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1. Introduction. The weight multiplicity MΛ(m) of the weightm belonging to the
irreducible representation with the highest weight Λ of the affine Lie algebra can be
computed using the Kostant-Kac formula (Kac [3])

MΛ(m)=
∑
s∈W

δsK[s(Λ+ρ)−(m+ρ)], (1.1)

where W stands for the Weyl group for the affine Lie Algebras and ρ (analog of half
the sum of positive roots of the finite dimensional Lie algebra) is defined by

(
ρ,ai

)= 1
2

(
ai,ai

)
, i= 0,1,2, . . . ,�, (1.2)

ai’s are the simple roots and δS = ±1 depending on the nature of the permutation
resulting from the action of W . The Kostant partition function (KPF) K(Ω) is defined
as the number of ways Ω, which is given by a fixed linear integral combination of the
simple roots,

Ω =
�∑
i=0

niai, ni ∈ Z+, (1.3)

can be partitioned into non-negative linear integral combination of the positive roots.
For the affine algebras, these positive roots are infinite in number.
Kostant’s partition function K(n0,n1, . . . ,n�) appears as the expansion coefficient

in the Taylor expansion of the generating function

G
(
x0,x1, . . . ,x�

)= ∑
{ni}

K
(
n0, . . . ,n�

)
x0n0x1n1 ···x�n� ,

∣∣xi∣∣< 1 for all i. (1.4)

The generating function G which can be constructed from the knowledge of the
simple and positive roots of the affine algebra taking proper account of their multi-
plicities may be easily shown to be equal to ∆−1, where ∆ is the denominator function
in the character formula [4].
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In [5] we developed a method using the generating functions to obtain the KPF for
the affine Lie algebras. The method consists in recognizing that the inverse of the
generating function can be expressed as an infinite product identity. This results in
recursion relations for the KPF. For simple cases like the Virasoro algebra and the affine
algebra A(1)

1 , these relations are nothing but Euler’s equation and Carlitz equations [1]
for the partition functions.
Kac and Peterson [4] have obtained the KPF for the affine algebra A(1)

1 , A(1)
1 and A(2)

2

using the properties of the Weyl group.
It has been shown [5] that using the method of generating functions we can get the

expression of Kac-Peterson for the KPF forA(1)
1 if we make use of the number theoretic

identity of Tannery and Molk [6] derived as a θ-function identity. We had earlier found
the generalization of the T. M. identity for the case of A(1)

2 .
In the present article we develop the method of the generating functional for all of

the twisted affine algebras. The twisted affine algebras consist of the seriesA(2)
2� (� ≥ 1),

A(2)
2�−1 (� ≥ 3) and the special cases of E(2)6 and D(3)

4 . We construct the generating func-
tional for all of the above cases and then derive the recursive relations for the KPF in
some typical examples.
A twisted affine algebra X(k)

N admits an automorphism τ of the Dynkin diagram of
the Lie algebra XN of the order k so that

τk = 1. (1.5)

From the Lie algebra XN , an invariant eigenspace g(0) on which τ = 1may be projected
out. A Kac-Moody extension of g(0) is possible by the addition of an extra simple root
a0 whose choice can be made by following the prescription of Goddard and Olive [2].
For the series A(2)

2� the extra root is

a0 =
(
−φ,0, 1

2

)
, (1.6)

where φ is the highest short root of A2�. This is twice of the highest short root of the
corresponding invariant subalgebra B�. For other twisted affine algebras, a0 is given by

a0 =
(
−φ,0, 1

2

)
, (1.7)

where φ is the highest short root of the corresponding invariant subalgebra g(0).
Several infinite product identities, which we frequently use are listed below:
(I) Euler’s identity

φ(q)≡ π
n≥1

(
1−qn)= ∑

k∈Z
(−1)kq(k/2)(3k+1), (1.8)

(II) Jacobi’s triple product identity

T(u,v)≡ π
n≥1

(
1−unvn)(1−unvn−1)(1−un−1vn)

=
∑
k∈Z

(−1)ku(k/2)(k+1)v(k/2)(k−1),
(1.9)
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(III) the quintuple product identity

Q(u,v)≡ π
n≥1

(
1−u2nvn)(1−u2n−1vn−1)(1−u2n−1vn)

×(
1−u4n−4v2n−1)(1−u4nv2n−1)

=
∑
k∈Z

[
u(3k2−2k)v(3k2+k)/2−u(3k2−4k+1)v(3k2−k)/2

]
.

(1.10)

The plan of the paper is as follows. In Section 2, we review our earlier work on the
generating functional approach to the KPF for the algebra A(2)

2 . The equivalence of
our work with the results of Kac and Peterson [4] dictates an infinite product iden-
tity for each affine algebra. Here we derive the identity for A(2)

2 . To our knowledge
this identity has not appeared earlier. The significance of these identities is under
investigation. Sections 3, 4, 5, and 6 contain our discussions for the KPF for the
A(2)
2� (� ≥ 2), A(2)

2�−1 (� ≥ 3), D(2)
�+1 (� ≥ 2) and the special cases of E(2)6 and D(3)

4 , respec-
tively. Finally we conclude in Section 7.

