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Abstract. In 1995, Faith and Menal have established the V-ring theorem which gives a
characterization of a V-ring. In this paper, we generalize this theorem to V-modules and
consider some applications for Noetherian self-cogenerators.
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1. Preliminaries. Throughout this paper, R denotes an associative ring with iden-
tity and all modules considered are unitary right R-modules. Homomorphisms are
written on the side opposite to that of scalars. For any module M , the sum of all
simple submodules of M is called a socle of M and is denoted by Soc(M). Dually,
the intersection of all maximal submodules of M is called a radical of M and is de-
noted by Rad(M). (R)n denotes the n×n matrix ring over R. Let M be a module. An
M-generated module is a module which is isomorphic to a factor module of M(I) for
some index set I. We denote by σ[M] the full subcategory of Mod-R whose objects
are all submodules of M-generated modules, and by EM(N) the M-injective hull of a
moduleN in σ[M] which is the trace ofM in E(M), where E(M) indicates the injective
hull of M , that is EM(N) =

∑{f(M) : f ∈ HomR(M,E(N))} in σ[M] (see Wisbauer [9,
17.9, (2)]). A module M is called a V-module if every proper submodule of M is an
intersection of maximal submodules of M or, equivalently, if every simple module (in
σ[M] or Mod-R) is M-injective (see, e.g., Wisbauer [9, 23.1]). A ring R is called a right
V-ring if R is a V-module when considered as a right module over itself, i.e., every
simple module is injective. For notation, definitions and, familiar results concerning
the ring theory we mainly follow Anderson and Fuller [2] and Wisbauer [9].

2. A generalization of a theorem of Faith and Menal. Let M,E be modules, and
M∗
E =HomR(M,E). For each subset Z of M∗

E and each subset X of M , the right annihi-
lator in M is denoted by rM(Z), and the left annihilator in M∗

E is denoted by �M∗E (X),
that is,

rM(Z)=
{
m∈M : Zm= 0}, �M∗E (X)=

{
f ∈M∗

E : fX = 0
}
. (2.1)

In [6], Faith and Menal showed that a ring R is a right V-ring if and only if there exists
a semisimple moduleW such that I = rR�W(I) for every right ideal I of R. In this case,
we say that W satisfies the double annihilator condition (d.a.c.) with respect to right
ideals. This characterization of a V-ring by the existence of a duality between the right
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ideals via annihilation and submodules of a semisimple module is called the V-ring
theorem. A ring R is called a right Johns ring if R is right Noetherian and satisfies that
any right ideal is a right annihilator ideal. It is known that a right Johns ring is not right
Artinian (see Faith and Menal [4]). If a ring R is right Johns, then Ĩ = rR/J(R)�Soc(R)(Ĩ)
for any right ideal Ĩ of R/J(R), that is R/J(R) is a right V-ring by the V-ring theorem,
where J(R) denotes the Jacobson radical of R (see Faith and Menal [6]). We begin with
the following theorem.

Theorem 2.1. Let M be a module. Then the following are equivalent:
(1) M is a V-module;
(2) there exists a semisimple moduleW satisfying N = rL�L∗W (N) for any module L in

Mod-R and any submodule N of L such that L/N is in σ[M];
(3) there exists a semisimple module W ′ in σ[M] satisfying N = rL�L∗W ′ (N) for any

module L in σ[M] and any submodule N of L.

Proof. (1)⇒(2), (1)⇒(3). Let {Si}i∈Ω be an irredundant set of representatives of the
simple modules in σ[M]. Then,

⊕
i∈ΩEM(Si) is the minimal M-injective cogenerator

of σ[M] (see Wisbauer [9, p. 143]).
SinceM is a V-module, EM(Si)= Si for each i∈Ω and, hence,

