive on [n−1/2,n+1/2), and, hence, Tj(t) goes to zero without oscillation. If,
on the other hand, pj > 1, but not too much bigger than 1, then Hj(t) crosses the
axis twice so that Tj(t) oscillates as it approaches zero. For example, if b = 0.9 and
dj = 2π/1.5 (chosen by adjusting a in dj = (aπj)2), then pj = 1.36, Hj(n) = 1, and
Hj(n+1/4) = −2.83, so that Hj(t) must cross the axis on the interval [n,n+1/4].
Hj(t) also crosses the axis on [n+1/4,n+1.4) sinceHj(1.4)= 0.5. Hence, Tj(t)must
oscillate and dampen to zero as t→+∞.
For the last case (j) note that pj = 1 if and only if b = 1. If b = 1, then the functions

Enj(t) are not defined. In fact, our method does not provide a solution if pj = 1 for
the same reason as for the case of b(t) = b with b = 1. To recapitulate, note that if
we let t = n in (4.6), we obtain Tj(n) = 0 for all n and all j. In particular, Tj(0) = 0
for all j = 1,2,3, . . . so that if we let t = 0 in the superposition series (4.27), we get
u0(x)=u(x,0)= 0 and so our method does not provide a solution for u0(x)≠ 0.
Finally, note that for any values of dj and pj which satisfy pjd2j+(2π)2 ≠ 0, we can

find a corresponding value for b determined by

b = d2j +(2π)2
pjd2j +(2π)2

. (5.16)

(This follows from the definition of pj .) Therefore, in each of the cases listed above
for which a solution exists, we can find a value of b which generates a solution Tj(t)
that behaves as that case describes.

Remark. Regardless of the values of the parameters a and b, as j→+∞ note that
dj = (aπj)2→+∞ and that

pj = 1
b
+ (2π)

2

d2j

(
1− 1

b

)
�→ 1
b
. (5.17)

So

lim
j→+∞

r(j)= lim
j→+∞

pje−dj/2+1
pjedj/2+1

= 0. (5.18)
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Hence, for large j, Tj(t) dampens to zero. Furthermore, this decay is fast as the ratio
goes to zero rapidly as j →+∞ because of the exponential terms in the definition of
the ratio r(j). Consequently, for large t the series in (4.27) for u(x,t) has only a small
number of terms that are not approximately zero.

6. A scalar EPCA for b(t)= bcos(πt). We continue the discussion of the previous
section by investigating a time dependent function b(t) having a period different from
that of the expression t−n= t−[t+1/2], which has period 1 and appears in (4.29). In
particular, we consider b(t)= bcos(πt), which has period 2, andwhich yields periodic
solutions Tj of two different periods, as well as producing nonperiodic solutions.
We begin by writing the analytic expressions for Tj . Into (5.3), we substitute α = π

to obtain

Enj(t)=
bd2j

bcos(πn)−1

[
1

d2j +π2

][
cos(πt)+ π

dj
sin(πt)

]
, (6.1)

provided b �= −1,1. By (4.22), (4.23), and (4.24), we have

Enj(n−0.5)=




−bdjπ
(d2j +π2)(1+b) , if n odd,

bdjπ
(d2j +π2)(1−b) , if n even,

(6.2)

E(n−1)j(n−0.5)=




−bdjπ
(d2j +π2)(1−b) , if n odd,

bdjπ
(d2j +π2)(1+b) , if n even,

(6.3)

and

Dnj =




1− bd2j
(d2j +π2)(1+b) , if n odd,

1+ bd2j
(d2j +π2)(1−b) , if n even.

(6.4)

Combining these, we see that the ratio Fj(n), unlike the previous examples, does
indeed depend on n, though it depends only on whether n is odd or even. To be
specific

Fj(n)=




(
1+b
1−b

)[ [d2j +π2(1−b)]e−dj/2−bdjπ
[d2j +π2(1+b)]edj/2−bdjπ

]
, if n odd,

(
1−b
1+b

)[ [d2j +π2(1+b)]e−dj/2+bdjπ
[d2j +π2(1−b)]edj/2+bdjπ

]
, if n even.

(6.5)

By (4.21), we have

Tj(t)=Hj(t)

 n∏
k=1
Fj(k)


Tj(0), (6.6)
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where n= [t+1/2] and where Hj(t)=Dnje−dj(t−n)+Enj(t) is given by

Hj(t)=




[
[d2j +π2(1+b)]e−dj(t−n)−bd2j cos(πt)−bdjπ sin(πt)

]
(d2j +π2)(1+b) , if n odd,

[
[d2j +π2(1−b)]e−dj(t−n)−bd2j cos(πt)−bdjπ sin(πt)

]
(d2j +π2)(1−b) , if n even.