2. Partition function for A(2)
2 . The Cartan matrix for this case A(2)

2 is(
2 −4
−1 2

)
. (2.1)

With the set of the positive roots given by

∆+ =




4na0+(2n−1)a1
4(n−1)a0+(2n−1)a1
(2n−1)a0+na1
(2n−1)a0+(n−1)a1
2na0+na1,

(2.2)

where a0 and a1 are the simple roots of A(2)
2 and n = Z+ − {0}. The Diophantine

equations yielding the Kostant partition function K(n0,n1) are

n0 =
∑
n

[
4npn+4(n−1)qn+(2n−1)rn+(2n−1)δn+2ntn

]
,

n1 =
∑
n

[
(2n−1)pn+(2n−1)qn+nrn+(n−1)δn+ntn

]
,

(2.3)

where pn,qn, . . . , tn are non-negative integral variables. The generating functional for
the partitions is

G
(
x0,x1

)= [
Q
(
x0,x1

)]−1 = ∞∑
n0,n1=0

KA(2)2

(
n0,n1

)
xn0
0 xn1

1 . (2.4)

The second equality is valid when |x0|< 1 and |x1|< 1. Using the quintuple product
identity we can derive the recursive relation

∑
m∈Z

KA(2)

(
n0−3m2+2m, n1− 3m2+m

2

)

−KA(2)2

(
n0−3m3+4m−1, n1− 3m2−m

2

)
= δn0,0δn1,0.

(2.5)
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In an alternate approach Kac and Peterson [4] derived the explicit formula

KA(2) (n0,n1)=
∑
k≥1

p(2123)[(2k−1)n0−4(k−1)n1−(k−1)(3k−1)
]

−
∑
k≥1

p(53)
[
kn0−(2k−1)n1− 1

2
k(3k−1)

]
.

(2.6)

Using (2.4) and the expression for KA(2)2
in (2.6), now we derive an identity for the

inverse of the quintuple product structure

[
Q
(
u,w2)]−1 =

[
φ(uw)−2123

∑
k≥0

(uw)k(3k+2)
u2kw2k+1

1−u2kw2k+1

−φ(
u2w2)−53 ∑

k≥1
(uw)k(3k−1)

u2k−1w2k

1−u2k−1w2k

] (2.7)

or

[
Q
(
u,w2)]−1 =

[
φ(uw)−2123

∑
k≥0

(uw)k(3k+2)
1

1−u−2kw−(2k+1)

−φ(
u2w2)−53 ∑

k≥1
(uw)k(3k−1)

1
1−u−2k−1w−2k

]
.

(2.8)

The right-hand side of the identity (2.8) means the following. If we compare the ex-
pansion coefficients of the terms un0w2n1 for n0 < 2n1 the first expression in the
right-hand side gives identical results as this left-hand side. The domain of conver-
gence in this case is u, w < 1, when the expansion coefficients of the terms un0w2n1

for n0 ≥ 2n1 are to be compared, we choose the second expression in the right-hand
side. This has a domain of convergence u, w > 1.

3. Partition functions forA(2)
2� . The example of the algebrasA(2)

2� is distinct from the
other cases as in the former generating functionals for KPF get contributions for each
of the roots of the Lie algebra A2� invariant under the automorphism of the Dynkin
diagram—equal to a factor that is inverse of the quintuple product structure. This
can be directly traced to the fact that no simple root of A2� remain invariant under
the outer automorphism. As a consequence the real roots of A(2)

2 have their different
sizes with the square of the roots having the ratio 4 : 2 : 1. The largest roots of the
affine algebra always contain the smallest simple root in a multiple of 4. This forces
the appearance of the inverse of the quintuple product structure for the generating
functional.
The Lie algebra has the simple roots α1, . . . ,α2 and admits an automorphism of its

Dynkin diagram

αi�α2�−i+1, (3.1)

where i = 1,2, . . . ,�. The � positive roots of A2� invariant under this automorphism
are

α1+α�+1, α�−1+α�+α�+1+α�+2, . . . , α1+···+α2�. (3.2)
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The subalgebra of A2�, invariant under the other automorphism (3.1) is B� and its
simple roots β1, . . . ,β� may be projected as

βi = 1
2

(
αi+α2�−i+2

)
, (3.3)

where i = 1, . . . ,�. For later use we identify the positive roots of B�. The short roots
are

◦
∆S =

{
β�,β�−1+β�, . . . ,β1+β2+···+β�

}
. (3.4)

Each of the invariant roots of A2� in (3.2) correspond to a short root of βi. We divide,
∆, the long roots of β� into two groups.

(I) The roots of the subalgebra A�−1(c�),(�(�−1)/2) in number are
β1, . . . ,β�−1,β1+β2, . . . ,β�−2+β�−1, . . . ,β1+β2+···+β�−1. (3.5)

(II) The rest of the long roots of B�, consisting of several series are:

β�−1+2β�,β�−2+β�−1+2β�, . . . ,β1+β2+···+2β�,
β�−2+2β�−1+2β�,β�−3+β�−2+2β�−1+2β�, . . . ,

β1+···+β�−2+2β�−1+2β�,
β1+2β2+···+2β�.

