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Abstract. We study the uniqueness of weak solutions for quasilinear elliptic equations
in divergence form. Some counterexamples are given to show that our uniqueness result
cannot be improved in the general case.
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1. Introduction. In this paper, we demonstrate the uniqueness of weak solution of
the Dirichlet problem for divergence structure elliptic equations of the form

L[u]≡−
n∑
i=1

∂
∂xi

(
ai(x,u,∇u)

)+b(x,u)= 0 in Ω, u|∂Ω = 0, (1.1)

where Ω is a bounded domain of Rn. In [1, 2, 3, 7, 8, 5], the uniqueness of classical
solutions of problem (1.1) is treated under various hypotheses. Here, we consider the
same problem for weak solutions. Especially, we give some counterexamples to show
that our result cannot be improved in the general case.
To conclude this section, we would like to point out that after this paper had been

submitted for publication, it came to our attention that a similar (uniqueness) re-
sult had been given in [4]. However, there is no further discussion in [4] as we do in
Section 4.

2. Statement of the main results. Suppose that, for any (x,z1,z2,η) ∈ Ω×R×
R×Rn,

∑
i,j

∂
(
ai(x,z,η)

)
∂ηj

ξiξj ≥ |ξ|2, for all ξ ∈Rn, (2.1)

(
b(x,z1)−b(x,z2)

)
(z1−z2)≥ 0, (2.2)

∣∣ai(x,z1,η)−ai(x,z2,η)
∣∣≤ ∣∣a(z1,z2)∣∣|z1−z2|

(
1+|η|), (2.3)

where a∈ L∞loc(R×R).
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Remark 2.1. Unlike the previous works (cf. [1, 5, 7, 8] and so on), we do not assume
that b(·,·) is Lipschitz continuous in its second argument.
We need the following two definitions, which can be found in many references (cf.

[3] and so on).

Definition 2.2. u∈H1(Ω)∩L∞(Ω) is said to satisfy L[u]≥ (≤)0 inΩ in the weak
sense if

∫
Ω




n∑
i=1

ai(x,u,∇u)
∂w
∂xi

+b(x,u)w


dx ≥ (≤)0, (2.4)

for any w ∈H1
0(Ω) such that w ≥ 0 a.e. in Ω.

Definition 2.3. u,v ∈H1(Ω) are said to satisfy u≤ v on ∂Ω in the weak sense if
(u−v)+ ≡max{u−v,0} ∈H1

0(Ω).

Now, we can state our main results.

Theorem 2.4 (Comparison theorem). Let the hypotheses (2.1), (2.2), and (2.3) hold,
and let u1,u2 ∈H1(Ω)∩L∞(Ω) satisfy

L[u1]≥ 0, L[u2]≤ 0 in Ω, u2 ≤u1 on ∂Ω (2.5)

in the weak sense. Then we have u1 ≥u2 a.e. in Ω.
If, furthermore, a ∈ L∞(R×R) and u1,u2 ∈ H1(Ω) satisfy condition (2.5), then the

same conclusion holds.

Theorem 2.5 (Uniqueness Theorem). Let the hypotheses (2.1), (2.2), (2.3), and (2.4)
hold. Then the problem (1.1) admits at most one weak solution u∈H1

0(Ω)∩L∞(Ω).
If, furthermore, a ∈ L∞(R×R), then (1.1) admits at most one weak solution u ∈

H1
0(Ω).

3. Proof of the main results

Proof of Theorem 2.4. Assume that u1,u2 ∈H1(Ω)∩ L∞(Ω) satisfy condition
(2.5) in the weak sense, that is

∫
Ω




n∑
i=1

ai
(
x,u1,∇u1

) ∂w
∂xi

+b(x,u1)w


dx ≥ 0 (3.1)

and

∫
Ω




n∑
i=1

ai
(
x,u2,∇u2

) ∂w
∂xi

+b(x,u2)w


dx ≤ 0, (3.2)

for any w ∈H1
0(Ω) such that w ≥ 0, a.e. in Ω.

Put

Ω1 =
{
x ∈Ω;u1(x) < u2(x)

}
. (3.3)
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We assert that |Ω1| = 0 (|Ω1| denotes the Lebesgue measure of Ω1). In fact, for any
ε > 0, we write

Eε =
{
x ∈Ω1 ;u2−u1 > ε

}
, vε =min

(
ε,(u2−u1)+

)
. (3.4)

Note that vε = 0 and ∇vε = 0, a.e. in Ω \Ω1, and that vε = ε and ∇vε = 0, a.e. in Eε

(see, e.g., [9]).

