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ABSTRACT. In 1995, Faith and Menal have established the V-ring theorem which gives a
characterization of a V-ring. In this paper, we generalize this theorem to V-modules and
consider some applications for Noetherian self-cogenerators.
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1. Preliminaries. Throughout this paper, R denotes an associative ring with iden-
tity and all modules considered are unitary right R-modules. Homomorphisms are
written on the side opposite to that of scalars. For any module M, the sum of all
simple submodules of M is called a socle of M and is denoted by Soc(M). Dually,
the intersection of all maximal submodules of M is called a radical of M and is de-
noted by Rad(M). (R),, denotes the n X n matrix ring over R. Let M be a module. An
M-generated module is a module which is isomorphic to a factor module of M0 for
some index set I. We denote by o[M] the full subcategory of Mod-R whose objects
are all submodules of M-generated modules, and by Ey (N) the M-injective hull of a
module N in o[M] which is the trace of M in E(M), where E(M) indicates the injective
hull of M, that is Ep(N) = > {f (M) : f € Homg(M,E(N))} in o[M] (see Wisbauer [9,
17.9, (2)]). A module M is called a V-module if every proper submodule of M is an
intersection of maximal submodules of M or, equivalently, if every simple module (in
o [M] or Mod-R) is M-injective (see, e.g., Wisbauer [9, 23.1]). A ring R is called a right
V-ring if R is a V-module when considered as a right module over itself, i.e., every
simple module is injective. For notation, definitions and, familiar results concerning
the ring theory we mainly follow Anderson and Fuller [2] and Wisbauer [9].

2. A generalization of a theorem of Faith and Menal. Let M,E be modules, and
M} = Homg (M, E). For each subset Z of M} and each subset X of M, the right annihi-
lator in M is denoted by ¥y (Z), and the left annihilator in M} is denoted by EME (X),
that is,

rm(Z)={meM:Zm =0}, €M§(X):{f€M§:fX=O}. (2.1)

In [6], Faith and Menal showed that a ring R is a right V-ring if and only if there exists
a semisimple module W such that I = gy (I) for every right ideal I of R. In this case,
we say that W satisfies the double annihilator condition (d.a.c.) with respect to right
ideals. This characterization of a V-ring by the existence of a duality between the right
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ideals via annihilation and submodules of a semisimple module is called the V-ring
theorem. A ring R is called a right Johns ring if R is right Noetherian and satisfies that
any right ideal is a right annihilator ideal. It is known that a right Johns ring is not right
Artinian (see Faith and Menal [4]). If a ring R is right Johns, then I = ¥z, &) ¥soc(r) (I)
for any right ideal I of R/J(R), thatis R/J(R) is a right V-ring by the V-ring theorem,
where J(R) denotes the Jacobson radical of R (see Faith and Menal [6]). We begin with
the following theorem.

THEOREM 2.1. Let M be a module. Then the following are equivalent:

(1) M is a V-module;

(2) there exists a semisimple module W satisfying N = TLﬁLﬁ, (N) for any module L in
Mod-R and any submodule N of L such that L/N is in c[M];

(3) there exists a semisimple module W' in o[M] satisfying N = YLﬂL;ﬂ (N) for any
module L in o[M] and any submodule N of L.

PROOF. (1)=(2), (1)=(3).Let {S;}icq be an irredundant set of representatives of the
simple modules in o[M]. Then, @;cq Em(S;) is the minimal M-injective cogenerator
of o[M] (see Wisbauer [9, p. 143]).

Since M is a V-module, Ey (S;) = S; for each i € Q and, hence, ;. S; is a semisimple
cogenerator of o[M]. Hence, @;cq Si cogenerates L/N for any module L and any
submodule N < L such that L/N in o[M]. By Albu and Nastasescu [1, Prop. 3.5],
@D ;cq Si cogenerates the factor module L/N if and only if N = rLﬁ%_ 0s; (N). Now, the
proof of (1)=(2) is clear. -

Since P S; is in o[M] and, for any module L in o[M], each factor module of L
belongs to o [M], the implication (1)=(3) also follows from the proof above.

