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A CURIOUS PROPERTY OF SERIES INVOLVING
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Abstract. Here we are concerned with series involving generalized Fibonacci numbers
Un(p,q) and generalized Lucas numbers Vn(p,q). The aim of this paper is to find triples
(p,q,r) for which the seriesUn(p,q)/rn and Vn(p,q)/rn (for r running from 0 to infinity)
are unconcerned at the introduction of the factor n. The results established in this paper
generalize the known fact that the series Fn/2n (Fn the nth Fibonacci number) and the
series nFn/2n give the same result, namely −2/5.
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1. Introduction. First, we define the sequences under study, then we explain the
aim of our paper.

1.1. The generalized sequences. For a,b,p,q arbitrary real numbers (in particular,
integers), in the notation of Horadam [3] write

Wn :=Wn(a,b;p,q), (1.1)

meaning that

W0 = a, W1 = b, Wn = pWn−1−qWn−2 for n≥ 2. (1.2)

In particular, here we are concerned with the numbers

Un(p,q)=Un :=Wn(0,1;p,q) and Vn(p,q)= Vn :=Wn(2,p;p,q). (1.3)

Observe that Un(1,−1) = Fn and Vn(1,−1) = Ln are the nth Fibonacci and Lucas
number, respectively. The Binet forms for Un and Vn are

Un =
(
αn−βn)√

∆
and Vn =αn+βn, (1.4)

where

∆= p2−4q, (1.5)

α=
(
p+√∆)
2

and β=
(
p−√∆)
2

(1.6)

are the roots, assumed distinct, of the equation x2−px+q = 0. Observe that (1.6)
yields the two relations

α+β= p and αβ= q (1.7)
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which will be widely used throughout this paper. As usual, we require that

∆> 0, (1.8)

so that α,β, and
√
∆ are real, where α≠ β as assumed. We assume also that

pq ≠ 0. (1.9)

1.2. Motivation and aim of the paper. We were amazed at the equality

∞∑
n=0

Fn
(−2)n =

∞∑
n=0

nFn
(−2)n

(
=−2

5

)
(1.10)

which is reported in [2, (4.20)] as a by-product result. One can immediately observe
how the series on the left-hand side of (1.10) is, quite surprisingly, unconcerned at
the introduction of the factor n. Our mathematical curiosity led us to seek analogs of
(1.10) that involve the more general sequences Un and Vn defined by (1.3). In fact, the
aim of this paper is to find triples (p,q,r) of real numbers (with r ≠ 0) for which the
equality

∞∑
n=0

Wn(p,q)
rn

=
∞∑
n=0

nWn(p,q)
rn

(1.11)

(here W stands for either U or V ) holds true. The cases where p and q are integers
and r is rational (possibly an integer) are treated as particular instances. While the
case W ≡ U (Section 3) is readily solved, some particular aspects of the case W ≡ V
(Section 4) are worth investigating (Subsections 4.1 and 4.2). Several numerical exam-
ples illustrate the theoretical results whose proofs are given in full, except for the
detailed discussions on certain inequalities which are omitted for the sake of brevity.

2. Preliminary results. The following two lemmas will be needed in Sections 3
and 4, respectively.

Lemma 2.1. If x and y are arbitrary complex numbers such that x ≠y ,

|x|< 1 and |y|< 1, (2.1)

then the equality

∞∑
n=0

xn−
∞∑
n=0

yn =
∞∑
n=0

nxn−
∞∑
n=0

nyn (2.2)

is satisfied if and only if

x+y = 2xy. (2.3)

To prove Lemma 2.1, we show that (2.3) is nothing but an equivalent form of (2.2).
The same techniquewill be used in the proofs of Lemma 2.2 and Theorems 3.1 and 4.1.

Proof of Lemma 2.1. Using the geometric series formula, (2.2) yields

1
1−x −

1
1−y = x

(1−x)2 −
y

(1−y)2 (2.4)



A CURIOUS PROPERTY OF SERIES INVOLVING TERMS . . . 57

which, in turn, can be equivalently rewritten as

−1−x−1
(1−x)2 −

1
1−x +

1−y−1
(1−y)2 +

1
1−y = 0,

(
1

1−x

)2
− 2
1−x +

2
1−y −

(
1

1−y

)2
= 0,

(
1

1−x −
1

1−y

)(
1

1−x +
1

1−y −2
)
= 0.

(2.5)

Since the first factor on the left-hand side of (2.5) cannot vanish as x ≠ y by hy-
pothesis, let us equate to zero the second factor thus getting the following equation:

1−y+1−x−2(1−x)(1−y)= 0 (2.6)

which yields the desired result (2.3).