(6.7)

Note that Hj(t) is periodic with period 2, not period 1.
In the previous examples we identified the nature of the solutions Tj by examin-

ing the ratio function r(j) = Fj(n). If Fj(n) = −1, for example, we have oscillatory,
periodic solutions. In this case, Fj(n) varies with n for a, b, and j fixed so that if
Fj(n) = −1 for some values of n, it might be different for other values of n, and,
therefore, the solutions Tj are not necessarily periodic and oscillating for all time t.
Fortunately, though, the ratio Fj(n) depends not on the exact value of n, but only on
whether n is odd or even. Therefore, the product of Fj for two consecutive values of
n, i.e., P(dj) ≡ Fj(n)Fj(n+1) is constant for all n = 1,2,3, . . . , and depends only on
j, assuming a and b are fixed. Hence, if this product is −1, then we have oscillatory,
periodic solutions. As we will see, the periods of the periodic solutions are no longer 1,
but some larger value (either 2 or 4). In fact, since Fj(n)≠ Fj(n+1) for all n, we have
no solutions Tj(t) of period 1 as at least one of Fj(n) and Fj(n+1) cannot be 1 or
−1 (see (6.5)). Equivalently, Tj(t) cannot be of period 1 as Hj(t) is not of period 1. We
summarize and expand on these ideas in the following theorem.

Theorem 6.1. The solution to BVP (4.1) with b(t) = bcos(πt), b ≠ −1,0,1, is as
described in Theorem 4.1 with Tj(t) given by (6.6). The time functions Tj(t) behave as
follows
(a) There are no solutions Tj of period 1.
(b) For |b| < 1, Tj(t) → 0 as t → ∞. Furthermore, Tj does not oscillate for small j,

specifically, for all j such that

[
d2j +π2(1−|b|)]e−dj/2−|b|djπ (6.8)

is positive. For j making (6.8) zero, T(j)≡ 0 for all t ≥ 1/2. Finally, Tj does oscillate for
all j large enough such that (6.8) is negative.
(c) For |b|> 1, there exists a unique d∗j > 0 satisfying

[(
d∗j

)2+π2(1−|b|)]ed∗j /2+|b|d∗j π = 0 (6.9)

from which follows
(1) There exists a dE > d∗j such that the corresponding Tj is a 4-periodic, oscillating

solution. See Figure 6.5.
(2) For d∗j < dj < dE , Tj is unbounded and oscillating as t→∞. See Figure 6.6.
(3) For dj > dE , Tj → 0 and oscillates as t→∞. See Figure 6.7.
(4) For dj < d∗j and for |b|> 1 small, Tj is unbounded.
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(5) For dj < d∗j and for |b| > 1 large, there exists a dB < d∗j such that Tj is a 2-
periodic solution. See Figure 6.4. Furthermore, for dj < dB , Tj → 0 as t →∞ while for
dB < dj < d∗j , Tj grows without bound. See Figures 6.8 and 6.9.

Remark. In points (4) and (5) above, we believe that the time solutions Tj do not
oscillate, but we have not been able to prove this. We need to show that Hj(t) > 0 in
these cases, but we have not been able to prove this although all of our computer and
analytical work says that it should be so.

Proof.

Conclusion (a). This follows from the remark made immediately before the state-
ment of the theorem.
For the other conclusions, observe that the product P(dj)≡ Fj(n)Fj(n+1) becomes

P(dj)≡


[
d2j +π2(1−b)]e−dj/2−bdjπ[
d2j +π2(1+b)]edj/2−bdjπ





[
d2j +π2(1+b)]e−dj/2+bdjπ[
d2j +π2(1−b)]edj/2+bdjπ


 (6.10)

and is unchangedwhenwe replace bwith−b. Because of this symmetry, we can extend
our conclusions to b < 0 by discussing the behavior of the Tj solutions for b > 0 only.

Conclusion (b). To prove conclusion (b) we first graph P(dj) as a function of
dj (and, hence, j), and observe the essential features of the graph. We, then, prove
conclusion (b) by referring to these features. Finally, we show why the graph of P(dj)
must have the features described. For 0 < b < 1, the graph of the function P(dj) is
given in Figure 6.1.

1.0

0.5

−0.5

−1.0

0.5 1.0 1.5 2.0
dj

P(dj)

Figure 6.1. Product ratio P(dj) for b(t)= bcos(πt), |b|< 1.

