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Abstract. We prove that if f is a transcendental meromorphic function of finite order
and

∑
a�=∞δ(a,f )+δ(∞,f )= 2, then

K
(
f (k)

)= 2k
(
1−δ(∞,f ))

1+k−kδ(∞,f ) ,

where

K
(
f (k)

)= lim
r→∞

N
(
r ,1/f (k)

)+N(r ,f (k))
T
(
r ,f (k)

) .

This result improves a result by Singh and Kulkarni.
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1. Introduction and the main result. Let f(z) be a meromorphic function in the
complex plane. We use the following notations of value distribution theory (see [2])

T(r ,f ), m(r ,f ), N(r ,f ), N(r ,f ), . . . (1.1)

and denote by S(r ,f ) a function with the property that S(r ,f ) = o(T(r ,f )), r →∞
(outside an exceptional set of finite linear measure, if f is of infinite order). The
Nevanlinna’s deficiency of f with respect to a finite complex number a is defined by

δ(a,f )= lim
r→∞

m
(
r ,1/(f −a))
T(r ,f )

. (1.2)

If a = ∞, then one should replace m(r,1/(f −a)) in the above formula by m(r,f ).
The well known Nevanlinna’s deficiency relation states that

∑
a�=∞

δ(a,f )+δ(∞,f )≤ 2. (1.3)

If the above inequality holds, then we say that f has maximum deficiency sum.
In [3], Singh and Kulkarni proved the following result.

Theorem 1.1. Suppose that f is a transcendental meromorphic function of finite
order and

∑
a�=∞δ(a,f )+δ(∞,f )= 2, then

1−δ(∞,f )
2−δ(∞,f ) ≤K(f

′)≤ 2
(
1−δ(∞,f ))
2−δ(∞,f ) , (1.4)
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where

K(f ′)= lim
r→∞

N
(
r ,(1/f ′)

)+N(r ,f ′)
T(r ,f ′)

. (1.5)

In this note, we prove the following.

Theorem 1.2. Suppose that f is a transcendental meromorphic function of finite
order and

∑
a�=∞δ(a,f )+δ(∞,f )= 2, then

K
(
f (k)

)= 2k
(
1−δ(∞,f ))

1+k−kδ(∞,f ) , (1.6)

where

K
(
f (k)

)= lim
r→∞

N
(
r ,1/f (k)

)+N(r ,f (k))
T
(
r ,f (k)

) . (1.7)

2. An important lemma

Lemma 2.1 [1]. Let f(z) be a transcendental meromorphic function, then for each
positive number ε and each positive integer k, we have

kN(r ,f )≤N(r ,1/f (k))+N(r ,f )+εT(r ,f )+S(r ,f ). (2.1)

Proof of Theorem 1.2. First, we prove that

lim
r→∞

T
(
r ,f (k)

)
T(r ,f )

= 1+k−kδ(∞,f ), r �→∞. (2.2)

Without loss of generality, we assume that f has infinitely many finite deficient values
a1,a2, . . . . It follows from Littlewood’s inequality

P∑
n=1

m
(
r ,

1
f −an

)
≤m

(
r ,

1
f ′

)
+S(r ,f )

≤ T(r ,f )+N(r ,f )+S(r ,f ),
(2.3)

that

P∑
n=1

δ(an,f )≤ 1+ lim
r→∞

N(r ,f )
T(r ,f )

≤ 1+ lim
r→∞

N(r ,f )
T(r ,f )

= 2−δ(∞,f ). (2.4)

By the assumption, we have

∞∑
n=1

δ(an,f )= 2−δ(∞,f ). (2.5)

Let p→∞ in (2.4) and use (2.5) to obtain

lim
r→∞

N(r ,f )
T(r ,f )

= lim
r→∞

N(r ,f )
T(r ,f )

= 1−δ(∞,f ). (2.6)
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Replacing f ′ in (2.3) by f (k), we get

P∑
n=1

m
(
r ,

1
f −an

)
≤m

(
r ,

1
f (k)

)
+S(r ,f )

≤ T(r ,f (k))−N(r , 1
f (k)

)
+S(r ,f ).

