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Abstract. The mixed finite element scheme of the Stokes problem with pressure stabi-
lization is analyzed for the cross-grid Pk−Pk−1 elements, k≥ 1, using discontinuous pres-
sures. The P+k −Pk−1 elements are also analyzed. We prove the stability of the scheme using
the macroelement technique. The order of convergence follows from the standard theory
of mixed methods. The macroelement technique can also be applicable to the stability
analysis for some higher order methods using continuous pressures such as Taylor-Hood
methods, cross-grid methods, or iso-grid methods.
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1. Introduction. For the finite element approximation of the stationary Stokes
equations several approaches appear in the literature [6, 9, 13]. The purpose of this
paper is to analyze the mixed finite element scheme with pressure stabilization for
some higher order triangular elements.
Let Ω be a bounded polygonal domain in R2. We consider the approximation of the

stationary Stokes problem: find u= (u1,u2) and p satisfying

−ν∆u+∇p = f in Ω,

div u= 0 in Ω,

u= 0 on ∂Ω,
(1.1)

where u is the fluid velocity, p is the pressure, f is the given body force per unit mass,
and ν > 0 is the viscosity. For the sake of simplicity, we take the viscosity equal to one.
With the usual notation (see Section 2 for details) the standard variational formulation
of this problem is: find u∈H1

0(Ω)2 and p ∈ L20(Ω) such that

(∇u,∇v)−(div v,p)= (f,v), v∈H1
0(Ω)

2,

(div u,q)= 0, q ∈ L20(Ω),
(1.2)

where (·,·) denote the usual L2 inner products. For f ∈ H−1(Ω)2 this problem has a
unique solution (cf. [9]). The standard mixed method based on (1.2) reads as follows:
find uh ∈Vh ⊂H1

0(Ω)2 and p ∈ Ph ⊂ L20(Ω) such that

(∇uh,∇v)−(div v,ph
)= (f,v), v∈Vh,(

div uh,q
)= 0, q ∈ Ph.

(1.3)
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Suppose that the finite element spacesVh and Ph indexed by the parameterh, 0<h<1,
satisfy the inf-sup condition or the Babuška-Brezzi stability condition

inf
0≠p∈Ph

sup
0≠v∈Vh

(div v,p)
‖v‖1‖p‖0 ≥ C, (1.4)

where C is a positive constant independent of h. Then the theory of mixed methods
states that the system (1.3) has a unique solution (uh,ph) satisfying

‖u−uh‖1+‖p−ph‖0 ≤ C
(
inf
v∈Vh

‖u−v‖1+ inf
q∈Ph

‖p−q‖0
)
, (1.5)

where (u,p) is the solution to (1.2). Introducing the associated bounded bilinear form

B(u,p;v,q)= (∇u,∇v)−(div v,p)+ε(div u,q), ε=±1, (1.6)

and the linear functional

L(v,q)= (f,v), (1.7)

we can recast the formulation (1.3) as follows: find (uh,ph)∈Vh×Ph such that

B
(
uh,ph;v,q

)= L(v,q), (v,q)∈Vh×Ph. (1.8)

Then the main result of [1, 2] says that (1.5) holds provided

sup
0≠(v,q)∈Vh×Ph

B(u,p;v,q)
‖v‖1+‖q‖0 ≥ C

(‖u‖1+‖p‖0), (u,p)∈Vh×Ph, (1.9)

where C is a positive constant independent of h. Equation (1.9) will be referred to the
stability condition for a bilinear form B in general.
Since it could be a difficult task to verify (1.4) for a particular choice of velocity

and pressure approximations, several methods have been developed aiming at sta-
bilizing the discrete solution. We introduce an approximation scheme with pressure
stabilization as follows: find (uh,ph)∈Vh×Ph such that

B(uh,ph;v,q)= L(v,q), (v,q)∈Vh×Ph (1.10)

with

B(u,p;v,q)= (∇u,∇v)−(div v,p)+ε(div u,q)
+εβ

∑
T∈Γh

hT
(
[[p]],[[q]]

)
T , ε=±1,

L(v,q)= (f,v).