The essential features of the graph that interest us are
(i) |P(dj)|< 1 for all values of dj > 0.
(ii) P(dj) has the same sign as (6.8) so that P(dj) is positive for small dj , and

negative for large dj .
(iii) P(dj)→ 0 as dj →∞, and approaches zero from below.
As we show below, when 0 < b < 1, all factors in (6.10) are positive for all dj > 0

except for expression (6.8). For large dj (and, hence, large j), P(dj) < 0 because (6.8)
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is also negative. This combined with (i) and (6.6) means that Tj(t)→ 0 as t →∞ and
that Tj oscillates.
When P(dj)= 0 (6.8) is also zero. Since (6.8) is in the numerator of Fj(n) when n is

odd (see (6.5)), then Tj(t)= 0 for all t ≥ 1/2 as, by (6.6), Fj(1) is a factor of Tj for all
t ≥ 1/2.
For dj small enough such that (6.8) is positive, P(dj) > 0. As we show below, when

(6.8) is positive, Hj(t) > 0 for all t so that Tj → 0 as j → ∞, by (i), and Tj does not
oscillate.
Now, we complete the proof of conclusion (b) by verifying the essential features of

Figure 6.1 and the remarks just discussed. To show (i) for 0< b < 1, first observe that
the denominator of P(dj) is positive since bπ2 exp(dj/2) > bπdj . Also, for simplicity,
we define constants A, B, and C such that

P(dj)=

 [d2j +A]e−dj/2−Cdj
[d2j +B]edj/2−Cdj




 [d2j +B]e−dj/2+Cdj
[d2j +A]edj/2+Cdj


 . (6.11)

If P(dj)≥ 1, then by clearing the denominator, we have

[
d2j +A

][
d2j +B

]
e−dj ≥ [

d2j +A
][
d2j +B

]
edj +2Cdj[B−A]cosh

(dj
2

)
(6.12)

which is clearly impossible as B > A > 0, and C , dj > 0 for 0 < b < 1. Similarly, if
P(dj)≤−1, then

2π2d2j ≤ [A+B]d2j
≤ [
d2j +A

][
d2j +B

]
cosh(dj)+Cdj[B−A]sinh

(dj
2

)

≤ (
Cdj

)2 ≤π2d2j

(6.13)

which is also clearly impossible.
To show (ii), note that all factors in (6.10) are positive for all dj > 0 when 0< b < 1

except for the factor (6.8). For small dj , (6.8) is positive, but for large dj it is negative.
In fact, we can show that there exists exactly one dj > 0 such that (6.8) is zero. We do
this by setting (6.8) equal to zero and solving for b, instead of solving for dj , to obtain

b = d2j +π2

djπedj/2+π2
< 1. (6.14)

Since the function

f(x)= x2+π2

xπex/2+π2
(6.15)

is differentiable (continuous) and strictly decreasing for all x ≥ 0, and since f(0)= 1
and limx→∞f(x)= 0, there exists exactly one dj satisfying (6.14) for any given b such
that 0 < b < 1. Hence, there exists exactly one dj , call it d∗j , making (6.8) zero, and
P(d∗j )= 0.
The fact that Hj(t) > 0 when (6.8) is positive was needed to show that Tj did not

oscillate for j such that dj < d∗j , i.e., when P(dj) > 0. To show this, we discuss two
cases, n odd and n even.
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When n is odd, Hj(t) > 0 for all dj > 0, regardless of the value of b > 0. Clearly,
Hj(t) > 0 on [n,n+1/2] as all terms are positive. So, we must discuss the interval
[n−1/2,n]. On this interval, the cosine term in (6.7) is nonnegative, so we need be
concerned only with the sine term. When dj ≤π , we have

[
d2j +π2(1+b)]e−dj(t−n) > π2b ≥ bdjπ ≥ bdjπ sin(πt)≥ 0, (6.16)

so that Hj(t) > 0. When dj > π , and on [n−1/4,n],

−bd2j cos(πt) > bdjπ sin(πt), (6.17)

so that Hj(t) > 0 on [n− 1/4,n]. On [n− 1/2,n− 1/4], regardless of the value of
dj > 0,

[
d2j +π2(1+b)]e−dj(t−n) > π2bedj/4 > bdjπ sin(πt), (6.18)

so that Hj(t) > 0 on [n−1/2,n−1/4], completing the proof of our claim for n odd.
When n is even and 0 < b < 1, we again consider the intervals [n− 1/2,n] and

[n,n+1/2] separately. On [n−1/2,n], only the cosine term is negative. Since this
term is dominated by the exponential term, i.e.,

[
d2j +π2(1−b)]e−dj(t−n) > d2j > bd2j cos(πt), (6.19)

we have Hj(t) > 0 on [n−1/2,n]. When dj < d∗j , (6.8) is strictly positive as noted
above. This allows us to show that Hj(t) is strictly decreasing on [n,n+1/2] as

H′
j(t)=

−dj
{[
d2j +π2(1−b)]e−dj(t−n)−bdjπ sin(πt)

}−bdjπ2 cos(πt)
(d2j +π2)(1−b)

≤ −dj
{[
d2j +π2(1−b)]e−dj/2−bdjπ}−bdjπ2 cos(πt)

(d2j +π2)(1−b) < 0.