(2.7)

It follows from (2.7) and (2.1) that

P∑
n=1

m
(
r ,

1
f −an

)
≤ T(r ,f (k))+N(r ,f )−kN(r ,f )+εT(r ,f )+S(r ,f ). (2.8)

Consequently, because of (2.6), we have

lim
r→∞

T
(
r ,f (k)

)
T(r ,f )

≥ (k−1)(1−δ(∞,f ))+ P∑
n=1

δ(an,f )−ε. (2.9)

Now, let p→∞ and ε→ 0 and use (2.5) to obtain

lim
r→∞

T
(
r ,f (k)

)
T(r ,f )

≥ 1+k−kδ(∞,f ). (2.10)

On the other side,

T
(
r ,f (k)

)≤ T(r ,f )+kN(r ,f )+S(r ,f ). (2.11)

Therefore, because of (2.6),

lim
r→∞

T
(
r ,f (k)

)
T(r ,f )

≤ 1+k−kδ(∞,f ). (2.12)

Equation (2.2) follows from the above estimates.
Next, we prove that

lim
r→∞

N
(
r ,1/f (k)

)
T
(
r ,f (k)

) = (k−1)
(
1−δ(∞,f ))

1+k−kδ(∞,f ) . (2.13)

From the first inequality of (2.7), we have

lim
r→∞

m
(
r ,1/f (k)

)
T(r ,f )

≥
P∑
n=1

δ(an,f ). (2.14)

Consequently, if we let p→+∞ and use (2.5), we get

lim
r→∞

m
(
r ,1/f (k)

)
T(r ,f )

≥ 2−δ(∞,f ). (2.15)

On the other side, from (2.1) and (2.7), we have

m
(
r ,

1
f (k)

)
≤ T(r ,f (k))−N(r , 1

f (k)

)
+S(r ,f )

≤ T(r ,f )+kN(r ,f )−N
(
r ,

1
f (k)

)
+S(r ,f )

≤ T(r ,f )+N(r ,f )+εT(r ,f )+S(r ,f ),

(2.16)
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hence,

lim
r→∞

m
(
r ,1/f (k)

)
T(r ,f )

≤ 2−δ(∞,f )+ε, (2.17)

if we let ε→ 0, we get

lim
r→∞

m
(
r ,1/f (k)

)
T(r ,f )

≤ 2−δ(∞,f ). (2.18)

Thus, from (2.15) and (2.18), we obtain

lim
r→∞

m
(
r ,1/f (k)

)
T(r ,f )

= 2−δ(∞,f ). (2.19)

Hence, from (2.2), (2.18), and (2.19), we have

lim
r→∞

N
(
r ,1/f (k)

)
T(r ,f (k))

= 1− lim
r→∞

m
(
r ,1/f (k)

)
T
(
r ,f (k)

)
= 1− lim

r→∞
m
(
r ,
(
1/f (k)

))
T(r ,f )

lim
r→∞

T(r ,f )
T
(
r ,f (k)

)
= 1− 2−δ(∞,f )

1+k−kδ(∞,f ) =
(k−1)(1−δ(∞,f ))
1+k−kδ(∞,f ) .

(2.20)

Finally, from (2.2) and (2.6), we have

lim
r→∞

N
(
r ,f (k)

)
T
(
r ,f (k)

) = lim
r→∞

N(r ,f )+kN(r ,f )
T
(
r ,f (k)

)
= lim
r→∞

N(r ,f )+kN(r ,f )
T(r ,f )

lim
r→∞

T(r ,f )
T
(
r ,f (k)

)
= (k+1)

(
1−δ(∞,f ))

1+k−kδ(∞,f ) .

(2.21)

Therefore, we deduce, from (2.20) and (2.21), that

lim
r→∞

N
(
r ,1/f (k)

)+N(r ,f (k))
T
(
r ,f (k)

) = 2k
(
1−δ(∞,f ))

1+k−kδ(∞,f ) . (2.22)

Thus, the proof of Theorem 1.2 is complete.
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