(1.11)

Note that this method was considered as a special case of the stabilization procedures
in [7, 10].
It is the purpose of this paper to show that the mixed finite element method (1.10)

with pressure stabilization converges for some higher order elements using discon-
tinuous pressures. More specifically, we establish the convergence of the cross-grid
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Pk−Pk−1 elements, k ≥ 1 and the P+k −Pk−1 elements, k ≥ 2 (see Section 3). To verify
the stability condition (1.9), we will combine the ideas of macroelement technique in
[15, 16, 17] and the arguments in [8] for Galerkin least squares methods. Then the er-
ror estimate (1.5) follows in the usual manner. The macroelement technique can also
be applicable to the stability analysis for some higher ordermethods using continuous
pressures, such as Taylor-Hood methods, cross-grid methods, or iso-grid methods.
An outline of the paper is as follows. In Section 2, we develop the stability analysis

and the macroelement technique together with the necessary preliminaries. The sta-
bility and convergence of various elements mentioned above are shown in Section 3
by an application of the results in Section 2.

2. Macroelement technique and weak stability. Let �h be a partitioning of Ω̄ into
triangles for a bounded polygonal domain Ω ⊂R2. The triangulation is assumed to be
regular in the usual sense, that is, for some σ > 1,

hK ≤ σρK, K ∈�h, (2.1)

where hK is the diameter of element K and ρK is the diameter of the largest circle
contained in K. The mesh parameter h is given by h = max(hK) and the set of all
interelement boundaries will be denoted by Γh. We will not assume �h to be quasi-
uniform.
The finite element subspaces of Pk−Pl element are

Vh =
{
v= (v1,v2)∈H1

0(Ω)
2 : vi|K ∈ Pk(K), i= 1,2, K ∈�h

}
,

Ph =
{
p ∈ L20(Ω) : p|K ∈ Pl(K), K ∈�h

}
,

(2.2)

where Ps denotes the collection of all polynomials of degree not greater than s and
L20(Ω) denotes the subspace of L2(Ω) of functions with zero mean value. Our notation
is standard. The norms and seminorms in the Sobolev spaces H1(Ω)2 are denoted by
‖·‖1 and |·|1, respectively.
Given any regular triangulation �h, by a macroelement we now mean a connected

set M of adjoining elements K from �h. Two macroelements M and M̄ are said to be
equivalent if there is a continuous one-to-one and onto mapping F :M → M̄ such that
F|K is affine for each K ⊂M . For a macroelement M we define the spaces V0,M and PM
consistent with Vh and Ph:

V0,M =
{
v∈H1

0(M)2 : v|K ∈ Pk(K)2, K ⊂M
}
, (2.3)

PM =
{
p ∈ L20(M) : p|K ∈ Pl(K), K ⊂M

}
. (2.4)

Further we define

NM =
{
p ∈ PM : (v,∇hp)M = 0, v∈V0,M

}
, (2.5)

where ∇hp is given by ∇p|K on each K ⊂M . The collection of edges of elements in
the interior of M is denoted by ΓM . The following seminorms defined in Ph turns out
to be very useful for the analysis below:

|p|2h =
∑

K∈�h

h2K‖∇p‖20,K, |[[p]]|2h =
∑
T∈Γh

hT
(
[[p]],[[p]]

)
T . (2.6)
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In PM we similarly define

|p|2M =
∑
K⊂M

h2K‖∇p‖20,K, |[[p]]|2M =
∑

T∈ΓM
hT
(
[[p]],[[p]]

)
T . (2.7)

Here, the collection of edges of elements in the interior of M is denoted by ΓM , ‖·‖0,K
is the L2 norm on K, (·,·)T is the inner product in L2(T), hT is the diameter of T , and
[[p]]T is the jump in p along T .
The macroelement technique is based on the macroelement partitioning �h satis-

fying the following conditions:
(M1) there is a fixed set of equivalence classes �i, i= 1, . . . ,q, of macroelements such

that each M ∈�h belongs to one of �i;
(M2) there is a positive integer L such that each K ∈ �h is contained in at least one

and not more than L macroelements of �h;
(M3) each M ∈�i, i= 1, . . . ,q, satisfies

(M3a) p ∈NM implies that |p|M = 0.
The usefulness of the macroelement concept and the above mesh-dependent norms
is that it enables us to establish some weak stability estimates for the proof of (1.9).

Remark 2.1. We have modified the presentation of Sternberg [16, 17] to deal with
the pressure stabilization and discontinuous pressure approximations.

Lemma 2.2. Let � be a class of equivalent macroelements. Suppose that (M3a) is
valid for every M ∈�. Then there is a constant C > 0 such that

sup
0≠v∈V0,M

(v,∇hp)M
|v|1,M ≥ C|p|M, p ∈ PM (2.8)

holds for all M ∈�.

Proof. For M ∈�, define a scaling invariant

βM = inf
0≠p∈PM

sup
0≠v∈V0,M

(v,∇hp)M
|v|1,M |p|M (2.9)

which is positive from the hypothesis. By virtue of the argument of Sternberg (cf.
[15, 17]), the regularity condition (2.1) ensures that there is a constant C such that
βM ≥ C > 0 for all M ∈�, which implies (2.8).