(6.20)

Again, by the fact that (6.8) is positive for dj < d∗j ,

lim
t→(n+1/2)−

Hj(t) > 0, (6.21)

so that Hj(t) > 0 on [n,n+1/2]. This completes the proof of our claim that Hj(t) > 0
for all t when j satisfies dj < d∗j .
One additional conclusion that we can draw from (6.14) is that P(dj)= 0 only when

|b|< 1. Here, we have made use of the symmetry remark presented at the beginning
of the proof.
Finally, because of the exponential factors exp(dj/2) in the denominator of P(dj),

we see that

lim
dj→∞

P(dj)= 0 (6.22)

which, when combined with (ii), is (iii). Furthermore, Tj → 0 rapidly for large dj as
P(dj)≈ 0.
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Conclusion (c). To prove conclusion (c), we take the same approach as used for
conclusion (b). We graph P(dj) as a function of dj , explore the graph’s relevant fea-
tures, explain how these features dictate the behavior of the solutions Tj , and then
show why the graph of P(dj) must have the features described.
The graph of P(dj) as a function of dj has two general forms depending on b > 1.

If b > 1 is small, P(dj) looks like the curve in Figure 6.2 while if b > 1 is large, P(dj)
appears as in Figure 6.3. Note the following similarities in these two graphs
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1 2 3
dj
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D

P(dj)

Figure 6.2. Product ratio P(dj) for b(t)= bcos(πt), |b|> 1 and small.
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Figure 6.3. Product ratio P(dj) for b(t)= bcos(πt), |b|> 1 and large.

(i) P(dj) has a vertical asymptote located at some value d∗j > 0.
(ii) P(dj) is negative for dj > d∗j and approaches the axis from below as t→∞, but

never crosses the time axis.
(iii) P(dj) is positive for 0< dj < d∗j and P(dj)→∞ as dj approaches d∗j from the

left.
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The difference in the two graphs is that for large b (Figure 6.3), P(dj) decreases
for a short period on the interval 0 < dj < d∗j before increasing while for b small
(Figure 6.2), P(dj) is strictly increasing on 0<dj < d∗j . The significance of this differ-
ence is that for b large, the product ratio P(dB)= 1 for some dB satisfying 0<dB < d∗j
(See point B on Figure 6.3). This means that the corresponding solutions Tj are peri-
odic with period 2 (see Figure 6.4). The period must be 2 because Hj(t) is 2-periodic
for all j and because the product of any two consecutive factors Fj(n) and Fj(n+1)
in (6.6) is 1. For b > 1 small (Figure 6.2), we do not have this type of solution because
P(dj)≠ 1 for all dj > 0.
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Figure 6.4. Tj(t) for b(t)= bcos(πt), b = 3, dj = 3.656.
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Figure 6.5. Tj(t) for b(t)= bcos(πt), b = 3, dj = 3.897.

The other interesting feature, which is present in both Figures 6.2 and 6.3 (see point
E on those graphs), is that P(dE) = −1 for some dE > d∗j . The corresponding Tj so-
lutions must oscillate and are 4-periodic (see Figure 6.5). This follows from the fact
that Hj(t) is 2-periodic and that P(dE)2 = Fj(n)Fj(n+1)Fj(n+2)Fj(n+3) = 1 for
any integer n= 1,2,3, . . . so that Tj(t+4)= Tj(t) (see (6.6)).
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Figure 6.6. Tj(t) for b(t)= bcos(πt), b = 3, dj = 3.85.
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Figure 6.7. Tj(t) for b(t)= bcos(πt), b = 3, dj = 4.
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Figure 6.8. Tj(t) for b(t)= bcos(πt), b = 3, dj = 3.

We see other types of behaviors for Tj as well. For example, P(dD) < −1 for dD
slightly larger than d∗j so that the solutions Tj exhibit growing oscillations (see Figure
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Figure 6.9. Tj(t) for b(t)= bcos(πt), b = 3, dj = 3.7.

6.6) while for dF much larger than d∗j , −1 < P(dF) < 0 (see F in Figures 6.2 and 6.3)
so that Tj possesses damping oscillations (see Figure 6.7). Note that the 4-periodic
solution at dE separates these two behaviors, that is, for dj satisfying d∗j <dj <dE ,
we have growing oscillations while, for dj satisfying dE < dj , we have decaying oscil-
lations. The 4-periodic solution serves as the dividing line between these two types of
solutions.
Similarly, in Figure 6.3, we see that for b > 1 and large, the 2-periodic solution at dB

(point B) separates dampening solutions for all dA such that 0<dA < dB from growing
solutions for all dC such that dB < dC < d∗j . See Figures 6.8 and 6.9. For b > 1 and
small (Figure 6.2), we see that P(dj) is strictly increasing for dj satisfying 0<dj < d∗j
so that we have solutions Tj which grow as t→∞.
Now, we explain why the graphs of the product ratio P(dj) are as they appear in