(3.6)

The (�+1) simple roots of the algebra A(2)
2� may be directly written as

a0 =
(
−2β1−2β2−···−2β�,0, 12

)
, a1 =

(
β1,0,0

)
, a� =

(
β�,0,0

)
. (3.7)

The Cartan matrix for the algebra A(2)
2� ,



2 −2 0 0
−1 2 −1 0 0
0 −1 2 −1

. . .

2 −2
0

−1 2




(3.8)

admits a null vector (1,2, . . . ,2) which reflects the structure of the imaginary root

δ=
(
0,0,

1
2

)
= a0+2a1+···+2a�. (3.9)

The complete set of the imaginary roots of A(2)
2� are given by nδ, where n = Z+−{0}

and each imaginary root has a degeneracy �. The positive real roots of A(2)
2� have two

origins. The first set which has its genesis in the roots of A2� listed in (3.2), which are
invariant under the outer automorphism, is given by

(±2β�,0,n),(±2β�−1±2β�,0,n), . . . ,(±2β1±2β2±···±2β�,0,n), (3.10)

where n= Z++(1/2). The outer set of positive roots are of the type
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(β,0,0)
⋃(

±β,0, n
2

)
, (3.11)

where n = Z+ −{0} and β is any positive root of B�, belonging to the set (3.4), (3.5),

and (3.6). When β∈
◦
∆S , the length of the roots in (3.11) becomes 1/4 of the length of

the roots in (3.10).
Each of the sequences of the roots of A2� contributes a multiplication factor to the

generating function GA(2)2�
(x0,x1, . . . ,x�). Let us consider the following root sequence:

(±2βi,0,n), where n = Z+ + (1/2); (β�,0,0)∪ (±β�,0,n/2), where n = Z+ −{0} and
the imaginary roots (0,0,n/2), where n = Z+ −{0} the last set is being considered
with unit multiplicity. The contribution of the above sets are respectively

∞∏
n=1

[
1−x4n−4

�
(
x0x2

1 ···x2
�−1

)2n−1]−1[
1−x4n

�
(
x0x2

1 ···x2
�−1

)2n−1]−1,
∞∏
n=1

[
1−x2n−1

�
(
x0x2

1 ···x2
�−1

)n−1]−1[
1−x2n−1

�
(
x0x2

1 ···x2
�−1

)n]−1,
∞∏
n=1

[
1−x2n

�
(
x0x2

1 ···x2
�−1

)n]−1.
(3.12)

These factors form together the inverse of the term
[
Q
(
x�x0x2

1 ···x2
�−1

)]−1
of the

quintuple product. Each of the � series of roots in (3.10) along with a corresponding

series of the type (β(ε
◦
∆s),0,0)∪(±β(ε

◦
∆s),0,n(ε(Z+/2)−{0})) and set the imaginary

roots (0,0,n(ε(Z+/2)−{0})) considered with unit multiplicity, contributes a factor
Q−1 to the generating functional. This product grouped as

Gs
(
x0,x1, . . . ,x�

)=[
Q
(
x�,y1

)
Q
(
x�−1x�,y2

)···Q(
x2 ···x�,y�−1

)
Q
(
x1 ···x�,x0

)]−1,
yi=x0x2

1 ···x2
�−i, i= 1,2, . . . ,�−1,

(3.13)

gives the full generating functional except for the contributions of the series related
to the long roots of β�.
The contribution to the generating functional due to the root of the type (β,0,0)∪

(±β,0,n/2), where n ∈ Z+ and βε
◦
∆L may be understood by considering a series say

(β1,0,0)∪ (±β�,0,n(ε(Z+/2)−{0})). It contributes to the generating functional the
factor

∞∏
n=1

[(
1−qnx1

)(
1−qnx−11

)]−1(
1−x1

)−1, (3.14)

where the variables q, related to the imaginary root is

q = x0x2
1 ···x2

� . (3.15)

We rewrite (3.14) as

∞∏
n=1

(
1−qn) ∞∏

n=1

([
1−(

x0x1x2
2 ···x2

�
)nxn

1

][
1−(

x0x1x2
2 ···x2

�
)n−1xn

1

]

×[
1−(

x0x1x2
2 ···x2

�
)nxn−1

1

])−1 =φ(q)
[
T
(
x1,qx1−1

)]−1.
(3.16)
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Each of the (�2−�) long roots of B� causes such a multiplicative factor in the gener-
ating functional, which has the structure

GL
(
x0,x1, . . . ,x�

)=GA(1)�−1

(
x0,x1, . . . ,x�−1;q

)
G′L

(
x0,x1, . . . ,x�

)
, (3.17)

where

GA(1)�

(
x0,x1, . . . ,x�−1; q

)
= [

φ(q)
](�−1)(�−2)/2[T(x1,qx−11 )···T(x�−1,qx−1�−1)

×T(x1x2,qx−11 ,x−12
)···T(x�−2x�−1,qx−1�−2x−1�−1)

×T(x1x2 ···x�,qx−11 x−12 ···x−1�
)]