Lemma 3.1. Let u ∈ H1
0(Ω). Then |u|, u+, min(ε,u) ∈ H1

0(Ω) for any nonnegative
constant ε.

Proof. Let un ∈ C∞0 (Ω) be such that un→u in H1
0(Ω). Set

vn =
(
u2n+

1
n2

)1/2
− 1
n
. (3.5)

It is easy to see that vn ∈ C∞0 (Ω). By a direct calculation, we can check that {vn} is
a Cauchy sequence in H1

0(Ω). Thus, there is a function v ∈ H1
0(Ω) such that vn → v

in H1
0(Ω). On the other hand, it is obvious that for an appropriate subsequence (still

denoted by itself) un→u, a.e. in Ω and, hence,

vn �→ |u|, a.e. in Ω. (3.6)

So, we obtain that |u| = v ∈H1
0(Ω). Similarly, we can prove thatu+, min(ε,u)∈H1

0(Ω)
for any nonnegative constant ε. This completes the proof of the lemma.

Now, we can return to the proof of Theorem 2.4. Since u1,u2 ∈H1(Ω) and u2 ≤u1
on ∂Ω in the weak sense, we have (u2−u1)+ ∈H1

0(Ω) by Definition 2.3 and vε ∈H1
0(Ω)

by the above lemma. By (3.1) and (3.2), we then obtain

0≥
∫
Ω

∑
i

(
ai
(
x,u2,∇u2

)−ai
(
x,u1,∇u1

)) ∂w
∂xi

dx

+
∫
Ω

(
b
(
x,u2

)−b
(
x,u1

))
wdx

=
∫
Ω

∑
i,j

∫ 1
0

∂ai
(
x,u2,∇u1+s

(∇u2−∇u1
))

∂ηj
ds

∂
(
u2−u1

)
∂xj

∂w
∂xi

dx

+
∫
Ω

∑
i

(
ai
(
x,u2,∇u1

)−ai
(
x,u1,∇u1

)) ∂w
∂xi

dx

+
∫
Ω

(
b
(
x,u2

)−b
(
x,u1

))
wdx,

(3.7)

for any w ∈ H1
0(Ω) satisfying w ≥ 0 a.e. in Ω. Take w = vε in the above inequality.

Note that vε ≥ 0 and that u2 > u1 whenever vε > 0. By condition (2.2), we see that
b(x,u2)−b(x,u1)≥ 0 whenever vε > 0. Thus,

∫
Ω

(
b
(
x,u2

)−b
(
x,u1

))
vε dx ≥ 0. (3.8)
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So, we have

0≥
∫
Ω

∑
i,j

∫ 1
0

∂ai
(
x,u2,∇u1+s

(∇u2−∇u1
))

∂ηj
ds

∂
(
u2−u1

)
∂xj

∂vε

∂xi
dx

+
∫
Ω

∑
i

(
ai
(
x,u2,∇u1

)−ai
(
x,u1,∇u1

)) ∂vε

∂xi
dx.

(3.9)

Sincevε =u2−u1 a.e. inΩ1\Eε and∇vε = 0 a.e. inΩ\{Ω1\Eε}, by the above inequality,
we get

0≥
∫
Ω1\Eε

∑
i,j

∫ 1
0

∂ai
(
x,u2,∇u1+s

(∇u2−∇u1
))

∂ηj
ds

∂vε

∂xj

∂vε

∂xi
dx

+
∫
Ω1\Eε

∑
i

(
ai
(
x,u2,∇u1

)−ai
(
x,u1,∇u1

))∂vε

∂xi
dx

≥
∫
Ω1\Eε

|∇vε|2dx+
∫
Ω1\Eε

∑
i

(
ai
(
x,u2,∇u1

)−ai
(
x,u1,∇u1

))∂vε

∂xi
dx

=
∫
Ω
|∇vε|2dx+

∫
Ω1\Eε

∑
i

(
ai
(
x,u2,∇u1

)−ai
(
x,u1,∇u1

))∂vε

∂xi
dx,

(3.10)

where we have used condition (2.1) at the second step. By (2.3) and the above inequal-
ity, we get