(2)=(1), (3)=(1). For a semisimple module W satisfying condition (2), since each fac-
tor module of M belongs to o[M], we see that N = ry€) (N) holds for any submod-
ule N of M. Hence, M/N — Wva*V(N),m+N — (f(m))ngM* .
This readily implies that Rad(M/N) = 0. Hence, N is an ivrvltersection of maximal sub-
modules of M. Thus, M is a V-module. For a semisimple module W’ satisfying condi-
tion (3), it also follows from the same argument above that M is a V-module. O

is an R-monomorphism.

COROLLARY 2.2. Let M be a module. Then the following statements are equivalent:

(1) M is a V-module;

(2) there exists a semisimple module W satisfying I = rgfy (I) for any right ideal 1
of R such thatR/I isin o[M];

(3) there exists a semisimple module W' in o[M] satisfying N = VMBM;Y, (N) for any
submodule N of M.

In this case, W and W' cogenerate any module in o [M].

PROOF. (1)=(2), (1)=(3). These are obvious by Theorem 2.1.

(3)=(1). Follows immediately from the same argument of (3)=(1) in the proof of
Theorem 2.1.

(2)=(1). Let S be any simple module in o[M]. To show that S is M-injective, we need
to show that S is N-injective for every cyclic submodule N of M by Wisbauer [9, 16.3,
(b)]. So, let N be a cyclic submodule of M and let f be a nonzero R-homomorphism
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from a submodule N" of N to S. Since N is cyclic, N = R/I for some right ideal I of
R and, hence, N’ = L/I for some right ideal L of R. Therefore, Ker(f) = L’/I for some
right ideal L’ ¢ L of R. Since N, Ker(f) are in c[M] and since o[M] is closed under
cokernels, R/L’ is in o[M]. The hypothesis implies that L’ = gy (L'). By [1, Prop. 3.5],
there is an exact sequence 0 — R/L’ — WY for some set Y. This readily implies that
Rad(R/L’) = 0. Then since L’ is an intersection of maximal right ideals, there is a
maximal right ideal K of R such that K 2 L’ but K 2 L. Since N'/Ker(f) = L/L’ is
simple, it follows that LnK = L. Then R/I/K/I = R/K = (L+K)/K = (L/LNK) =
L/L" = N'/Ker(f) = S and, therefore, f can be extended to anf in Homg (N, S). Hence,
S is N-injective and M is a V-module.

Finally, we show that a semisimple module W satisfying condition (2) and a semisim-
ple module W’ satisfying condition (3) cogenerate any module in o [M]. For any maxi-
mal right ideal I with R/I in o[M], we observe that I = g}y (I) holds. Thus, it follows,
by almost same argument in the proof of the corollary in Faith and Menal [6], that
W satisfying condition (2) cogenerates any module in o[M]. Next, since Ey(S) = S
for any simple module S in o[M], f(M) = S for some f € Homg(M,S) and, hence,
M/Ker(f) = S. Then since W' satisfies the d.a.c. with respect to the submodules of
M, Ker(f) = YMEM;;, (Ker(f)). Since Ker(f) is maximal, Ker(f) = v (g) = Ker(g) for
some g € M. Therefore, W' contains a copy of S. This implies that W’ satisfying
condition (3) cogenerates any module in o [M]. O

REMARK 2.3. Let M be a module. If there exists a semisimple module W, which
need not be in o[M], such that W satisfies the d.a.c. with respect to any submodule
of M, then it is easy to deduce from the argument of the proof of (2)=(1) and (3)=(1)
in Theorem 2.1 that M is a V-module.