Lemma 2.2. If x and y are as in the statement of Lemma 2.1 (x =y allowed), then
the equality

∞∑
n=0

xn+
∞∑
n=0

yn =
∞∑
n=0

nxn+
∞∑
n=0

nyn (2.7)

is satisfied if and only if (
x

1−x

)2
+
(

y
1−y

)2
= 2. (2.8)

Proof. Similar to the proof of Lemma 2.1, (2.7) yields

−1−x−1
(1−x)2 −

1
1−x −

1−y−1
(1−y)2 −

1
1−y = 0 (2.9)

which, in turn, can be equivalently rewritten as(
1

1−x

)2
− 2
1−x +1+

(
1

1−y

)2
− 2
1−y +1= 2,

(
1

1−x −1
)2
+
(

1
1−y −1

)2
= 2,

(2.10)

whence (2.8) is immediately obtained.

Remark 2.1. In the special case x = y , (2.7) reduces to
∑∞
0 xn = ∑∞

0 nxn whose
solution is x = 1/2.

3. Series involving the numbers Un

Theorem 3.1. If

r = 2q
p

(3.1)

with

q <−3p
2

4
, (3.2)
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then
∞∑
n=0

Un(p,q)
rn

=
∞∑
n=0

nUn(p,q)
rn

for all nonzero p. (3.3)

Remark 3.1. Using (1.4), (1.5), (1.6), (3.1), and the geometric series formula, it is
readily seen that the sums of the series in (3.3) equal 2p/(4q−p2)=−2p/∆.

Proof of Theorem 3.1. Use the Binet form (1.4) to rewrite (3.3) as

∞∑
0

(
α
r

)n
−

∞∑
0

(
β
r

)n
=

∞∑
0

n
(
α
r

)n
−

∞∑
0

n
(
β
r

)n
. (3.4)

From Lemma 2.1 we know that (3.4) holds true if (α/r)+(β/r)= 2αβ/r 2, that is, if
p
r
= 2q
r 2

from (1.7), (3.5)

whence condition (3.1) appears to be sufficient.
Condition (1.8) is clearly satisfied if q/p2 < 1/4, that is, if

q <
p2

4
. (3.6)

Further, after replacing x (respectively y) by α/r (respectively β/r ) in conditions
(2.1), and taking the value of r given by (3.1) into account, it becomes clear that we
must have

−1<
1±

√
1−(4q/p2)
4q/p2

< 1. (3.7)

It is not hard to prove that the necessary and sufficient condition for inequalities
(3.7) to be satisfied is that q/p2 <−3/4. In other words, we must have

q <−3p
2

4
. (3.8)

Combining (3.6) and (3.8) yields condition (3.2). This completes the proof.

3.1. Numerical examples. Letting p = 6 and q = −28 in (3.1) (thus getting r =
−28/3) yields

∞∑
0

Un(6,−28)
(−28/3)n =

∞∑
0

nUn(6,−28)
(−28/3)n =− 3

37
, (3.9)

whereas letting p = 5 and q =−20 (r =−8) yields
∞∑
0

Un(5,−20)
(−8)n =

∞∑
0

nUn(5,−20)
(−8)n =− 2

21
. (3.10)

The analog of (1.10) for the numbers Gn(m) defined in [1] as Gn(m) :=Un(1,−m),
m= 1,2,3, . . . , is

∞∑
0

Gn(m)
(−2m)n

=
∞∑
0

nGn(m)
(−2m)n

=− 2
4m+1 . (3.11)
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Observe that (3.11) and (1.10) coincide form= 1 whereas, form= 2 (see [4]), (3.11)
is the Jacobsthal-analog of (1.10).
It is worth noting that the analog of (1.10) cannot be found for Pell numbers [5]

Pn := Un(2,−1). In fact, since −1 > −3·22/4, condition (3.2) is not satisfied whereas
in all the previous examples it is.

4. Series involving the numbers Vn

Theorem 4.1. If s is a real number subject to

s <
−(2+√7)

2
or s > 1, (4.1)

r = sp, (4.2)

q = sp2

2

(
s2

3s−1 −s+1
)
, (4.3)

then
∞∑
n=0

Vn(p,q)
rn

=
∞∑
n=0

nVn(p,q)
rn

for all nonzero p. (4.4)

Remark 4.1. From (4.1) and (4.3), we can see that q is negative, except when 1 <
s < 1+√2/2. Using (1.4), (1.5), (1.6), (4.2), (4.3), and the geometric series formula, it is
readily seen that the sums of the series in (4.4) equal 2(3s−1)/(2s−1).