⊕
i∈Ω Si is a semisimple

cogenerator of σ[M]. Hence,
⊕
i∈Ω Si cogenerates L/N for any module L and any

submodule N ⊆ L such that L/N in σ[M]. By Albu and Năstăsescu [1, Prop. 3.5],⊕
i∈Ω Si cogenerates the factor module L/N if and only if N = rL�L∗⊕

i∈Ω Si
(N). Now, the

proof of (1)⇒(2) is clear.
Since

⊕
i∈Ω Si is in σ[M] and, for any module L in σ[M], each factor module of L

belongs to σ[M], the implication (1)⇒(3) also follows from the proof above.
(2)⇒(1), (3)⇒(1). For a semisimple moduleW satisfying condition (2), since each fac-

tor module of M belongs to σ[M], we see that N = rM�M∗W (N) holds for any submod-
ule N ofM . Hence,M/N →W�M∗W (N) ,m+N � (f (m))f∈�M∗W (N) is an R-monomorphism.
This readily implies that Rad(M/N)= 0. Hence, N is an intersection of maximal sub-
modules of M . Thus, M is a V-module. For a semisimple module W ′ satisfying condi-
tion (3), it also follows from the same argument above that M is a V-module.

Corollary 2.2. Let M be a module. Then the following statements are equivalent:
(1) M is a V-module;
(2) there exists a semisimple module W satisfying I = rR�W(I) for any right ideal I

of R such that R/I is in σ[M];
(3) there exists a semisimple module W ′ in σ[M] satisfying N = rM�M∗W ′ (N) for any

submodule N of M .
In this case, W and W ′ cogenerate any module in σ[M].

Proof. (1)⇒(2), (1)⇒(3). These are obvious by Theorem 2.1.
(3)⇒(1). Follows immediately from the same argument of (3)⇒(1) in the proof of

Theorem 2.1.
(2)⇒(1). Let S be any simple module in σ[M]. To show that S isM-injective, we need

to show that S is N-injective for every cyclic submodule N of M by Wisbauer [9, 16.3,
(b)]. So, let N be a cyclic submodule of M and let f be a nonzero R-homomorphism



A GENERALIZATION OF A THEOREM OF FAITH AND MENAL . . . 171

from a submodule N′ of N to S. Since N is cyclic, N � R/I for some right ideal I of
R and, hence, N′ � L/I for some right ideal L of R. Therefore, Ker(f )� L′/I for some
right ideal L′ ⊂ L of R. Since N , Ker(f ) are in σ[M] and since σ[M] is closed under
cokernels,R/L′ is inσ[M]. The hypothesis implies that L′ = rR�W(L′). By [1, Prop. 3.5],
there is an exact sequence 0→ R/L′ → WY for some set Y . This readily implies that
Rad(R/L′) = 0. Then since L′ is an intersection of maximal right ideals, there is a
maximal right ideal K of R such that K ⊇ L′ but K � L. Since N′/Ker(f ) � L/L′ is
simple, it follows that L∩K = L′. Then R/I/K/I � R/K = (L+K)/K � (L/L∩K) =
L/L′ �N′/Ker(f )� S and, therefore, f can be extended to an f̄ in HomR(N,S). Hence,
S is N-injective and M is a V-module.
Finally, we show that a semisimple moduleW satisfying condition (2) and a semisim-

ple moduleW ′ satisfying condition (3) cogenerate any module in σ[M]. For any maxi-
mal right ideal I with R/I in σ[M], we observe that I = rR�W(I) holds. Thus, it follows,
by almost same argument in the proof of the corollary in Faith and Menal [6], that
W satisfying condition (2) cogenerates any module in σ[M]. Next, since EM(S) = S
for any simple module S in σ[M], f(M) = S for some f ∈ HomR(M,S) and, hence,
M/Ker(f ) � S. Then since W ′ satisfies the d.a.c. with respect to the submodules of
M , Ker(f ) = rM�M∗W ′ (Ker(f )). Since Ker(f ) is maximal, Ker(f ) = rM(g) = Ker(g) for
some g ∈ M∗

W ′ . Therefore, W ′ contains a copy of S. This implies that W ′ satisfying
condition (3) cogenerates any module in σ[M].

Remark 2.3. Let M be a module. If there exists a semisimple module W , which
need not be in σ[M], such that W satisfies the d.a.c. with respect to any submodule
of M , then it is easy to deduce from the argument of the proof of (2)⇒(1) and (3)⇒(1)
in Theorem 2.1 that M is a V-module.