PROPOSITION 2.4. Let M be a module. If M contains a copy of each simple factor
module of M, then the following statements are equivalent:
(1) M/Rad(M) is a V-module;
(2) Soc(M) cogenerates any module in o[M/Rad(M)];
(3) T = 7r/yw)ylsocomy () for any right ideal I of R/J(R) such that (R/J(R))/I is in
6[M/Rad(M)] =o[M/Rad(M)]n (Mod-R/J(R)).

PROOF. (1)=(2). Let {S}icq be an irredundant set of representatives of the sim-
ple R-modules in o[M/Rad(M)]. Since M/Rad(M) is a V-module, by Wisbauer [9,
p. 143], we know that ;.o S; cogenerates any module in o[M/Rad(M)]. So, it suf-
fices to show that Soc(M) contains a copy of S; for each i € Q. Since En/radm) (Si) =
Si,f(M/Rad(M)) = S; for some f € Homg (M/Rad(M),S;). Clearly, S; is a simple ho-
momorphic image of M. Thus, by hypothesis, there exists an exact sequence 0 — S; —
Soc(M). Obviously, it follows that Soc(M) cogenerates any module in o[M/Rad(M)].

(2)=(3). We note that any module in 6[M/Rad(M)] belongs to o[M/Rad(M)]. Since
Soc(M) cogenerates any module in 6[M/Rad(M)], again by virtue of [1, Prop. 3.5],
we have I = vg; jr)€soc (M) (I) for every right ideal I of R/J(R) such that R/J(R)/I in
o[M/Rad(M)].

(3)=(1). Note that M/Rad (M) is a V-module as a right R/J(R)-module if and only if
M/Rad(M) is a V-module as a right R-module. Since M/Rad(M)g,;r) is a V-module
by Corollary 2.2, M/Rad(M)g is a V-module. O
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Recall that a ring R is a right Kasch ring if any simple right R-module is isomorphic
to a minimal right ideal of R. Since a ring R is right Kasch if and only if every maximal
right ideal of R is a right annihilator ideal (see, e.g., Faith [3, p. 37]), we observe that
a right Johns ring is right Kasch.

COROLLARY 2.5. Ifaring R is right Kasch, then the following statements are equiv-
alent:

(1) R/J(R) is a right V-ring;

(2) Soc(R) cogenerates any module in Mod-R/J(R);

(3) I=7r)5) Csocr) (D) for every right ideal I of R/J(R).

3. Applications. A module M is called a self-generator if M generates every sub-
module of M. Dually, a module M is called a self-cogenerator if M cogenerates every
factor module of M. By Albu and Nastaseacu [1, Prop. 3.5], M is a self-cogenerator if
and only if N = ) €A (N) for any submodule N of M, where A = End(Mp). In particular,
Ry is a self-cogenerator if and only if I = g€ (I) for any right ideal I of R.

THEOREM 3.1. Let M be a self-cogenerator and let A = End(Mg). If there exists a
(A,R)-bimodule W < Soc(Mg) such that M;;, = €5(X) for some subset X of M, then
M = M /vy (M) is a V-module.

PROOF. By virtue of Remark 2.3, we need to prove that N/7y (M) = TMEM;; (N/
ru(Myy)) for every submodule N 2 7y (M) of M. Applying the W-dual functor
Homg (—, W) to the natural exact sequence M — M — 0, we get that the dual sequence
0 — M, — M is exact. Since a7y (M) = €armfa(X) = €A (X) = M} by hypothesis,
we have M, = M as an abelian group. Since M is a self-cogenerator, there exists a
subset {g;}ie; € A such that N = vy ({gi}ier). If we take the left annihilator in A for
ru (M7) € N,wehave {g;}icr € €a(N) € Oary (M) = M;5. Since M, = M5 by the natu-
ral way, so that {g;}ic; € Mj}; follows, where g; : M — W denotes the R-homomorphism
induced by g; for each i € I. Thus, we obtain that {g;}ic; #M;& (N /vy (My5)). So, if we
note that vy ({gi}ier) = ¥m({gitier) /vm (Myy), then we have

ru ({gi}ier) N

N -
Tl (1*1\4(1\4;;)) c ry({gitier) = (M) (M) (3.1)