Proof of Theorem 4.1. Use the Binet form (1.4) to rewrite (4.4) as
∞∑
0

(
α
r

)n
+

∞∑
0

(
β
r

)n
=

∞∑
0

n
(
α
r

)n
+

∞∑
0

n
(
β
r

)n
. (4.5)

From Lemma 2.2, we know that (4.5) holds true if

[
α

r −α
]2
+
[

β
r −β

]2
= 2. (4.6)

By using (1.7) along with the identity α2+β2 = p2−2q, after some simple manipu-
lations (4.6) can be rewritten as

−p2r −2r 3+4pr 2−6qr +2pq = 0, (4.7)

whence

q = −r
(
2r 2−4pr +p2)
2(3r −p) . (4.8)

Now impose condition (4.2) (namely, r = sp with s subject to (4.1)) in (4.8) to get

q = p2s(4s−2s2−1)
2(3s−1) = sp2

2

(
s2

3s−1 −s+1
)
, (4.9)

as expected.
From (4.9) above, the quantity ∆ defined by (1.5) can be expressed as

∆= p2
(
4s3−8s2+5s−1)

3s−1 = p2(s−1)(2s−1)2
3s−1 , (4.10)
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so that condition (1.8) (namely, ∆> 0) is satisfied if either

s < 1
3 or s > 1. (4.11)

Further, after replacing x (respectively y) by α/r (respectively β/r ) in conditions
(2.1), and taking the value of r and ∆ (given by (4.2) and (4.10), respectively) into
account, it becomes clear that we must have

−1< 1±(2s−1)√(s−1)/(3s−1)
2s

< 1. (4.12)

After some tedious calculations, one sees that the inequalities (4.12) above are sat-
isfied if either

s <
−(2+√7)

2
or s >

1
2
. (4.13)

Combining (4.11) and (4.13) yields (4.1). This completes the proof.

4.1. The integrality of q, and numerical examples. If the real number s (see (4.1))
is a rational number s =m/d with gcd(m,d) = 1 (s an integer if d = 1), then (4.3)
becomes

q = mp2

2d

(
−m
d
· 2m−d
3m−d +1

)
. (4.14)

By (4.3), for a given integer p it is clear that q is not necessarily an integer.
As a numerical example, if we let s = 3/2 (see the first part of Remark 4.1) and

p = 14, then from (4.2) and (4.14) we get r = q = 21, so that
∞∑
0

Vn(14,21)
21n

=
∞∑
0

nVn(14,21)
21n

= 7
2
. (4.15)

Let us conclude this subsection by finding the analog of (1.10) for the Lucas numbers.
If we put the Lucas parametersp = 1 and q =−1 in (4.3), thenwe get the cubic equation

s3−2s2− 5
2s+1= 0. (4.16)

The values of r(= ps = 1·s = s) for which (4.4) holds are clearly given by all the (real)
solutions of (4.16) that fulfill (4.1). It can be seen, with the aid of a computer, that only
the root

ρ = 2.771784 . . . (4.17)

has this property. Hence, we get

∞∑
0

Ln
ρn

=
∞∑
0

nLn
ρn

= 3.220091 . . . . (4.18)

4.2. A question and its answer. By observing (4.4), a question arises quite naturally.

Question. For given p and q, how many distinct values of r do there exist for
which (4.4) holds?
The answer is given in the following proposition.
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Proposition. For given p and q, there exist at most two distinct values of r for
which (4.4) holds.

Proof. By putting q/p2 = a in (4.3), one gets the cubic equation in the unknown s

s3−2s2+
(
3a+ 1

2

)
s−a= 0. (4.19)

By imposing that s0 is a real root of (4.19), one obtains

a= s0
(−2s20+4s0−1)
2(3s0−1) , (4.20)

whence, by substituting (4.20) in (4.19), one can write

(s−s0)
[
s2+(s0−2)s− 2s

2
0−4s0+1
2(3s0−1)

]
= 0, (4.21)

after some simple manipulations. The discriminant δ of the second-degree factor
above, given by

δ= 3s
3
0−9s20+8s0−2

3s0−1 = 3(s0−1)
[
s0−(3−

√
3)/3

][
s0−(3+

√
3)/3

]
3s0−1 , (4.22)

is nonnegative if either

s0 <
1
3
,

3−√3
3

≤ s0 ≤ 1, or s0 ≥ 3+
√
3

3
. (4.23)