(3.18)

and

G′L
(
x0,x1, . . . ,x�

)
= [

φ(q)
](�−1)(�−2)/2{[T(x�−1,x2

� ,qx
−1
�−1x

−2
�−2

)
···T(x1 ···x�−1x2

� ,qx
−1
1 ···x−1�−2x−1�−1x−2�

)
×T(x1x2

2 ···x2
� ,qx

−1
1 x−22 ···x−2�

)]}−1.
(3.19)

The contribution (3.18) has the same form as that of the generating functional for
the KPF for A(1)

�−1, which appears as a consequence of the roots of A�−1(⊂ B�) listed in
(3.5). The full generating functional for an arbitrary algebra A(2)

2� may be obtained as
a product

GA(2)2�
=Gs GL. (3.20)

The technique of obtaining the recursive relations for the KPF is the following. We
first substitute the full generating functional (3.20) in (1.4) and multiply both sides
with the Euler product, the triple and quintuple product with the appropriate argu-
ment. Then matching terms with a particular set of exponents for the x-variables, we
obtain the recursive relations for the KPF. The result for A(2)

4 reads as∑
m,n,p,q∈Z

(−1)m+n[K(M−N1,N−N1,P−P1
)−K(M−M2,N−N2,P−P2

)

−K(M−M3,N−N3,P−P3
)+K(M−M4,N−N4,P−P4

)]
=

∑
k,�∈Z

(−1)k+�δM,EδN,2EδP,2E,

(3.21)

where

M1 = L+ 3p2+p
2

+(3q2+q)2, M2 = L+ 3p2−p
2

+ 3q2+q
2

,

M3 = L+ 3p2+p
2

+ 3q2−q
2

, M4 = L+ 3p2−p
2

+ 3q2−q
2

,

N1 = R+3p2+p+3q2−2q, N2 = R+3p2−p+3q2−2q, (3.22)

N3 = R+3p2+p+3q2−4q+1, N4 = R+3p2−p+3q2−4q+1,
P1 = S+3p2−2p+3q2−2q, P2 = S+3p2−4p+1+3q2−2q,
P3 = S+3p2−2p+3q2−4q+1, P4 = S+3p2−4p+3q2−4q+2,
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with

L= m
2
(m+1)+ n

2
(n−1), R =m2+n2, S =m(m+1)+n(n+1),

E = k
2
(3k+1)+ �

2
(3�+1).

(3.23)

The recursive formula for any other algebra may be obtained similarly.

4. Partition function for A(2)
2�−1. Unlike the case ofA(2)

2� , the inverse of the quintuple
product structure does not appear in the generating functional for the KPF for an
A(2)
2�−1, � ≥ 3 algebra. Instead, the inverse of the triple product and Euler product

completely constitute the generating functional.
The Dynkin diagram of A2�−1, with the simple roots α1,α2, . . . ,α2�−1 admits an au-

tomorphism defined by

αi�α2�−i, (4.1)

where i = 1,2, . . . ,(�−1) and α� is kept invariant. The � roots invariant under this
map are:

α�,α�−1+α�+α�+1, . . . ,α1+α2+···+α2�−1. (4.2)

The subalgebra C� invariant under the map (4.1) may be constructed from the simple
roots

βi = αi+α2�−i
2

, i= 1,2, . . . ,(�−1),
β� =α�.

(4.3)

The positive roots of C� are listed below. The roots of A2�−1 invariant under the au-
tomorphism, as listed in (4.2) reappear as the long roots of C�.

◦
∆L =

{
β�,2β�−1+β�, 2β�−2+2β�−1+β�, . . . ,2β1+2β2+···+2β�−1+β�

}
. (4.4)

For the purpose of easy identification we divide the set of short roots
◦
∆S of C� in

several sequences. A subalgebraA�−1(⊂ C�) is composed of the simple roots β1,β2, . . . ,
β�−i. The positive roots for this A�−1 are �(�−1)/2 in number and are given by

β1, . . . ,β�−1, β1+β2, . . . ,β�−2+β�−1, . . . ,β1+β2+···+β�−1. (4.5)

The rest of the short roots, also �(�−1)/2 in number, are conveniently grouped as
β�−1+β�, β�−2+β�−1+β�, . . . ,β1+···+β�−1+β�,

β�−2+2β�−1+β2, β�−3+β�−2+2β�−1+β�, . . . ,β1+···+β�−2+2β�−1+β�,
. . . ,β1+2β2+···+2β�−1+β�.

(4.6)

The root space of the algebra A(2)
2�−1 (� ≥ 3)may be constructed from the simple roots

a0 =
(
−β1−2β2−···−2β�−1−β�,0, 12

)
, a1 = (β1,0,0), a� = (β�,0,0). (4.7)
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The first element of the triplet for the root a0 is the negative of the highest short root
of C�. The Cartan matrix for the A

(2)
2�−1 is



2 0 −1
0 2 −1 0
−1 −1 2

. . .