Figures 6.2 and 6.3. We begin by discussing the sign of the product ratio written-out
in (6.10). The two factors containing the term π2(1+b) are positive for all dj > 0.
(Note that exp(dj/2) > dj .) The factor in the numerator containing the term π2(1−b)
is negative for all dj > 0 since dj exp(−dj/2) < 2<π . The factor

[
d2j +π2(1−b)]edj/2+bdjπ (6.23)

in the denominator is negative for dj > 0 small and positive for dj large. To see
this, note that this factor is approximately π2(1− b) < 0 for dj near 0 while, for
dj > π

√
b−1, it is positive. Since (6.23) is continuous, there exists at least one d∗j

such that (6.23) is zero. In fact, there is only one such d∗j because once (6.23) becomes
positive, it stays positive. The proof of this fact is lengthy and is given at the end of
this section in Lemma 6.2. Combining the information of the previous paragraph, we
see that P(dj) > 0 for 0 < dj < d∗j and P(dj) < 0 for dj > d∗j . Furthermore, P(d∗j ) is
not defined as (6.23) is zero so that we have a vertical asymptote at d∗j . In fact, if we
set x = d∗j in (6.23) and solve for b, we get

b = g(x)≡ x2+π2

π(π−xe−x/2) > 1. (6.24)
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The function g is well defined and is larger than 1 because xe−x/2 < 2 for all x > 0.
This says that we can have a vertical asymptote for b > 1 only. Furthermore, since g is
continuous for all x ≥ 0, g(0)= 1, and limx→∞g(x)=∞, we have a vertical asymptote
for any given value of b > 1. Finally, as noted in the discussion of conclusion (b),
P(dj) ≠ 0 for all dj > 0 when b > 1 because the factors in the numerator are never
zero.
Now, the properties (i), (ii), and (iii) of the graphs in Figures 6.2 and 6.3 follow from

these remarks and the fact that

lim
dj→∞

P(dj)= 0, (6.25)

which is a consequence of the exponentials in the denominator.
The last detail to attend to is to show the uniqueness of the zero d∗j of (6.23). This

is Lemma 6.2 which follows.

Lemma 6.2. For b > 1, the function

f(x)≡ [
x2+π2(1−b)]ex/2+bπx (6.26)

has exactly one zero on the interval x ≥ 0.

Proof. Instead of f(x), we consider the related function

F(x)≡ e−xf(2x)= 4x2+π2−bπ[π−2xe−x]. (6.27)

Note that if d∗j is a zero of f(x), then x∗ = d∗j /2 is a zero of F(x), and vice versa.
Furthermore, we consider the two separate, continuous functions

F1(x)= 4x2+π2, F2(x)= bπ[π−2xe−x], (6.28)

which are graphed in Figure 6.10 and which intersect at the zeros of F(x). Note that
F2(x) ≤ bπ2 for all x ≥ 0 whereas F1(x) is a parabola which grows without bound.
Furthermore, since F1(0) = π2 < bπ2 = F2(0), the graphs of the functions F1 and
F2 must cross at least once on the interval x ≥ 0. To show that there is only one
intersection point, we need the following observations, which the reader can verify
easily by computing derivatives and considering Figure 6.10.
(1) F ′2(x)≤ F ′2(2) for all x ≥ 0 and F ′2(x) is decreasing for x ≥ 2.
(2) F ′1(0)= 0 and F ′1(x) is increasing for all x ≥ 0.
(3) F2(1)≤ F2(x)≤ F2(0)= bπ2 for all x ≥ 0.

With these facts, we show that once F1(x) and F2(x) intersect at some point x∗ ≥ 0,
F1 and F2 do not intersect again as F1(x) increases more rapidly than F2(x) for all
x ≥ x∗. We do this by considering two separate cases: 1< b ≤ 5 and b > 5.

Case 1< b ≤ 5. For 0≤ x ≤ 1, F ′2(x) < 0≤ F ′1(x). For x ≥ 1, by (1) and (2) above,

F ′2(x)≤ F ′2(2)≡ 2πbe−2 ≤ 2π5e−2 < 8= F ′1(1)≤ F ′1(x). (6.29)

Hence, for all x ≥ 0, F ′2(x) < F ′1(x) so that once F1 and F2 intersect, they do not
intersect again as F1 grows more quickly than F2.
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Figure 6.10. F1(x), F2(x), and y = bπ2 for b = 5.

