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A REPRESENTATION THEOREM FOR THE LINEAR
QUASI-DIFFERENTIAL EQUATION (py ′)′+qy = 0
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Abstract. We establish a representation for q in the second-order linear quasi-differential
equation (py′)′ +qy = 0. We give a number of applications, including a simple proof of
Sturm’s comparison theorem.
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1. Introduction. We are concerned with the quasi-differential equation

(
p(x)y ′

)′ +q(x)y = 0 (1.1)

over a half-line [a,∞), where 1/p, q are locally Lebesgue integrable over (a,∞) and p
is a positive function.
By the term solution we mean a nontrivial real valued function φ that satisfies (1.1)

almost everywhere in (a,∞) and φ and pφ′ are locally absolutely continuous over
[a,∞). For a discussion of existence and uniqueness properties of the solutions of
(1.1), see Naimark [3].
It is well known that there is a strong relationship between the oscillatory behaviour

of the solutions of (1.1) and the existence of solutions to the corresponding Riccati
equation. A great deal has been written about this connection, see, Reid [7, Chapter 4]
or Willet [8].
We find the following notation convenient: let Ωa denote the space of functions

positive and ACloc[a,∞) such that if ω ∈ Ωa, then pω′ ∈ ACloc[a,∞). If ω ∈ Ωa,
define a function v by v =−pω′/2ω.
With the above assumptions, either a solution of (1.1) has infinitely many zeros,

then every solution of (1.1) has this property, or every solution has at most a finite
number of zeros. In the former case, we say that (1.1) is oscillatory, writing (p,q) is
oscillatory, and in the latter case, we say that (1.1) is nonoscillatory, writing (p,q) is
nonoscillatory.
In the following section, we extend the relationship between the Riccati equation and

the quasi-differential equation (1.1). We then show how this extension can be used to
distinguish between the mutually exclusive oscillatory behaviour of the solutions of
(1.1). Finally, we see how this extension may be interpreted as a representation result,
giving a simple proof to Sturm’s comparison theorem and a result of Hartman, under
the less stringent hypothesis of integrably (mentioned above) rather than the classical
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conditions of continuity. We also show how to construct oscillatory quasi-differential
equations of the form (1.1) without explicitly finding the solutions of such equations.

2. Main results. We begin by quoting a representation result from O’Hara [4,
Lemma 2].

Proposition 2.1. There is a ω∈Ωa and a real number k≠ 0 such that

q =−v′ − v
2

p
+ k

2ω2

p
. (2.1)

Proof. Let φ,θ be linearly independent solutions of (1.1) and letω= (φ2+θ2)−1.
A straightforward calculation gives (2.1).

Remark 2.2. The function ω is not unique and may be chosen so that ω(a) has
any prescribed value.

The proposition fails when k= 0 then we have Wintner’s result [9], which may also
be regarded as a representation result.

Proposition 2.3. There exists ω∈Ωa such that

q =−v′ − v
2

p
(2.2)

over [b,∞), b > a if and only if (1.1) has a nontrivial solution with no zero in [b,∞].
Proposition 2.4. Let ω ∈ Ωa and c ≠ 0 any real number. Then the general solu-

tion of

(
py ′

)′ −
(
v′ + v

2−c2ω2

p

)
y = 0 (2.3)

is given by

y(x)= A√
ω(x)

sin

[
c
∫ x
a

ω
p
dt+α

]
, (2.4)

where A and α are constants.

Proof. Define a function y by

y(x)= exp

[∫ x
a

v+λω
p

dt
]
, (2.5)

where λ is a real or a complex constant. Then

py ′ = (v+λω)y. (2.6)

Differentiating (2.6) and using pω′ = −2vω, we have

(
py ′

)′ =
(
v′ + v

2+λ2ω2

p

)
y. (2.7)
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Taking λ= ic, we have the following solutions to (2.3):

φ(x)= exp
[∫ x

a

v
p
dt
]
sin

[
c
∫ x
a

ω
p
dt
]
,

θ(x)= exp

[∫ x
a

v
p

]
cos

[
c
∫ x
a

ω
p
dt
]
.

(2.8)

A straightforward calculation shows that y = c1θ1+c2θ gives (2.4).

The following fundamental result which is a direct consequence of Propositions 2.1
and 2.4 gives necessary and sufficient conditions for the oscillation and nonoscillation
of solution of (1.1).

Corollary 2.5. Suppose ω∈Ωa and c > 0 be chosen, so that

q =−v′ − v
2

p
+ cω

2

p
. (2.9)

Then
(a) (p,q) is nonoscillatory if and only if

∫∞ω/p <∞;
(b) (p, q) is oscillatory if and only if

∫∞ω/p =∞.