2 −1
0

−2 2



. (4.8)

The null vector (1,1,2, . . . ,2,1) selects out the imaginary root

δ=
(
0,0,

1
2

)
= a0+a1+2a2+···+2a�−1+a�. (4.9)

The positive imaginary roots for A(2)
2�−1 are

2nδ, where n∈ Z+−{0}, (4.10)

nδ, where n≠ 0mod 2. (4.11)

The first set has a degeneracy � and the second set has a degeneracy (�−1). The real
roots are nondegenerate. They are classified as:

(β,0,0)∪(±β,0,n), where β∈
◦
∆L, n∈ Z+−{0}, (4.12)

(β,0,0)∪
(
±β,0, n

2

)
, where β∈

◦
∆S , n∈ Z+−{0}. (4.13)

To discuss the contribution of the above sets of roots to the generating functional, we
introduce the variable

q = x0x2
1 ···x2

�−1x�, (4.14)

that is closely connected to the structure of C�. Now the contribution of any particu-
lar series belonging to (4.12) may be understood by choosing β = β� (say), and thus
obtaining the factor

(
1−x�

)−1 ∞∏
n=1

[(
1−q2nx�

)(
1−q2nx−1�

)]−1. (4.15)

Neglecting the degeneracy factor, the imaginary roots in (4.10) contributes a factor

∞∏
n=1

(
1−q2n)−1. (4.16)

The contributions (4.15) and (4.16) may be combined together as the inverse of the
triple product factor

∞∏
n=1

([
1−(

x2
0x

2
1x

4
2 ···x4

�−1x�
)nxn

�
][
1−(

x2
0x

2
1x

4
2 ···x4

�−1x�
)n−1xn

�
]

×[
1−(

x2
0x

2
1x

4
2 ···x4

�−1x�
)nxn−1

�
]−1)= [

T
(
x�,q2x−1�

)]−1.
(4.17)
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Each of the series in (4.12) coupled with one of the �-fold degenerate imaginary root
series in (4.10) similarly generate an inverse of the triple product factor. Collecting
together, we find this contribution to the generating functional for the KPF as

GL
(
x1, . . . ,x�

)= [
T
(
x�,q2x−1�

)
T
(
x2
�−1x�,q

2x−2�−1x
−2
�
)

···T(x2
1x

2
2 ···x2

�−1x�,q
2x−21 x−22 ···x−2�−1x−1�

)]−1. (4.18)

The other series of the imaginary roots, listed in (4.11) has a multiplicity (�−1) and
it contributes to the generating functional

G̃Im(q)=
∞∏
n=1

(
1−q2n−1)−(�−1) = [

φ(q2)
φ(q)

]�−1
. (4.19)

The real roots in (4.13) also make a contribution proportional to the inverse of the
triple product structure. To illustrate, we consider the series in (4.13), where β = β1.
The contribution is

(
1−x1

)−1 ∞∑
n=1

[(
1−qnx1

)(
1−qnx−11

)]−1 =φ(q)
[
T
(
x1,qx−11

)]−1. (4.20)

The total contribution of all the real roots listed in (4.13) has the structure

GS
(
x1, . . . ,x�

)=GA(1)�−1

(
x1, . . . ,x�−1; q

)
G̃S

(
x1, . . . ,x�

)
, (4.21)

where

GA(1)�−1

(
x1, . . . ,x�−1; q

)
= [

φ(q)
](�−1)(�−2)/2[T(x1,qx−11 )···T(x�−1,qx−1�−1)T(x1x2,qx−11 x−12

)
···T(x�−2x�−1,qx−1�−2x−1�−1)T(x1x2 ···x�−1, qx−11 ···x−1�−1

)]−1,
(4.22)

and

G̃S
(
x1, . . . ,x�

)
= [

φ(q)
](�−1)(�+2)/2[T(x�−1x�, qx−1�−1x−1� )···T(x1 ···x�,qx−11 ···x−1�

)
×T(x�−2x2

�−1x�, qx
−1
�−2x

−2
�−1x

−1
�
)

···T(x1 ···x�−2x2
�−1x,qx

−1
1 ···x−1�−2x−2�−1x−1�

)
···T(x1x2

2 ···x2
�−1x�,qx

−1
1 x−12 x−2�−1x

−1
�
)]−1.

(4.23)

The factor GA(1)�−1
has the form of the generating functional for the KPF for the algebra

A(1)
�−1. The variables q referred to in (4.21) and (3.17) are, however, different. Combining

the factors (4.18), (4.19), and (4.21), we obtain the full generating functional for the
KPF for an arbitrary algebra

GA(2)2�−1
=GLG̃ImGS. (4.24)

For the purpose of obtaining the recursive relation for the KPF, we restrict ourselves
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to the particular cases A(2)
5 . The technique is to substitute the generating functional

GA(2)5
as obtained from (4.24) to the left-hand side of (1.4) and then use the Euler iden-

tity (1.8) and triple product identity (1.9) for the appropriate arguments. Comparing
terms with the same set of exponents of the variables (x0,x1, . . . ,x�) on both sides of
(1.4), we get the recursive relation for the example of A(2)

5 algebra

∑
m1,m2,m3,
n1,...,n6∈Z

(−1)
∑3
i=1mi+

∑6
j=1njK

(
N0−Ñ0,N1−Ñ1,N2−Ñ2,N3−Ñ3

)