Proposition 2.4. Let M be a module. If M contains a copy of each simple factor
module of M , then the following statements are equivalent:
(1) M/Rad(M) is a V-module;
(2) Soc(M) cogenerates any module in σ[M/Rad(M)];
(3) Ĩ = rR/J(R)�Soc(M)(Ĩ) for any right ideal Ĩ of R/J(R) such that (R/J(R))/Ĩ is in

σ̄ [M/Rad(M)]= σ[M/Rad(M)]∩(Mod-R/J(R)).
Proof. (1)⇒(2). Let {S}i∈Ω be an irredundant set of representatives of the sim-

ple R-modules in σ[M/Rad(M)]. Since M/Rad(M) is a V-module, by Wisbauer [9,
p. 143], we know that

⊕
i∈Ω Si cogenerates any module in σ[M/Rad(M)]. So, it suf-

fices to show that Soc(M) contains a copy of Si for each i ∈Ω. Since EM/Rad(M)(Si) =
Si,f (M/Rad(M))= Si for some f ∈ HomR(M/Rad(M),Si). Clearly, Si is a simple ho-
momorphic image of M . Thus, by hypothesis, there exists an exact sequence 0→ Si→
Soc(M). Obviously, it follows that Soc(M) cogenerates any module in σ[M/Rad(M)].
(2)⇒(3). We note that any module in σ̄ [M/Rad(M)] belongs to σ[M/Rad(M)]. Since

Soc(M) cogenerates any module in σ̄ [M/Rad(M)], again by virtue of [1, Prop. 3.5],
we have Ĩ = rR/J(R)�Soc(M)(Ĩ) for every right ideal Ĩ of R/J(R) such that R/J(R)/Ĩ in
σ̄ [M/Rad(M)].
(3)⇒(1). Note that M/Rad(M) is a V-module as a right R/J(R)-module if and only if

M/Rad(M) is a V-module as a right R-module. Since M/Rad(M)R/J(R) is a V-module
by Corollary 2.2, M/Rad(M)R is a V-module.
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Recall that a ring R is a right Kasch ring if any simple right R-module is isomorphic
to a minimal right ideal of R. Since a ring R is right Kasch if and only if every maximal
right ideal of R is a right annihilator ideal (see, e.g., Faith [3, p. 37]), we observe that
a right Johns ring is right Kasch.

Corollary 2.5. If a ring R is right Kasch, then the following statements are equiv-
alent:
(1) R/J(R) is a right V-ring;
(2) Soc(R) cogenerates any module in Mod-R/J(R);
(3) Ĩ = rR/J(R)�Soc(R)(Ĩ) for every right ideal Ĩ of R/J(R).

3. Applications. A module M is called a self-generator if M generates every sub-
module of M . Dually, a module M is called a self-cogenerator if M cogenerates every
factor module of M . By Albu and Năstăseacu [1, Prop. 3.5], M is a self-cogenerator if
and only ifN = rM�Λ(N) for any submoduleN ofM , whereΛ= End(MR). In particular,
RR is a self-cogenerator if and only if I = rR�R(I) for any right ideal I of R.

Theorem 3.1. Let M be a self-cogenerator and let Λ = End(MR). If there exists a
(Λ,R)-bimodule W ⊆ Soc(MR) such that M∗

W = �Λ(X) for some subset X of M , then
M̄ =M/rM(M∗

W) is a V-module.

Proof. By virtue of Remark 2.3, we need to prove that N/rM(M∗
W) = rM̄�M̄∗W (N/

rM(M∗
W)) for every submodule N ⊇ rM(M∗

W) of M . Applying the W-dual functor
HomR(−,W) to the natural exact sequence M → M̄ → 0, we get that the dual sequence
0→ M̄∗

W →M∗
W is exact. Since �ΛrM(M∗

W) = �ΛrM�Λ(X) = �Λ(X) =M∗
W by hypothesis,

we have M∗
W � M̄∗

W as an abelian group. Since M is a self-cogenerator, there exists a
subset {gi}i∈I ⊆ Λ such that N = rM({gi}i∈I). If we take the left annihilator in Λ for
rM(M∗

W)⊆N , we have {gi}i∈I ⊆ �Λ(N)⊆ �ΛrM(M∗
W)=M∗

W . SinceM
∗
W � M̄∗

W by the natu-
ral way, so that {ḡi}i∈I ⊆ M̄∗

W follows, where ḡi : M̄ →W denotes the R-homomorphism
induced by gi for each i∈ I. Thus, we obtain that {ḡi}i∈I ⊆ �M̄∗W (N/rM(M∗

W)). So, if we
note that rM̄({ḡi}i∈I)= rM({gi}i∈I)/rM(M∗

W), then we have

rM̄�M̄∗W

(
N

rM
(
M∗
W
)
)
⊆ rM̄

({ḡi}i∈I)= rM
({gi}i∈I)
rM
(
M∗
W
) = N

rM
(
M∗
W
) . (3.1)

Since the reverse inclusion is easily verified, this completes the proof.