Lemma 2.3. Suppose that there is a macroelement partitioning �h satisfying (M1),
(M2), and (M3). Then the weak stability inequality

sup
0≠v∈Vh

(div v,p)
‖v‖1 ≥ C1|p|h−C2|[[p]]|h, p ∈ Ph (2.10)

is valid.

Proof. The local weak stability estimates (2.8) implies that for a given p ∈ Ph and
M ∈�h, there is vM ∈Vh with vM = 0 in Ω\M such that

−(vM,∇hp
)
M ≥ C|p|2M, (2.11)

|vM |1 = |vM |1,M ≤ |p|M. (2.12)
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Then we have

(
div vM,p

)
M =−

(
vM,∇hp

)
M+

∑
T∈ΓM

(
vM ·n,[[p]]

)
T , (2.13)

(
div vM,p

)
M ≥ C|p|2M−

( ∑
T∈ΓM

h−1T ‖vM‖20,T
)1/2

|[[p]]|M. (2.14)

Here n denotes a unit normal to T . From Lemma 2.4 we have the estimates

∑
T∈ΓM

h−1T ‖vM‖20,T ≤ C
∑
K⊂M

h−2K ‖vM‖20,K ≤ C′|v|21,M . (2.15)

Combining (2.12), (2.14), and (2.15), we obtain

(
div vM,p

)
M ≥ C1|p|2M−C2|p|M |[[p]]|M, (2.16)

where C1 > 0 and C2 > 0 can be taken independent of M . Next let us define v ∈
Vh through v = ∑M∈�h vM. Then the macroelement conditions (M1), (M2), (M3), and
(2.16) give

(div v,p)=
∑

M∈�h

(
div vM,p

)
M

≥ C1
∑

M∈�h

|p|2M−C2
∑

M∈�h

|p|M |[[p]]|M

≥ C1|p|2h−C2
( ∑

M∈�h

|p|2M
)1/2( ∑

M∈�h

|[[p]]|2M
)1/2

≥ C1|p|2h−C2
(√

L|p|h
)(√

L|[[p]]|h
)

= C1|p|2h−C2L|p|h|[[p]]|h.

(2.17)

Since

‖v‖1 ≤ C|v|1 ≤ C
∑

M∈�h

|vM |1,M ≤ C
∑

M∈�h

|p|M

≤ CL
∑

K∈�h

hK‖∇p‖0,K ≤ CL|Ω|1/2|p|h,
(2.18)

it follows from (2.17) that there are constants C1 > 0 and C2 > 0 satisfying (2.10). Here
|Ω| denotes the measure of Ω.

Lemma 2.4. Let M be a macroelement. Then we have for u∈Vh,

∑
T∈ΓM

h−1T ‖u‖20,T ≤ C
∑
K⊂M

h−2K ‖u‖20,K, (2.19)

and for u∈V0,M ,

∑
K⊂M

h−2K ‖u‖20,K ≤ C|u|21,M , (2.20)

where constants C > 0 depend only on the regularity constant σ of (2.1).
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Proof. According to the argument of [3, page 1045] it is not difficult to see that
for u∈Vh0,

∑
T∈∂K

h−1T ‖u‖20,T ≤ Ch−2K ‖u‖20,K. (2.21)

Then (2.19) follows immediately. Next, applying the argument of a proof of the inverse
inequality for piecewise polynomials (cf. [13, page 195]), we can show that (2.20) holds
for u∈V0,M .

Lemma 2.5. Suppose that either k ≥ 2 in the definition (2.2) of Vh or Ph ⊂ C(Ω).
Then there are two positive constants C1 and C2 such that

sup
0≠v∈Vh

(div v,p)
‖v‖1 ≥ C1‖p‖0−C2|p|h, p ∈ Ph. (2.22)

Proof. These are the cases (i) and (ii) of [8, Lemma 3.3]. See [8, pages 1685–1687]
for the proof.

Lemma 2.6. Under the assumption of Lemma 2.3 there are two positive constants
C1 and C2 such that the weak stability inequality

sup
0≠v∈Vh

(div v,p)
‖v‖1 ≥ C1‖p‖0−C2|[[p]]|h, p ∈ Ph (2.23)

holds.