=
∑
k1,k2
�1,...,�4∈Z

(−1)k1+k2+�1+···+�4δN0,EδN1,EδN2,2EδN3,E ,
(4.25)

where

Ñ0 =
3∑
i=1

mi
(
mi−1

)+ 1
2

6∑
j=1

nj
(
nj−1

)
,

Ñ1 =
3∑
i=1

mi
(
mi−1

)+ n1

2

(
n1+1

)+ n2

2

(
n2−1

)+ n3

2

(
n3+1

)

+ n4

2

(
n4−1

)+ n5

2

(
n5+1

)− n6

2

(
n6−1

)
,

Ñ2 = 2
3∑
i=1

m2
i −2m1+

6∑
i=1

n2
i −n1+n6,

Ñ3 =
3∑
i=1

m2
i +

1
2

3∑
i=1

ni
(
ni−1

)+ 1
2

6∑
i=4

ni
(
ni+1

)
,

E =
∑
i=1,2

ki
(
3ki+1

)+ 1
2

4∑
i=1

�i
(
3�i+1

)
.

(4.26)

5. Partition functions for D(2)
�+1. Now we construct the generating functional for

the series D(2)
�+1 (for � ≥ 2). The Lie algebra D�+1 has simple roots α1,α2, . . . ,α�+1 with

the Dynkin diagram admitting the automorphism defined by the map

α� �α�+1, (5.1)

whereas the rest of the roots are kept invariant. The positive roots of D�+1 that are
invariant under the map (5.1) may be grouped in two categories:

(I) the roots of A�−1(⊂D�+1) constructed from the simple roots

α1,α2, . . . ,α�−1, (5.2)

(II) the set consisting of

α�+α�−1+α�+1, α�−2+α�−1+α�+α�+1,

. . . ,α1+···+α�−1+α�+α�+1, α�−2+2α�−1+α�+α�+1,

. . . ,α1+···+α�−2+2α�−1+α�+α�+1,

. . . ,α1+2α2+···+2α�−1+α�+α�+1.

(5.3)
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The subalgebra B�(⊂D�+1) which is invariant under the map (5.1) is constructed from
the simple roots where

βi =αi, i= 1, . . . ,(�−1);
β� = α�+α�+1

2
.

(5.4)

Previously we enlisted the roots of B�. As evident from (3.5) and (3.6), the root of D�+1
invariant under the automorphism (5.1) appear as the long roots of B�. The simple
roots of D�+1 (� ≥ 2) are listed below:

a0 =
(
−β1−β2−···−β�,0, 12

)
, a1 =

(
β1,0,0

)
, a� =

(
β�,0,0

)
. (5.5)

The first component of the root triple a0 is the negative of the highest short root of
β�. The Cartan matrix for the algebra D

(2)
�+1 is



2 −1 0
−2 2 −1 0
0 −1 2

. . .

2 −2
0 −1 2



, (5.6)

which admits a null vector (1,1, . . . ,1) that is related to the imaginary root

δ=
(
0,0,

1
2

)
= a0+a1+···+a�. (5.7)

The complete series of the imaginary roots are:

2nδ, where n∈ Z+−{0}, (5.8)

nδ, where n �= 0 mod 2. (5.9)

The imaginary roots (5.8) have a degeneracy � and the roots (5.9) are non-degenerate.
The real roots of D2

�+1 may also be grouped in two sets:

(β,0,0)∪(±β,0,n), where β∈
◦
∆� as listed in (3.5) and (3.6); and n∈ Z+−{0},

(5.10)

(β,0,0)∪
(
±β,0, n

2

)
, where β∈

◦
∆s as listed in (3.4) and n∈ Z+−{0}. (5.11)

Following a procedure akin to the previously adopted one, we construct the generating
functional for the KPF for an arbitrary algebra D(2)

�+1. We introduce the variable

q = x0x1 ···x�. (5.12)

The generating functional may be conveniently grouped as a product of several fac-
tors. The series listed in (5.10) with β taken as root of the subalgebra A�−1(⊂ B�),
as listed in (3.5) produces a factor G(1)

A�−1(x1, . . . ,x�−1,q
2) characteristic of the gen-

erating KPF functional for A(1)
�−1 algebra. This factor which also includes part of the
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contribution from the imaginary roots is

GA(1)�−1

(
x1, . . . ,x�−1; q2

)
= [

φ
(
q2

)](�−1)(�−2)/2[T(x1,q2x−11 )···T(x�−1,q2x−1�−1)
×T(x1x2,q2x−11 x−12

)···T(x�−2x�−1; q2x−1�−2x−1�−1)
···T(x1x2 . . . ,x�−1,q2x−11 x−12 ···x−1�−1

)]
.