Observe that a right Johns ring is a trivial Noetherian self-cogenerator. Next, we
consider a nontrivial module which is a Noetherian self-cogenerator. It is known that
the class of right Johns rings is not Morita stable (see Faith and Menal [5, Rem. 3.7]).
A ring R is called a strongly right Johns ring if (R)n is right Johns for all positive
integers n. However, it is not known if a strongly right Johns ring must be quasi-
Frobenius, equivalently, right Artinian (cf. Faith and Menal [5]). Using a right Johns
ring and a strongly right Johns ring, we construct Noetherian self-cogenerators. Let
n> 0, S = (R)n and P = R(n). Consider the functor H =HomR(P,−) : Mod-R→Mod-S.
We note that the functor H =HomR(P,−) : Mod-R→Mod-S is an equivalence.

Example 1. Suppose that R is a strongly right Johns ring and consider P = R(n).
Since H(R)n �H(P)� S, every factor module of PR is cogenerated by R if and only if
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every factor module of SS is cogenerated by H(R) if and only if every factor module
of SS is cogenerated by S. Thus, PR gives an example of a Noetherian self-cogenerator.

Example 2. Suppose that R is a right Johns ring and consider P = R(n) as a right
S-module by the usual way. By Anderson and Fuller [2, Prop. 21.7], each submodule
of H(R)S is of the form ImH(g) for some submodule I of RR and the inclusion map
g : I → R. Since RR is a self-cogenerator, I = rR�R(I) holds for any right ideal I of R.
By Kurata and Hashimoto [8, Lem. 1.19], we have ImH(g) = rH(R)�R(ImH(g)). Then,
H(R)/ ImH(g) → H(R)�R(ImH(g)), m+ ImH(g) � (rm)r∈�R(ImH(g)) is an S-monomor-
phism. Thus, H(R)S is a self-cogenerator. Since PS �H(R)S is a natural isomorphism,
H(R)S is a self-cogenerator if and only if PS is a self-cogenerator. Thus PS is a self-
cogenerator. Since S is right Noetherian, the finitely generated module PS is right
Noetherian. Therefore, PS gives an example of a Noetherian self-cogenerator.

Proposition 3.2. IfM is a Noetherian projective self-cogenerator, thenΛ=End(MR)
is a right Johns ring and End(M/Rad(M)R) is a right V-ring.

Proof. Suppose that I is any finitely generated right ideal of Λ. Since M is pro-
jective, I =HomR(M,IM) by Wisbauer [9, 18.4]. Since M is a self-cogenerator, there is
some set Y of Λ such that IM = rM(Y). Now, it is straightforward to verify that

HomR
(
M,rM(Y)

)= rΛ(Y). (3.2)

This implies that I is a right annihilator ideal. SinceM is Noetherian and projective, it
follows from Albu and Năstăsescu [1, Prop. 4.12] that Λ is right Noetherian. Hence, Λ
is a right Johns ring. Now, by Anderson and Fuller [2, Cor. 17.12], End(M/Rad(M)R)�
Λ/J(Λ). Since Λ/J(Λ) is a right V-ring, End(M/Rad(M)R) is a right V-ring.

Corollary 3.3. Let M be a Noetherian projective self-generator and a self-cogen-
erator, then M/Rad(M) is a V-module.

Proof. Wenote thatM/Rad(M) is projective and a self-generator inMod-R/J(R). By
Proposition 3.2, End(M/Rad(M)R) is a right V -ring and, hence, End(M/Rad(M)R/J(R))
is a right V-ring. Thus, by Hirano [7, Thm. 3.11], M/Rad(M)R/J(R) is a V-module and
so M/Rad(M)R is a V-module.
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itude to the referee for his helpful suggestions and valuable comments.
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