Proof. Equation (2.23) follows from (2.10) and (2.22). To bemore precise, let C1,C2
and c1,c2 be the constants in (2.10) and (2.22), respectively. For 0< t < 1 we have

sup
0≠v∈Vh

(div v,p)
‖v‖1 ≥ (1−t)(C1|p|h−C2|[[p]]|h)+t(c1‖p‖0−c2|p|h)

≥ tc1‖p‖0+
(
(1−t)C1−tc2

)|p|h−(1−t)C2|[[p]]|h.
(2.24)

Then (2.23) follows provided t < C1(C1+c2)−1.
We are ready to verify the stability condition (1.9) for the method (1.10). We do the

case ε= 1. The other case ε=−1 is similar.
Theorem 2.7. Suppose that there is a macroelement partitioning �h satisfying

(M1), (M2), and (M3) for a regular triangulation �h of Ω ⊂ R2. Then given a stabi-
lization parameter β > 0 the stability condition (1.9) for the method (1.10) is valid.

Proof. Let (u,p)∈Vh×Ph. First, we note that

B(u,p;u,p)= ‖∇u‖20+β|[[p]]|2h ≥ C1‖u‖21+β|[[p]]|2h. (2.25)

Next, according to (2.23), there is w∈Vh satisfying

(divw,p)≥ C2‖p‖20−C3‖p‖0|[[p]]|h (2.26)
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and ‖w‖1 = ‖p‖0. Then for t1 > 0 and t2 > 0,

B(u,p;−w,0)=−(∇u,∇w)+(divw,p)
≥−‖u‖1‖p‖0+C2‖p‖20−C3‖p‖0|[[p]]|h

≥
(
C2− t1

2
− C3t2

2

)
‖p‖20−

‖u‖21
2t1

− C3|[[p]]|2h
2t2

.

(2.27)

Choosing t1 and t2 small enough, we have

B(u,p;−w,0)≥ C4‖p‖20−C5‖u‖21−C6|[[p]]|2h (2.28)

for some positive constants C4,C5, and C6. Let us denote (v,q)= (u−δw,p). It follows
from (2.25) and (2.28) that

B(u,p;v,q)= B(u,p;u,p)+δB(u,p;−w,0)
≥ δC4

∥∥p∥∥20+(C1−δC5)∥∥u∥∥21+(β−δC6)∣∣[[p]]∣∣2h. (2.29)

Choosing 0< δ<min
{
C1C−15 ,βC−16

}
we obtain

B(u,p;v,q)≥ C7
(‖u‖1+‖p‖0)2 (2.30)

for some positive constant C7. On the other hand, we have

‖v‖1+‖q‖0 ≤ C8
(‖u‖1+‖p‖0) (2.31)

for some positive constant C8. Finally combining (2.30) and (2.31) we establish the
stability condition (1.9) for the method (1.10).

The error estimates are now obtained in the usual manner from the stability inequal-
ity (1.9) and from the following estimates (cf. [8, 9]):

( ∑
K∈�h

h2K‖∇q‖20,K+
∑
T∈Γh

hT ([[q]],[[q]])T

)1/2
≤ C‖q‖0, q ∈ Ph, (2.32)

inf
q∈Ph

( ∑
K∈�h

h2K‖∇(q−p)‖20,K+
∑
T∈Γh

hT ([[q−p]],[[q−p]])T
)1/2

≤ C inf
q∈Ph

‖q−p‖0 ≤ Chl+1|p|l+1, p ∈Hl+1(Ω),
(2.33)

inf
v∈Vh

‖u−v‖1 ≤ Chk|u|k+1, u∈Hk+1(Ω)2. (2.34)

Theorem 2.8. Let the assumptions of Theorem 2.7 be valid. Assume further that
the solution (u,p) to (1.2) satisfies u ∈ Hk+1(Ω)2 and p ∈ Hl+1(Ω). Then for β > 0,
(1.10) has a unique solution (uh,ph) satisfying (1.5) and

‖u−uh‖1+‖p−ph‖0 ≤ C
(
hk|u|k+1+hl+1|p|l+1

)
. (2.35)

If in addition Ω is a convex polygon, then we have

‖u−uh‖0 ≤ C
(
hk+1|u|k+1+hl+2|p|l+1

)
. (2.36)
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Proof. We follow the argument of [8, page 1688]. Let ũ ∈ Vh and p̃ ∈ Ph be the
interpolants of u and p, respectively. The stability condition (1.9) of B implies the
existence of (v,q)∈Vh×Ph such that

‖v‖1+‖q‖0 ≤ C,∥∥ũ−uh∥∥1+∥∥p̃−ph
∥∥
0 ≤ B

(
uh− ũ,ph− p̃;v,q

)
.