(5.13)

The rest of the contribution from the imaginary roots is [φ(q)]−1. The contribution
corresponding to the other long roots of B� listed in (3.6) may be grouped as

G̃L
(
x1, . . . ,x�

)
= [

φ
(
q2

)]�(�−1)/2[T(x�−1x2
� ,q

2x−1�−1x
−2
�
)···T(x1 ···x�−1x2

� ,q
2x−11 ···x−1�−1x−2�

)
···T(x�−2x2

�−1x
2
� ,q

2x−1�−2x
−2
�−1x

−2
�
)

···T(x1x2
2 ···x2

� ,q
2x−11 x−22 ···x−2�

)]−1.
(5.14)

The contribution corresponding to the short roots of B� listed in (3.4) is

GS
(
x1, . . . ,x�

)= [
φ(q)

]6[T(x�,qx−1� )
T
(
x�−1x�,qx−1�−1x

−1
�
)

···T(x1 ···x�,qx−11 ···x−1�
)]−1. (5.15)

Combining the different contributions, the full generating functional emerges as

G(2)
D�+1

(
x1, . . . ,x�

)= [
φ(q)

]−1GA(1)�−1

(
x1, . . . ,x�−1

)·G̃L
(
x1, . . . ,x�

)
GS

(
x1, . . . ,x�

)
. (5.16)

The explicit construction of the generating functional in terms of the inverse of the
triple product and the Euler product may be used to derive the recursive relations as
done previously. We just quote the formula for the D(2)

4 algebra:∑
m1,...,m6
n1,n2,n3∈Z

(−1)
∑6
i=1mi+

∑3
j=1njK

(
N0−Ñ0,N1−Ñ1,N2−Ñ2,N3−Ñ3

)

=
∑

k1,k2,k3,k4
�1,�2∈Z

(−1)
∑4
i=1 ki+

∑2
j=1 �jδN1,EδN2,EδN3,EδN0,E ,

(5.17)

where

Ñ0 =
6∑
i=1

mi
(
mi−1

)+ 1
2

3∑
i=1

ni
(
ni−1

)
,

Ñ1 =
6∑
i=1

m2
i −m2−m4+ n1

2

(
n1−1

)+ n2

2

(
n2−1

)+ n3

2

(
n3+1

)
,

Ñ2 =
6∑
i=1

m2
i −m1+m6+ n1

2

(
n1−1

)+ n2

2

(
n2+1

)+ n3

2

(
n3−1

)
,

Ñ3 =
6∑
i=1

mi
(
mi−1

)+ 6∑
i=4

mi
(
mi+1

)+ 1
2

3∑
i=1

ni
(
ni+1

)
,

E =
4∑
i=1

ki
(
3ki+1

)+ 1
2

2∑
i=1

�i
(
3�i+1

)
.

(5.18)
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6. Partition functions for E(2)6 and D(3)
4 . The simple roots α1, . . . ,α6 of the Lie al-

gebra E6 admit the automorphism of its Dynkin diagram given by the map

α1�α6, α2�α5, (6.1)

and the other roots remain unaltered. The simple roots of the invariant subalgebra F4
are projected as

β1 = α1+α6

2
, β2 = α2+α5

2
, β3 =α3, β4 =α4. (6.2)

The invariant roots of E6 map to the long roots of F4. The simple roots of the algebra
E(2)6 may be chosen as

a0 =
(
−2β1−3β2−2β3−β4,0, 12

)
, ai =

(
βi,0,0

)
, (6.3)

where i= 1,2,3,4. The first component of the triplet for the root a0 is just the negative
of the highest short root of F4. We just quote the result for the generating functional
GE(2)6

(x0,x1, . . . ,x4) having the multiplicative structure

GE(2)6
=GLGImGS, (6.4)

where GL refers to the contribution due to those root sequences of E
(2)
6 which relate

to the invariant roots of the Lie algebra E6, and consequently to the long roots of F4.
The factor GS indicates the contribution of the root series of E(2)6 corresponding to
the short roots of F4. The imaginary roots generate the term F4. The explicit values of
these factors are given below:

GL
(
x0,x1,x2,x3,x4

)= [
φ
(
q2

)]12
[
T
(
x3,q2x−13

)
T
(
x4,qx−14

)
T
(
x3x4,qx−13 x−14

)
×T(x2

2x3,q
2x−22 x−13

)
T
(
x2
2x3x4,q

2x−22 x−13 x−14
)

×T(x2
1x

2
2x3,q

2x−21 x−22 x−13
)
T
(
x2
2x

2
3x4,q

2x−22 x−23 x−14
)

×T(x2
1x

2
2x3x4,q

2x−21 x−22 x−13 x−14
)

×T(x2
1x

2
2x

2
3x4,q

2x−21 x−22 x−23 x−14
)

×T(x2
1x

4
2x

2
3x4,q

2x−21 x−42 x−23 x−24
)

×T(x2
1x

4
2x

3
3x4,q

2x−21 x−42 x−33 x−14
)

×T(x2
1x

4
2x

3
3x

2
4 ,q

2x−21 x−42 x−33 x−24
)]
,

(6.5)

GIm(q)=
[
φ
(
q2

)
φ(q)

]−2, (6.6)
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GS
(
x0,x1,x2,x3,x4

)= [
φ(q)