Case b > 5. We must be more careful in this case. First, we note that because the
range of F2(x) is bounded by F2(1) and F2(0) (see (3) above), F1(x) and F2(x) intersect
only at those values of x for which F1(x) is likewise bounded by F2(1) and F2(0), i.e.,

bπ(π−1) < bπ(π−2e−1)= F2(1)≤ F1(x)≤ F2(0)= bπ2. (6.30)

Solving this for x, we see that the x-coordinate of any intersection point must satisfy√
b(π−1)−π

π
π
2
<x ≤

√
b−1π

2
. (6.31)

Therefore, for all b > 5, all intersection points must occur on the interval√
5(π−1)−π

π
π
2
≈ 2.4≤ x. (6.32)

Since F ′2(x) is decreasing on x ≥ 2, by (1) above, the largest value of F ′2(x) on the
interval (6.31) must occur at the left endpoint, which we denote by the function

L(b)≡
√
b(π−1)−π

π
π
2
≥ 2.4. (6.33)

Computing the following estimates, we have

L(b)≥
√
b(π−1)−b

π
π
2
=
√
b
√
π−2√π
2

≥
√
π
2

√
b, (6.34)

and

L(b)≤
√
bπ
π
π
2
=
√
b
π
2
. (6.35)

Hence, since the largest value of F ′2(x) on the interval (6.31) occurs at the left endpoint,

F ′2
(
L(b)

)= b2πe−L(b)[L(b)−1]
≤ b2πe(−

√
πb/2)

[√
b
π
2

]
=
√
bπ2g(b),

(6.36)



OSCILLATORY AND PERIODIC SOLUTIONS . . . 343

where a simple calculation shows that

g(b)= be−
√
πb/2 (6.37)

has a maximum at b = 16/π , which is

g(b)≤ g
(
16
π

)
= 16
π
e−2. (6.38)

Therefore, for all x satisfying (6.31), we have

F ′2(x)≤ F ′2
(
L(b)

)≤ √
b π2

(
16
π
e−2

)
≤ 6.81

√
b. (6.39)

On the other hand, since F ′1(x) is increasing for all x ≥ 0, by (2), the minimum of F ′1(x)
for x ≥ L(b) follows from

F ′1(x)≥ F ′1(L(b))= 8L(b)≥ 8
√
π
2

√
b = 4

√
π

√
b ≥ 7

√
b. (6.40)

Hence, for b > 5 and for all x on the interval (6.31), F ′2(x) ≤ 6.81
√
b < 7

√
b ≤ F ′1(x)

so that once F1 and F2 intersect, they do not intersect again as F1 grows more rapidly
than F2. This completes the proof of Lemma 6.2.

7. A scalar EPCA for b(t)= best . The behavior of the time solutions Tj(t) are very
complicated for b(t) = best . Not only must we deal with five parameters a, b, j, n,
and s in attempting to analyze the solutions, but, as we see below, the ratio function
Fj(n) does indeed depend on n in a nontrivial way. Recall that for b(t) = b and
b(t)= bcos(2πt), Fj(n) is independent ofn, i.e., constant for j fixed while, for b(t)=
bcos(πt), Fj(n) depends only on whether n is even or odd. In the present case, Fj(n)
varies withn= [t+1/2] so that the solutions Tj(t)may change behavior as t increases.
For example, Fj(n)may be greater than 1 for the first few valuesn= 1,2,3, . . . meaning
that the solutions grow without oscillation. Then for the next few values of n, Fj(n)
becomes less than−1 meaning that solutions grow with oscillation, then the solutions
dampen with oscillation as −1 < Fj(n) < 0 for larger values of n, and finally Tj → 0
monotonically as Fj(n) satisfies 0 < Fj(n) < 1 for all large n. Therefore, to catalog
all solution behavior, as was done for the cases b(t) = b and b(t) = bcos(2πt), is
exceedingly difficult, if not impossible and probably not interesting. Therefore, we
concentrate only on the asymptotic behavior of the solutions Tj which can be readily
classified by comparing the parameters s and dj = a2π2j2. The interesting behavior
occurs for s = dj where the corresponding solution Tj approaches a periodic curve
which is not itself a solution to the differential equation (4.6). In the previous examples,
the periodic solutions were all solutions to the differential equation (4.6) for all time
t ≥ 0.
First, we write the analytic formulas for the Tj solutions. By (4.22), the functions Enj

become

Enj(t)=




bdjest

(s+dj)(besn−1) , if s+dj ≠ 0,

dje−djtbt
be−djn−1 , if s+dj = 0,

(7.1)
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provided besn �= 1 for all n= 1,2,3, . . . . The solutions Tnj follow from (7.1) and equa-
tions (4.21), (4.22), (4.23), and (4.24).

