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ABSTRACT. Consider the general n-gon with vertices at the points 1,2,...,n. Then its sus-
pension involves two more vertices, say at n+ 1 and »n + 2. Let R be the polynomial ring
k[x1,x2,...,Xn], where k is any field. Then we can associate an ideal I to our suspension
in the Stanley-Reisner sense. In this paper, we find a free minimal resolution and the Betti
numbers of the R-module R/I.
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1. Introduction. Consider the suspension of the n-gon whose vertices are at the
points 1,2,...,n (see [6]). This introduces two new vertices, say n+ 1 and n + 2. The
finite abstract simplicial complex Q corresponding to this suspension is given by

Q=1{2,{1},{2},...,{n},{In+1},{n+2},{1,2},{2,3},...,{n,1},
{I,m+1},{2,n+1},...,in-1,n+1},{n,n+1},{1,n+2}, (1.1)
2,n+2},....,{n-1,n+2},{n,n+2}}.

Let k be any field and R = k[x1,...,Xn+2]. By definition, the Stanley-Reisner ideal
associated to Q is given by I = The ideal in R generated by all the monomials of the
form xi, x;, - - - Xi,, where 1 <i; <ip <--- <i, <n+2and {iy,...,ir} € Q (see[3, 7]).
Then, it follows that I = (X1X3,X1X4,..., X1X0n-1,X2X4,e s X2X 1y ey X0—2Xn, Xn+1Xn+2)
forn > 3,and I = (x1x2Xx3,Xx4X5) for n = 3. In the literature, the ring R/I is also known
as the face ring or the Stanley-Reisner ring of the finite abstract simplicial complex Q
(see [3, 7]).

By definition, a free-minimal resolution of the R-module R/I is an exact sequence
of the form

R
My s — My — My — & —0, (1.2)

where each M; is a free R-module with the smallest possible rank. For material on
free-minimal resolutions, the reader can refer to [5] or [7]. The Betti numbers B;(n) of
the R-module R/I are just the ranks of those free modules M;, i.e., B;(n) = rankg (M;)
fori=0,1,....
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In this paper, we find a free-minimal resolution and the Betti numbers of the R-
module R/I. Sometimes we simply refer to them as a free-minimal resolution and the
Betti numbers of the suspension of the n-gon.

2. Some useful results. In this section, we recall some results on free-minimal res-
olutions and the Betti numbers of the n-gon. These results are needed to obtain the
theorems on the suspension of the n-gon. The proofs of most of these theorems can
be found in [1] or [2].

(1) Let A be the finite abstract simplicial complex corresponding to the n-gon with
vertices at the points 1, 2,...,n.Let S = k[x1,...,x,] and J; be the Stanley-Reisner ideal
associated to A. Then, it easily follows that J; = (X1X3,X1X4,...,X2X4,...,X2Xn,...,
Xn_2Xyn) forn > 3, and J; = (x1x2x3) for n = 3.

(2) Let B;(n) denote the ith Betti number of the S-module S/ J;. In other words, it is
the ith Betti number of the n-gon. Then, for n > 3,

1, i=0
( )‘("_‘_2), i=1,2,...n-3,
Bi(n) = (2.1)
1, i=n-2,
0, otherwise.
(3) We can show that,
0 — §Bn2 In2 oBus ... gh S1, gBy SO, Ji —0 (2.2)
1

is a free-minimal resolution of the S-module S/J;. Even though we do not need the
specific definitions of the maps f; for what follows, the inquisitive reader can find
them in [1].

3. Main results. Let J; be the ideal in the polynomial ring S = k[x1,...,X,] as in
Section 2. Let J be the ideal in the polynomial ring R = k[x1,...,Xn,Xn+1,Xn+2] gen-
erated by the same generators as that of J;.

Tensor the exact sequence (2.2) with the k-module k[x;+1,Xn+2], which is a free
module. Hence we obtain the following exact sequence of R-modules.

dn—2 do

0 — RBn-2 =2 pBus . ... gB 4L, Rbo R_, 0 (3.1)
7 )
where d; are the same as the maps f; ® id. This means that the following complex is

exact at all places except at degree 0:
n-2 n-3 1 0
(3.2)

dn—2 d1
0 — RBn-2 RBn-3 RB1 RPo 0.
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Consider the following diagram where the two rows are the same as the complex (3.2)
and the vertical maps are multiplication by the element y = x,,1 X2 of R.

dn-2 !

0 — RbBn-2 RBn-3 RB1 RBo 0
dp-2 dy

0 — RbBn-2 RBn-3 e RB1 RBo 0.

The squares in (3.3) commute, because x,1x,+2 is an element of the ring R and our
maps are R-module homomorphisms. Hence (3.3) is a double complex, and its total
complex is given by

0— RFn2 2L Rbn2gRBn3 . ... . RP1gRB0 2 RBo _. 0, (3.4)

where the differential maps 9; : Rfi @ RPi-1 — RPi-1@RFi-2 i =1,2,..., n—1 are given by
%i(p,q) = (di(p) +(~1)iyq,d;i_1(q)) for i =2,3,...,n— 2. Obvious definitions would
apply for i =1 and i = n— 1. It is a routine exercise to verify that d;_1 c0; = 0.