]12
[
T
(
x1qx−11

)
T
(
x2,qx−12

)
×T(x1x2,qx−11 x−12

)
T
(
x2x3,qx−12 x−13

)
×T(x1x2x3,qx−11 x−12 x−13

)
T
(
x2x3x4,qx−12 x−13 x−14

)
×T(x1x2

2x3,qx
−1
1 x−22 x−13

)
T
(
x1x2x3x4,qx−11 x−12 x−13 x−14

)
×T(x1x2

2x3x4,qx
−1
1 x−22 x−13 x−14

)
×T(x1x2

2x
2
3x4,qx

−1
1 x−22 x−23 x−14

)
×T(x1x3

2x
2
3x4,qx

−1
1 x−32 x−23 x−14

)
×T(x2

1x
3
2x

2
3x4,qx

−2
1 x−32 x−23 x−14

)]
,

(6.7)

where

q = x0x2
1x

3
2x

2
3x4. (6.8)

Derivation of the recursive relation for the KPF is straightforward and we omit it here.
The example of the algebra D(3)

4 is distinct from the others because the Dynkin
diagram of the Lie algebra D4 is symmetric under the permutation group S3 for the
simple roots α1,α2, and α3 thus defining an automorphism of order 3:

τ3 = 1. (6.9)

The subalgebra of D4, invariant under the automorphism may be projected as

β1 = α1+α2+α3

3
, β2 = β4. (6.10)

The roots of D4, invariant under τ map to the long roots of G2. We enlist the simple
roots of D(3)

4 as

a0 =
(
−2β1−β2,0, 13

)
, ai =

(
βi,0,0

)
, (6.11)

where i= 1,2. The first component of the root is negative of the highest short root of
G2. The Cartan matrix for D

(3)
4 is



2 −1 0
−1 2 −1
0 −3 2


 (6.12)

which admits a null vector (1,2,1) relating to the imaginary root

δ=
(
0,0,

1
3

)
= a0+2a1+a2. (6.13)

The imaginary roots appear in two series:
(I) the roots 3nδ, where n∈ Z+−{0} and the multiplicity is 2, and
(II) the non-degenerate root nδ, where n �= 0 mod 3.



26 R. CHAKRABARTI AND T. S. SANTHANAM

The real roots of D(3)
4 are of two kinds. The roots of the first type owe their origin to

the invariant roots of the Lie algebra D4. They are

(β,0,0)∪(±β,0,n), (6.14)

where n∈ Z+−0 and β is a positive long root of G2. The second type may be listed as

(β,0,0)∪
(
±β,0, n

3

)
, (6.15)

wheren∈ Z+−0 andβ is a positive short root ofG2. Towrite the generating functional,
we introduce

q = x0x2
1x2. (6.16)

The contribution of the imaginary roots to the generating functional is

GIm(q)=
[
φ
(
q3

)]−2 ∞∑
n=1

[(
1−q3n−2)(1−q3n−1)]−1 = [

φ
(
q3

)
φ(q)

]−1. (6.17)

The real roots of the series (6.14) contribute

GL
(
x0,x1,x2,x3

)= [
φ
(
q3

)]3[T(x2,q2x−12 )
T
(
x3
1x2,q

2x−31 x−12
)
T
(
x3
1x

2
2 ,q

2x−31 x−22
)]−1.
(6.18)

The other real roots appearing in (6.15) contribute

GS
(
x0,x1,x2,x3

)= [
φ(q)

]3[T(x1,qx−11 )
T
(
x1x2,qx−11 x−12

)
T
(
x2
1x2,qx

−2
1 x−12

)]−1.
(6.19)

The full generating functional for the KPF has the structure

G =GImGLGS. (6.20)

The recursive relation for the KPF may be derived as before and reads∑
m1,m2,m3
n1,n2,n3∈Z

(−1)
∑3
i=1mi+niK

(
N0−Ñ0,N1−Ñ1,N2−Ñ2

)

=
∑

k1,k2,�1,�2

(−1)k1+k2+�1+�2δN0,EδN1,2EδN2,E ,
(6.21)

where

Ñ0 = 3
2

3∑
i=1

mi
(
mi−1

)+ 1
2

3∑
i=1

ni
(
ni−1

)
,

Ñ1 = 3
3∑
i=1

m2
i −3m1+

3∑
i=1

n2
i +n3,

Ñ2 = 3
2

3∑
i=1

m2
i −

1
2
m1+m2−m3

2
+ 1
2

3∑
i=1

n2
i −

n1−n2+n3

2
,

E = 3
2

2∑
i=1

ki
(
3ki+1

)+ 1
2

2∑
i=1

�i
(
3�i+1

)
.

(6.22)
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7. Conclusion. We obtained the general structure of the generating functional for
the KPF for an arbitrary twisted affine algebra. The recursive relation for the KPF may
be obtained in any specific example by a simple algorithm. It is noteworthy that for
all of the affine algebras, both twisted and untwisted ones, we need to use only the
identities (1.8), (1.9), and (1.10) to extract these recursion relations. The series A(2)

2� is
further distinguished in the sense that only for them the quintuple product structure
appear in the generating functional thus necessitating use of the identity (1.10). The
reason can be traced back to the fact that the longest roots among the roots of these
different sizes always contain the smallest simple root in amultiple of 4, thus securing
the appropriate structure for the inverse of the quintuple product structure in the
generating functional.
A characteristic infinite product identity for each affine Lie algebra may be derived

by exploiting the generating functional approach and the alternate formulation of
(Kac and Peterson [4]). The relations of these identities with the modular functions
are under investigation and will be the subject of a future publication.
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