Theorem 7.1. The solution to BVP (4.1), with b(t) = best and with besn �= 1 for all
n= 1,2,3, . . . , has time functions Tj(t) given by (4.21), (4.22), (4.23), (4.24) and (7.1). If
Fj(n) is defined and nonzero for all n= 1,2,3, . . . , the solutions Tj behave as follows
(a) For s < 0, the functions Tj(t)→ 0 as t →∞ with the approach being monotone

for t large enough.
(b) For s = 0, b(t)= b, which we have already discussed in Section 3.
(c) For 0 < s < dj , the functions Tj(t) → 0 as t → ∞, but the convergence is not

monotone.
(d) For s = dj , as t →∞, the solutions Tj approach the periodic curve Cj cosh(s(t−

n)), which is not a solution to the differential equation (4.6).
(e) For 0 < dj < s, Tj(t) grows without bound and without oscillation for t large

enough, but the growth is not monotone.
If Fj(k) = 0 for some positive integer k, then Tj(t) = 0 for t ≥ k−1/2 as can be seen
from (4.29). If condition (4.26) is violated so that Fj(k) is not defined for some positive
integer, then u0(x) must be orthogonal to

√
2sin(πjx) as described in the second

remark following Theorem 4.1, and Tj(t) = 0 for all t ≥ 0. On the other hand, if u0 is
not orthogonal to

√
2sin(πjx), our method does not provide a solution.

Proof. We consider several cases.
Case (a) s < 0. Observe that as t → ∞, n = [t+1/2] → ∞, and Enj(t) → 0 so that

Dnj = 1−Enj(n)→ 1. Hence, Hj(t)≡Dnje−dj(t−n)+Enj(t) approaches the 1-periodic
function e−dj(t−n). (Note that this is periodic because the difference t−n is periodic.)
Also,

Fj(n)= D(n−1)je
−dj/2+E(n−1)j(n−0.5)

Dnjedj/2+Enj(n−0.5)
�→ 1

edj
, (7.2)

and since dj > 0, we see that as n→∞,
n∏
k=1
Fj(k) �→ 0. (7.3)

Hence, Tj goes to zero as t approaches infinity if s < 0. This decay is monotone for t
large enough as e−dj(t−n) decreases on each interval [n−1/2,n+1/2), n= 1,2,3, . . . .
We remark that the time solution to the nondelay equation is

Tj(t)= Cj
(
1−best)dj/se−djt (7.4)

which also approaches zero as t→∞. This formula is valid whenever 1−bexp(st) is
positive, or if it is negative, then dj/s is such that the function p(t)= pdj/s is defined
for p < 0, e.g., if s is an odd integer or if dj is an even integer.

Case (b) 0< s < dj . For t large, Enj(t) approaches the function

dj
s+dj e

s(t−n) (7.5)
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and

Dnj = 1−Enj(n) �→ s
s+dj . (7.6)

Hence, Hj(t) approaches the bounded, periodic function

se−dj(t−n)+djes(t−n)
s+dj = e

−dj(t−n)

s+dj
[
s+dje(s+dj)(t−n)

]
(7.7)

for t large. Also, as t→∞, n→∞ and so

Fj(n) �→ se−dj/2+djes/2
sedj/2+dje−s/2

. (7.8)

For 0< s < dj , this ratio is positive but less than 1. To see this, realize that the function

f(x)= sinh(x/2)
x

(7.9)

is increasing for x ≥ 0 (the Maclaurin series for f may be helpful when verifying this),
and proceed as below. Since 0< s < dj ,

sinh(s/2)
s

<
sinh(dj/2)

dj
es/2−e−s/2

s
<
edj/2−e−dj/2

dj
(7.10)

se−dj/2+djes/2 < sedj/2+dje−s/2

se−dj/2+djes/2
sedj/2+dje−s/2

< 1.

Consequently, as n→∞,
n∏
k=1
Fj(k) �→ 0 (7.11)

and, therefore, Tj(t) approaches 0 as t goes to infinity. However, this decay is not
monotone as (7.7) is decreasing on [n−1/2,0), but is increasing on [0,n+1/2), as
the reader can verify. Note also that the limit of the ratio Fj(n) is independent of b.
For the nondelay equation,

Tj(t) �→ Cj(−b)dj/s (7.12)

as t →∞. The interesting fact, here, is that while Tj for the delay equation goes to 0,
regardless of the value of b, the limit as t→∞ of Tj for the nondelay equation depends
on b, as well as on a, j, and s. For the delay equation, b affects only the rate at which
Tj goes to 0.

Case (c) s = 0. Here, b(t) = b and so the associated solutions have already been
discussed in Section 3.

Case (d) s = dj . Since s > 0, Hj(t) and Fj(n) also approach (7.7) and (7.8). Hj(t)
approaches a 1-periodic function, as before, but the ratio in (7.8) is exactly 1 in this
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case. Hence, as t increases, Tj(t) approaches the periodic curve Cj cosh(s(t −n)).
See (7.7) and Figure 7.1. As the reader can verify, this function is not itself a solution
to (4.6). This is to be contrasted with the Tj solution to the nondelay equation (7.4),
which approaches the constant Cj(−b).

