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Abstract. Commutative H∗-algebra is characterized in terms of the property that the
orthogonal complement of a right ideal is a left ideal.
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1. Introduction. In recent years the author has been working on characterizing
different classes of commutative Banach algebras (see [7, 8, 9]). In doing so he re-
membered a characterization result that he discovered a long time ago, but which he
dismissed at that time as being both exotic and somewhat artificial. Now he feels that
this characterization may be of interest to the mathematical community. In any case,
it indicates importance of Jacobson’s theory of radicals associated with a ring [3]; in
particular it shows how strong is the assumption of semi-simplicity in the case of
Hilbert algebras.
The present paper is devoted to this characterization.

2. Main results

Theorem 2.1. Let A be a semi-simple complex Hilbert algebra (this means that A
is a Banach algebra and it has an inner product ( , ) such that (x,x) = ‖x‖2 for all
x ∈ A). Assume further that the orthogonal complement Rp of any right ideal R is a
left ideal. Then A is a commutative H∗-algebra. In fact, A is a direct sum, A=∑α∈Γ Iα
of minimal two-sided ideals Iα, α∈ Γ , each of which is isomorphic to the complex field.

To prove this theorem we shall need several lemmas.

Lemma 2.2. The orthogonal complement Rp of a right ideal R is a two-sided ideal,
it coincides with the right annihilator r(R) of R.

Proof. First note that Rp is included in the right annihilator r(R) of R, since
RRp ⊂ R∩Rp = (0). Also r(R) is a right ideal (in fact, it is a two-sided ideal): ifx ∈ r(R)
and a ∈ A, then y(xa) = (yx)a = 0 for each y ∈ R (and y(ax) = (ya)x = 0 since
ya∈ R). This means that the right ideal R∩r(R) annihilates itself (which means that
x2 = 0 if x ∈ R∩r(R)). This shows that R∩r(R)= (0) (see [3]). Thus, Rp = r(R).

Corollary 2.3. Rp is also the left annihilator of R, Rp = l(R).
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Proof. SinceRp is also a right ideal, wemay conclude thatR = r(Rp), whichmeans
that Rp ⊂ l(R). Using the above argument we conclude that Rp = l(R).

Corollary 2.4. The algebra A is a right complemented algebra [6].

Corollary 2.5. Each closed right ideal in A is also a left ideal.

Proof. Corollary 2.5 is a consequence of the fact that each right ideal R is the
orthogonal complement of the right ideal Rp .

As it was defined in [6], a left projection is a non-zero member e of A which is
both idempotent (e2 = e) and left selfadjoint ((ex,y) = (x,ey) for all x,y ∈ A). As
in [1, 6] a left projection e is primitive if it cannot be represented as a sum, e= e1+e2,
of two left projections e1 and e2 such that e1e2 = 0 (which implies both “e2e1 = 0” and
“(e1,e2)= 0”).

Lemma 2.6. Each closed non-zero right ideal R in A contains a primitive left projec-
tion.

Proof. We can employ the proof of [6, Lemma 5] here (note that l(Rp) = R):
take x ∈ R which does not have a right quasi-inverse, consider the right ideal R1 =
closure of {xy+x :y ∈A} and write −x = e+u with e ∈ Rp1 , u∈ R1. Then e is a left
projection in R (since Rp1 ⊂ R). If e is not primitive, then as in [1] one can show that
e can be written as a finite sum, e =∑ei of primitive left projections e1, . . . ,en (note
that ‖e‖ ≥ 1 for each idempotent e), such that eiej = 0 if i ≠ j. Needless to say, each
ei = eei is a member of R.

Lemma 2.7. A left projection e is primitive if and only if the closed right ideal eA is
minimal.

Proof is left to the reader.

Lemma 2.8. If e is a primitive left projection, then the right ideal R = eA is a division
algebra. In fact, eA is isomorphic to the complex field C, eA= {λe : λ∈ C}.

Proof. First note that e is also a right identity of eA(ae = a for each a ∈ eA). It
follows from the fact that Rp is a left annihilator of eA: if a∈ R then ae−a∈ l(eA)=
Rp (but ae−a is also a member of R = eA: thus, ae−a= 0, ae= a).
Now we show that each x ∈ eA has both right and left inverses. As in the proof

of [6, Lemma 6] one can show that the closed right ideal eA has no proper ideals
(closed or not). It follows that each x ∈ eA has a right inverse y (it is a consequence
of the fact that xA = eA). But ey is also a right inverse of x : xey = xy = e. Also
ey ∈ eA, and so it has a right inverse z, eyz = e. A standard argument shows that
x = ez : x = xe= xeyz = ez, which implies that eyx = e, i.e., ey is also a left inverse
of x. This proves that R = eA is a division algebra. The last part follows from Gelfand-
Mazur [4, Theorem 22F] (see also [2, Proposition 4.III in §9] and [5, Theorem 2 in §4]).

Lemma 2.9. Product e1e2 of any two distinct primitive projections e1,e2 equals zero,
e1e2 = 0.
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Proof. The ideals R1 = e1A and R2 = e2A are minimal, and R1∩R2 ⊂ R1,R2. This
simply means that R1∩R2 = (0), from which we conclude that R1R2 = 0 (since R1R2 ⊂
R1∩R2) (other possibility would be R1∩R2 = Ri for i= 1,2, which is impossible, since
e1 ≠ e2). Thus e1e2 = 0.

Corollary 2.10. If e1,e2 are minimal projections then e1A ⊥ e2A (which means
that (x,y)= 0 for any x ∈ e1A, y ∈ e2A).

Proof of the theorem. Let {eα :α∈ Γ} be the family of all primitive projections
in A. Then A = ∑α∈Γ αA (because of Lemma 2.6) and each Iα = eαA is isomorphic
to the complex field. Thus A is commutative H∗-algebra since it is a direct sum of
commutative H∗-algebras (the complex field is a one-dimensional H∗-algebra).

Remark 2.11. In effect we characterized the algebra L2(S,k), described in the ex-
ample below.

Example 2.12. Let S be a set (of any cardinality whatever), and let k(s) be a real
valued function on S such that k(s) ≥ 1 for all s ∈ S. Let L2(S,k) be the algebra of
all complex valued functions x(s) on S such that

∑
s∈S |x(s)|2k(s) < ∞ (this means

there exists a countable subset Sx of S such that k(s)= 0 if s ∈ S ∼ Sx and the series∑
s∈Sx |x(s)|2k(s) converges).
Theorem 2.13. The algebra L2(S,k) is a commutative H∗-algebra with respect to

the point wise addition and multiplications, the scalar product (x,x′)=∑s∈S x(s)x̄′(s)
k(s) and the involution x→ x∗ defined by x∗(s)= x̄(s). Conversely, for each commu-
tative proper H∗-algebra A there exist a set S and a real valued function k(s) with
k(s)≥ 1 such that A is isomorphic and isometric to L2(S,k).

Proof. First part is established by direct verification, the second part was in effect
established in [1]. It is an easy consequence of Lemma 2.8 above (note that each proper
commutativeH∗-algebra A satisfies assumption of Theorem 2.1 above): all we have to
do is to take S to be the set of all minimal projections e inA and define the function k()
by setting k(e)= ‖e‖.
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