∫
Ω

∣∣∇vε
∣∣2dx ≤

∣∣∣∣
∫
Ω1\Eε

∑
i

(
ai
(
x,u1,∇u1

)−ai
(
x,u2,∇u1

)) ∂vε

∂xi
dx

∣∣∣∣
≤ εC1

(∫
Ω1\Eε

(
1+∣∣∇u1

∣∣)2dx)1/2∥∥∇vε
∥∥
L2(Ω)

(3.11)

for some constant C1 (since u1,u2 are bounded). Thus,

∥∥∇vε
∥∥
L2(Ω) ≤ εC1

(∫
Ω1\Eε

(
1+∣∣∇u1

∣∣)2dx)1/2. (3.12)

But also, using the Sobolev-Poincaré inequality on Ω, we obtain

∣∣Eε
∣∣= ε−2

∫
Eε
ε2dx ≤ ε−2

∫
Ω

∣∣vε
∣∣2dx

≤ Cε−2
∫
Ω

∣∣∇vε
∣∣2dx ≤ CC21

∫
Ω1\Eε

(
1+∣∣∇u1

∣∣)2dx. (3.13)

But 0<u2−u1 ≤ ε in Ω1 \Eε. So, obviously,

lim
ε→0

(
Ω1 \Eε

)=∅. (3.14)

Thus, |Eε| → 0 as ε→ 0. On the other hand, clearly, |Eε| is nondecreasing. Thus, |Eε| = 0
for any ε > 0 and in turn u2 ≤u1, a.e. in Ω.
We omit the details of the proof of the second statement since it is similar to that

of the first part.
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Proof of Theorem 2.5. Assume that u1,u2 ∈H1
0(Ω)∩L∞(Ω) are two weak solu-

tions of problem (1.1). By Theorem 2.4, we must have

u1 ≥u2, u2 ≥u1, a.e. in Ω. (3.15)

So, u1 =u2 a.e. in Ω, which proves the first conclusion.
We omit the details of the proof of the second statement since it is similar to that

of the first part.

4. Some remarks and counterexamples

Remark 4.1. Uniqueness does not hold for equations of nondivergence form,

−
n∑

i,j=1
aij

(
x,u,∇u

) ∂2u
∂xi ∂xj

+b(x,u)= 0 in Ω, (4.1)

even when b ≡ 0 and aij is independent of ∇u, as shown by Meyers [6]. In particular,
he gave an example of a nondivergence equation with analytic coefficients, which is
uniformly elliptic and which has nonunique analytic solutions in a bounded domain
with analytic boundary.

Remark 4.2. Condition (2.3) essentially says that ai(x,z,η) is locally Lipschitz
continuous with respect to its second argument and, furthermore, that the Lipschitz
constant is independent of x. This condition also cannot be removed. In fact, we have
the following counterexamples.
(1) Consider the equation

−
∑ ∂

∂xi

(
a(x,u)δij

∂u
∂xj

)
= 1 in Ω, u|∂Ω = 0, (4.2)

where a(x,u)= 2−sin{π sgn(u−u1)} and where u1 ∈H1
0(Ω) solves the problem

−2∆u= 1 in Ω, u|∂Ω = 0. (4.3)

It is easy to check that u = u1 and u = 2u1 are both solutions for problem (4.2),
and that the minimum principle holds for (4.2) (for all of the following examples,
maximum/minimum principle also holds). (Note that a(x,u) is not continuous in its
second argument.)
(2) In the previous example, we take

a(x,u)=

2−sin

(
u−2u1

)
sin

((
u−u1

)1/2)
if u≥u1,

2 if u<u1.
(4.4)

It is easy to check that both u=u1 and u= 2u1 are solutions of problem (4.2). (Note
that a(x,u) is not locally Lipschitz continuous in its second argument.)
(3) Take

a(x,u)= 2−sin
{
π
2

u(u−u1)
u21

}
(4.5)

in the previous example. It is easy to check thatu=u1 andu= 2u1 are again solutions
of problem (4.2).
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Remark 4.3. If b(x,u) is replaced by b(x,u,∇u) in (1.1), we cannot obtain any
satisfactory uniqueness result except for special cases such as ∂b(·,·,·)/∂z� 0 and
where other restrictive conditions are assumed. In particular, consider the equation

d2u
dx2

+
∣∣∣∣xdu

dx

∣∣∣∣= 0 in Ω = (−1,1), u(−1)=u(1)= 0. (4.6)

We can check directly that u= 0 and

u(x)=
∫ 1
x
es
2/2dsχ[0,1](x)+

∫ x

−1
es
2/2dsχ[−1,0)(x) (4.7)

are both weak solutions of this problem.
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