−3

−2

−1

1

2 4 6 8 10

Figure 7.1. Tj(t) for b(t)= best , b = 0.75, s = dj = 1, j = 1, a= 1/π .

Case (e) 0<dj < s. Again (7.7) and (7.8) apply.Hj(t) approaches a 1-periodic func-
tion, as before, but the ratio in (7.8) is greater than 1 as can be seen by a calculation
similar to the one in the case 0 < s < dj . Hence, as t increases, Tj(t) grows without
bound and without oscillation, for t large enough. The growth is not monotone be-
cause (7.7) is alternately decreasing and increasing on each interval [n−1/2,n+1/2).
Finally, note that Tj for the nondelay equation does not grow without bound, but

approaches the number Cj(−b)dj/s when this value, and, hence, the range values of
Tj itself are defined as real numbers.

8. Conclusions. We summarize the features of the time solutions Tj to the BVP (4.1)
and compare these with the time solutions to the nondelay BVP, where the solutions
are known.
The most common difference between the time solutions to the delay problem ver-

sus the nondelay problem is the “kinks” or discontinuities in the first derivative, that
occur at the pointsn+1/2,n= 0,1,2, . . . . While the solutions to the nondelay problem
may be C∞, which is the case for b(t) = b, the delay problems always have discon-
tinuities in the first derivative, producing a “rippling” effect in the solution curves.
See, for example, Figures 3.1, 3.3, and 7.1. This phenomenon is caused by the impul-
sive nature of the delay, and is a familiar feature to researchers working with this
type of delay. From the computational standpoint, this discontinuity arises when, in
the course of applying the method of steps, we try to splice together the solutions
to the time differential equation in adjoining intervals of the form [n−1/2,n+1/2],
n= 0,1,2, . . . . Because the solutions to the time differential equation, in each of these
intervals, form a one-parameter family, we are able to adjust the parameter to obtain
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continuity of the solutions only, but we are unable to obtain continuity of any of the
derivatives.
The “ripples” caused by the discontinuities in the derivatives can produce changes

in the nature of the time solution curves as compared to the nondelay equation. One
such change is the loss of monotonicity. This is apparent in several of our examples.
For instance, for b(t)= best with s = dj , the nondelay equation has solution

Tj(t)= Cj(e−djt−b), (8.1)

which approaches monotonically the constant curve Cj(−b). However, the solution
to the delay equation approaches the periodic curve Cj cosh(dj(t−n)), n= [t+1/2],
but does not do so monotonically. See Figure 7.1.
Amore severe effect of the piecewise constant delay is the appearance of oscillations

in the solutions where nonewere present in the solutions to the nondelay equation. For
example, for b(t)= b, the solutions to the nondelay equations were either unbounded
and monotonic, or monotonically decaying to zero. In Figures 3.2 and 3.4, we see that
the delay has caused these solutions to oscillate about the time axis.
The most radical difference between the solutions to the delay and nondelay prob-

lems is the existence of periodic solutions for the delay problem where such solutions
were impossible for the nondelay problem. For example, for b(t)= b, all solutions to
the nondelay equation either grow monotonically without bound or dampen to zero
monotonically, whereas for the delay problem we have the existence of an oscillating,
periodic solution (see Figure 3.5). Interestingly, this solution serves to separate the
unbounded solutions (small j) from the bounded, decaying solutions (large j). See
Theorem 3.3(d). Furthermore, the period of the solution is 2, which is double the pe-
riod of the expression t−n= t−[t+1/2] that appears in the analytic solution to all
of our examples. See equation (4.29).
The phenomenon of periodic solutions separating growing solutions from decaying

solutions is also seen for b = bcos(αt) for both α = 2π and α = π . For α = 2π ,
there are two periodic solutions which arise for different values of the parameters
a, b, and j. See Theorem 5.1. Furthermore, these solutions have different periods.
One is of period 1, which is the same period as of b(t)= cos(αt) and the expression
t−[t+1/2], while the other is twice that. For α=π and |b|> 1 large, we also have two
periodic solutions that arise for different values of the parameters. See Theorem 6.1.
The interesting feature in this case is that the periods are both different from the
period of the expression t− [t+1/2]. One is of period 2, which is the same as the
period of b(t) = cos(πt), but the other is of period 4, which is twice the period of
b(t)= cos(πt).
Finally, the separation of the growing from the dampening solutions is also evident

for b(t)= best . When dj < s, the solutions Tj dampen, while for dj > s the solutions
Tj grow without bound. When dj = s, the solution Tj approaches the 1-periodic curve
Cj cosh(dj(t−n)), n= [t+1/2]. This curve is not itself a solution to the delay equa-
tion and the solution that approaches it is not itself periodic. See Figure 7.1. Note that
this is different from all the previous examples discussed in that the solutions Tj were
themselves periodic solutions.
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