Hence, the further real roots s1 and s2 of (4.19) are

s1 =
(
2−s0+

√
δ
)

2
and s2 =

(
2−s0−

√
δ
)

2
(4.24)

from (4.21), (4.22), and (4.23).
We prove that, if s0 is chosen in such a way that

s0 <
−2+√7

2
or s0 >

3+√3
3

(4.25)

obtained by combining (4.1) and (4.23), then at most one of the roots s1 and s2 given
by (4.24) satisfies (4.1). After a good deal of algebraic manipulation, one obtains the
following:
(a) s1 and s2 cannot be both greater than 1 because s1 > 1→ s0 < 1/3 and s2 > 1→

s0 > 1/3. Let us confine ourselves to sketch the proof only for the first implication.
The second one can be proved in a similar way. From (4.24) we get the implication
s1 > 1 → s0 <

√
δ whose right-hand side is satisfied if s0 < 0. If s0 > 0, from (4.22)

we can rewrite the implication above as s1 > 1 → (2s0 − 1)2/(3s0 − 1) < 0 whence
s1 > 1→ 3s0−1< 0, that is, s1 > 1→ s0 < 1/3.
(b) s1 and s2 cannot be both less than −(2+

√
7)/2 because s1 cannot be.

(c) After observing that s1 > s2 (see (4.24)), it is patent that the remaining possibility
for both s1 and s2 to satisfy (4.1) is

(i) s1 > 1,
(ii) s2 <−(2+

√
7)/2.
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Condition (i) is satisfied for s0 < 1/3 (see (a)) whereas condition (ii) is satisfied for
either s0 > t1 or t2 < s0 < 1/3, where

t1 = 3.991448 . . . and t2 = 0.331427 . . . (4.26)

are the roots of the equation (16+6√7)s20−(69+26
√
7)s0+21+8

√
7= 0 obtained by

imposing s2 =−(2+
√
7)/2.

Now, from (c) it is evident that the inequalities s1 > 1 and s2 < −(2+
√
7)/2 are

simultaneously satisfied if t2 < s0 < 1/3, this contradicts (4.25)! Taking (c) and (4.25)
into account, it follows that (4.4) holds either for

r = r0 = ps0 and r = r1 = ps1

(
when s0 <

−(2+√7)
2

)
, (4.27)

or for

r = r0 = ps0

(
when

3+√3
3

< s0 < t1

)
, (4.28)

or for

r = r0 = ps0 and r = r2 = ps2 (when s0 > t1). (4.29)

As a numerical example, let s0 = 10(> t1) in (4.22) thus getting s1,2 = (−8 ±
33
√
2/29)/2, and observe that s2 satisfies (4.1) whereas s1 does not. Further, let p = 29

and s = s0 in (4.3) thus getting q =−23345, and r0 = ps0 = 290 and r2 = ps2 = 29s2 =
(−232−957√2/29)/2. Put the above values of p,q,r0 and r2 in (4.4), and write

∞∑
0

Vn(29,−23345)
290n

=
∞∑
0

nVn(29,−23345)
290n

= 58
19

,

∞∑
0

Vn(29,−23345)
rn2

=
∞∑
0

nVn(29,−23345)
rn2

≈ 2.9433.
(4.30)

Finally, we observe that, if we replace Vn(p,q) byHn(m) :=Vn(1,−m),m=1,2,3, . . . ,
(see [1]) in (4.4), then this equality holds only for

r = ps0 = s0 =
2
[√
(18m+5)/2cos(γ/3)+1

]
3

(4.31)

with

γ = arccos
[
(27m+7)√2/(18m+5)

(18m+5)

]
, (4.32)

if 1 ≤m ≤ 3 (cf. the Lucas case (4.17) and (4.18) for m = 1), whereas the above said
equality holds for both r = s0 and r = ps2 = s2 (see (4.24)) ifm≥ 4.

5. A concluding remark. It is worth noting that the results established in Section 2
allow us to obtain some interesting identities involving circular and hyperbolic func-
tions. For example, we invite the interested reader to use Lemma 2.1 along with the
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exponential representation of sinω to prove that, if |r |> 1 andω= arccos(1/r), then
∞∑
n=0

sin(nω)
rn

=
∞∑
n=0

nsin(nω)
rn

= r sinω
r 2−2r cosω+1 . (5.1)

As a numerical example, letting r = 2 in (5.1) yields
∞∑
0

sin(nπ/3)
2n

=
∞∑
0

nsin(nπ/3)
2n

=
√
3
3
. (5.2)

The cosine-analog of (5.1) involves the use of Lemma 2.2.
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