Remark 2.6. Using techniques similar to those outlined in O’Hara [5] and O’Hara
and Payne [6] and the above results, we can distinguish very effectively between os-
cillation and nonoscillation.

Remark 2.7. For the sake of completeness, we briefly consider the case c = 0. On
this occasion, we take

φ(x)=
∫ x
a

v
p
dt and θ(x)=φ(x)

∫ x
a

v
p
dt. (2.10)

A similar calculation to the one used in Proposition 2.4 shows that

1√
ω(x)

and
1√
ω(x)

∫ x
a

ω
p
dt (2.11)

are independent solutions to

(
py ′

)′ −
(
v′ + v

2

p

)
y = 0. (2.12)

3. Applications. Consider another quasi-differential equation of the form (1.1)

(
p1(x)y ′

)′ +q1(x)y = 0 (3.1)

over the same half-line as (1.1), wherep1 is a positive function and 1/p1,q1∈Lloc[a,∞).
We now give an alternate proof of Sturm’s comparison theorem.

Theorem 3.1. Let p1 < p and q1 > q on the half-line [a,∞). If (p,q) is oscillatory,
then (p1,q1) is oscillatory.
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Proof. By Proposition 2.4, we can find ω ∈ Ωa and a constant c > 0 such that
equation (2.9) holds, and

∫∞ω/p =∞. On the contrary, suppose that (p1,q1) is non-
oscillatory. Then, by Proposition 2.3, we can find a u∈Ωa such that

q1 =−u′ − u
2

p1
. (3.2)

Define a function ψ by u= v+ωψ. It follows that

u′ = v′ − 2vωψ
p

+ωψ′. (3.3)

Then

q1 =−u′ − u
2

p
+
(
1
p
− 1
p1

)
u2

=−v′ + 2vωψ
p

−ωψ′ − v
2+2vωψ+ω2ψ2

p
+
(
1
p
− 1
p1

)
u2

=−v′ − v
2

p
−ωψ′ −ω

2ψ2

p
+
(
1
p
− 1
p1

)
u2.

(3.4)

By hypothesis, q1 > q, hence by (2.9) and (3.4) we have

−ωψ′ −ω
2ψ2

p
+
(
1
p
− 1
p1

)
u2 >

cω2

p
(3.5)

implying

ψ′ +ωψ
2

p
+ cω
p
< 0, (3.6)

since p1 <p and ω is positive. Rearranging inequality (3.6) gives

− ψ′

ψ2+c >
ω
p
. (3.7)

Integrating inequality (3.7), we have

[
− 1√
c
tan−1

(
ψ√
c

)]x
a
>
∫ x
a

ω
p
dt. (3.8)

This leads to a contradiction since the function tan−1 is bounded and yet we know
that

∫∞ω/p =∞. This completes the proof.

An immediate consequence of Theorem 3.1 is the following.

Corollary 3.2. If p1 > p and q1 < q on the half-line [a,∞) and (p,q) is nonoscil-
latory, then (p1,q1) is nonoscillatory.

Remark 3.3. It is possible to construct oscillatory quasi-differential equations of
the form (1.1), without having to solve the equation.
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Example 3.4. Consider the differential equation

y ′′ +
(

1
4x2

+ c+(1/4)
(x lnx)2

)
y = 0 (3.9)

over (1,∞), where c is a positive constant.
Letting ω(x)= (x lnx)−1. A simple calculation shows that

v(x)= 1
2x

+ 1
2x lnx

. (3.10)

Furthermore,

q(x)=−v′(x)−v2(x)+cω2(x)= 1
4x2

+ c+(1/4)
(x lnx)2

(3.11)

gives the coefficient of y in equation (3.9). We have

∫∞
ω=

∫∞ dx
x lnx

=∞. (3.12)

Hence by Corollary 2.5, equation (3.9) is oscillatory. Also, notice that we are unable to
use Leighton oscillation criteria [2] to imply oscillation, since

∫∞
q =

∫∞( 1
4x2

+ c+(1/4)
(x lnx)2

)
dx <∞. (3.13)

Remark 3.5. Finally, the representation results can be used to prove a well-known
result due to Hartman [1, page 354], in the case of the linear quasi-differential equa-
tion (1.1).

Proposition 3.6. Ifφ,θ form a fundamental set of solutions of equation (1.1), then
(p,q) is oscillatory or nonoscillatory as

∫∞ 1
p
(
φ2+θ2) (3.14)

diverges or converges.

Proof. Take ω= (φ2+θ2)−1 in Proposition 2.4.
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