Since the reverse inclusion is easily verified, this completes the proof. O

Observe that a right Johns ring is a trivial Noetherian self-cogenerator. Next, we
consider a nontrivial module which is a Noetherian self-cogenerator. It is known that
the class of right Johns rings is not Morita stable (see Faith and Menal [5, Rem. 3.7]).
A ring R is called a strongly right Johns ring if (R), is right Johns for all positive
integers n. However, it is not known if a strongly right Johns ring must be quasi-
Frobenius, equivalently, right Artinian (cf. Faith and Menal [5]). Using a right Johns
ring and a strongly right Johns ring, we construct Noetherian self-cogenerators. Let
n>0,S=(R), and P = R™ . Consider the functor H = Homg (P, —) : Mod-R — Mod-S.
We note that the functor H = Homg (P, —) : Mod-R — Mod-S is an equivalence.

EXAMPLE 1. Suppose that R is a strongly right Johns ring and consider P = R™,
Since H(R)" = H(P) = S, every factor module of Py is cogenerated by R if and only if
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every factor module of Sg is cogenerated by H(R) if and only if every factor module
of Sg is cogenerated by S. Thus, Pr gives an example of a Noetherian self-cogenerator.

EXAMPLE 2. Suppose that R is a right Johns ring and consider P = R™ as a right
S-module by the usual way. By Anderson and Fuller [2, Prop. 21.7], each submodule
of H(R)s is of the form ImH (g) for some submodule I of Rz and the inclusion map
g:1— R. Since Ry is a self-cogenerator, I = rgfz(I) holds for any right ideal I of R.
By Kurata and Hashimoto [8, Lem. 1.19], we have ImH (g) = 71 r)fr (ImH (g)). Then,
H(R)/ImH(g) — H(R)®RMH@) 'y + ImH(g) — (ryM)yecrpamnu(g)) 1S an S-monomor-
phism. Thus, H(R)s is a self-cogenerator. Since Ps = H(R)y is a natural isomorphism,
H(R)s is a self-cogenerator if and only if Ps is a self-cogenerator. Thus Ps is a self-
cogenerator. Since S is right Noetherian, the finitely generated module Ps is right
Noetherian. Therefore, Ps gives an example of a Noetherian self-cogenerator.

PROPOSITION 3.2. IfM is a Noetherian projective self-cogenerator, then A=End (Mg)
is a right Johns ring and End (M /Rad(M)g) is a right V-ring.

PROOF. Suppose that I is any finitely generated right ideal of A. Since M is pro-
jective, I = Hompg (M,IM) by Wisbauer [9, 18.4]. Since M is a self-cogenerator, there is
some set Y of A such that IM = ry(Y). Now, it is straightforward to verify that

Hompg (M, #m(Y)) =7a(Y). (3.2)

This implies that I is a right annihilator ideal. Since M is Noetherian and projective, it
follows from Albu and Nastasescu [1, Prop. 4.12] that A is right Noetherian. Hence, A
is aright Johns ring. Now, by Anderson and Fuller [2, Cor. 17.12], End(M/Rad (M)gr) =
A/J(A). Since A/J(A) is aright V-ring, End(M/Rad(M)g) is a right V-ring. O

COROLLARY 3.3. Let M be a Noetherian projective self-generator and a self-cogen-
erator, then M /Rad(M) is a V-module.

PROOF. Wenote that M/Rad(M) is projective and a self-generator in Mod-R/J (R).By
Proposition 3.2, End(M/Rad(M)g) is aright V-ring and, hence, End (M /Rad(M)g,;r))
is a right V-ring. Thus, by Hirano [7, Thm. 3.11], M/Rad(M)g,sr) is a V-module and
so M/Rad(M)g is a V-module. O
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