THEOREM 3.1. The complex (3.4) is exact at all places except degree O at which it
has homology equal to R/I. In other words, the following is a free resolution of R/I:

0 — RBn-2 221, pBu-2 g RBn-3 . ... . RBigRB0 2L, RBo _. ? 0. (3.5)

i+1

PROOF. Denote Rf by D;. Then for i > 1, consider the sequence D;,; & D; i1,
Di®D;_4 D D;_1@D;_». Suppose (p,q) € Kerd;. Then 0;(p,q) = (di(p) + (=1)iyq,
di_1(q)) = 0. Hence d;(p) + (-1)iyq = 0 and d;_;(q) = 0. Therefore, q € Kerd;_; =
imd;, so q = d;(q,) for some q; € D;. The equationd;(p) +(-1)iyq = Oyields d;(p +
(-1)iyqy) = 0, which means that p + (-1)yq, € Kerd; = imd,.:. Therefore, p +
(-1)iyq:1 = di+1(p1) for some p1 € D;.;, which implies that p = di;1(p1) +
(-1)*1yq,.Hence, 0i+1(p1,41) = (p,q), i.e., (p,q) € imd;,1. This shows that Kero; =
imo;q fori> 1.

For i = 1, we have D, @ D, P, D, ® Dy B Dy. Let (p,q) € Kero,. Therefore,
01(p,q) =di(p)+(—1)yq =0.Thisyields d, (p) = yq €imd; =Kerdy = J.Buty & J.
Hence, even though J is not a prime ideal of R, by considering the primary decomposi-
tion of J, one can easily obtain that g € J. Therefore, the exact sequence (3.1) gives us
q = di(qy) for some q; € D;. Hence d, (p) = yq = ¥d1(q}) = d1(vq}), which implies
that p — yq; € Kerd; = imd;. Therefore, p — vq; = d»(p}) for some p; € D,. Hence,
p = d2(p1) + vq;- Now we have two equations dy(p;) + ¥q; = p, and d1(q1) = q
where (p1,q1) € D2 @ D;. This yields 92 (p7,q1) = (p,q) and hence Kerd; =ima,.

Finally, for i = 0, we have D, & Dy A Doy — 0. We know that 0,(p,q) = d1(p) —yq.
However, the exact sequence (3.1) implies that d,(D;) = J and hence imd, = {j —yq |
j€J,q€ R} =J+(y) =1. Therefore the homology of the complex (3.4) at the zeroth
spot is equal to R/I. O

Theorem 3.2 says more about the free resolution (3.5).
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THEOREM 3.2. The sequence (3.5) is a free-minimal resolution of the R-module R/1.

PROOF. To show the minimality, it is enough to show that the maps 0; ® id :
(RPi @ RPi-1) @ k — (RPi-1 @ RPi-2) @ k are zero for i = 1,2,...,n—1 (see [4, p. 136]).
However, this is an easy consequence of commutativity of the following diagram and
the minimality of (2.2):

(RPi@RPi-1) gk ———— (RFi-1 @ RPi-2) @p k
i l (3.6
(RPiork)® (RFi-1 @ k) — (RPi-1@r k) ® (RFi2 @ k). O

Theorem 3.3 enables us to calculate the Betti numbers B;(n) of the suspension of
the n-gon.

THEOREM 3.3. Let n > 3 be a positive integer. Then the ith Betti number B;(n) of
the suspension of the n-gon is given by

’ i=0’

1
(n 1) )
i=1,
2
(TL) [ni-(@@+i+1)]
1

, 1=2,3,...,.n—-3,
Bi(n) =1 \1i i+l (3.7)
n-1 .
) i=n-2,
2
) i=n-1,
10, otherwise.

PROOF. Let n > 3 be a positive integer. Since (3.5) is a free-minimal resolution, the
Betti numbers of R/I are just the respective ranks of the free modules appearing in
(3.5). Hence, we obtain, for n > 3,

Bo, i=0,
Bi(n) =1Bi+Bi-1, i=1,2,....,n-2, (3.8)
Bn—z, i=n-1.

Let us denote B;(n) by B;. The theorem is clear for n = 3. Therefore assume that n > 3.
So

Bo=Bo=Bn-2=Bn-1=1 (3.9)
and

n-3

-1
Bi=B1+Bo= (1;) n_1 +1= %n(n—3)+1 = %(1’1—1)(1’1—2) = <n2 ) (3.10)
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by using formula (2.1). A similar calculation shows that B,,_» = ("51 ). Now, let1 <i<
n—2. The formula (2.1) again gives,

n \in-i-2 ny(i-1)n-i+1-2
Bi:Bi+ﬁi*l:(i+1> (n—l )+<i>( )(n—l :
_ n! in-i-2) n! (i-H(n-i-1)
(i+D(n—-i-1)! n-1 il(n—1)! n-1
n!

T M-+ (n-Diln—i-1)!

x[im—i)(n—i-2)+(i-1)({+)(n—i-1)] 3.11)
_ n! 2 s 2
= DG DD DT i

n!

_ _ Y. .
= DG D Dim i D @i D]

. nl [ni—(i2+i+1)]_(n)[ni—(i2+i+1)]
T il(m—1i)! i+1 “\i i+1

which proves the formula (3.7) for the case n > 3. This completes the proof. O

We can illustrate our theory with an example. For n = 4 we get the suspension of
the square, which is nothing but the familiar octahedron. Hence,

Q=1{9,{1},{2},{3},{4},{5},{6},{1,2},{2,3},{3,4}, {4, 1},
{1,5},{2,5},{3,5}, {4,5},{1,6},{2,6},{3,6}, {4,6}},

(3.12)
R = k[x1,x2,X3,X4,X35,X6],

I = (x1x3,X2X4,X5X6).

The formula (3.7) gives us By(4) = 1, B;(4) = 3, B»(4) = 3, and B3(4) = 1 which are the
Betti numbers of the octahedron.
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