(2.37)

Since

B
(
uh− ũ,ph− p̃;v,q

)= B
(
u− ũ,p− p̃;v,q), (2.38)

B
(
u− ũ,p− p̃;v,q)≤ C

(
‖u− ũ‖21+‖p− p̃‖20+

∑
T∈Γh

hT
(
[[p− p̃]],[[p− p̃]])T

)1/2

·
(
‖v‖21+‖q‖20+

∑
T∈Γh

hT
(
[[q]],[[q]]

)
T

)1/2
,

(2.39)

we get, from (2.32), (2.33), and (2.37),

∥∥ũ−uh∥∥1+∥∥p̃−ph
∥∥
0 ≤ C

(‖u− ũ‖1+‖p− p̃‖0), (2.40)

which gives (1.5) with the aid of the triangle inequality. Now (2.35) follows from (1.5),
(2.33), and (2.34). Moreover, (2.36) follows from the Aubin-Nitsche argument using the
a priori estimate [12],

‖u‖2+‖p‖1 ≤ C‖f‖0 (2.41)

for a convex polygon.

3. Higher order stable elements. In this section, we apply, essentially, Theorems
2.7 and 2.8 for the analysis of several higher order stable elements. We will verify the
macroelement conditions (M1), (M2), and (M3) and the approximation properties (2.33)
and (2.34) for each method to establish the error estimates (2.35) and (2.36). Our main
concern is the verification of the condition (M3), since a construction of macroelement
partitioning satisfying (M1) and (M2) is not difficult and the approximation properties
(2.33) and (2.34) follow from the standard interpolation theory. For the P+k − Pk−1
elements, Vh is enlarged using bubble functions on certain triangles. For the Pk−Pk
cross-grid elements or the Pk−Pk iso-grid elements, the pressure triangulation �′h or
�̃h is coarser than the velocity triangulation �h. But the results of Section 2 can be
interpreted without difficulty.
We begin by recalling that the barycentric coordinates λi = λi(x), 1 ≤ i ≤ 3, of x =

(x,y)∈ R2 with respect to the points Ai = (xi,yi), 1≤ i≤ 3, which makes a triangle
K, are the unique solution of the linear system

3∑
i=1

λiAi = x,
3∑

i=1
λi = 1. (3.1)
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Figure 3.1. Examples of macroelement.

It follows that [
λ1
λ2

]
= 1
ε|K|

[
y2−y3 −(x2−x3)

−(y1−y3) x1−x3

][
x−x3
y−y3

]
, (3.2)

where |K| denotes themeasure ofK and ε=±1 depending on the orientation ofA1,A2,
and A3. Similar relations hold also for

[
λ1
λ3

]
and

[
λ2
λ3

]
. Note that for any nonnegative

integers i,j,k, ∫
K
λi1λ

j
2λ

k
3dx =

2i!j!k!
(i+j+k+2)! |K|. (3.3)

A few examples of macroelement are illustrated in Figure 3.1. For the macroelement in
Figure 3.1a we interpret by λ0,λ1,λ2 the barycentric coordinates on Kλ with respect to
A0,A1, and A2. The similar interpretation of notation will apply for the other figures.

3.1. The cross-grid Pk−Pk−1 elements, k ≥ 1, using discontinuous pressures. In
the cross-gridmethods using discontinuous pressures the triangulation�h is obtained
from a triangulation �′h by dividing each K′ ∈ �′h into three triangles inserting an
interior vertex A0 as in Figure 3.1a, where A0 is not necessarily the center of gravity
of K′. For k≥ 1 we define Vh by (2.2) and

Ph =
{
p ∈ L20(Ω) : p|K ∈ Pk−1(K), K ∈�h

}
. (3.4)

Lemma 3.1. Let M be a macroelement consisting of three triangles aligned as in
Figure 3.1a. Define V0,M by (2.3) and

PM =
{
p ∈ L20(M) : p|K ∈ Pk−1(K), K ⊂M

}
for k≥ 2. (3.5)

Then (M3a) is valid.
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Proof. Let p ∈NM and write

px|Kλ =
g
(
λ0,λ1,λ2

)
|Kλ| . (3.6)

Suppose that px|Kµ = h(µ0,µ3,µ2)/|Kµ|. Here λi’s and µj ’s are the barycentric coordi-
nates of Kλ and Kµ , respectively. Choose u= (u1,0)∈Vh,M such that

u1 =



λ0λ2(g+h)

(
λ0,λ1,λ2

)
in Kλ,

µ0µ2(g+h)
(
µ0,µ3,µ2

)
in Kµ,

0 otherwise.

(3.7)

Then (u,∇hp)M = 0 gives an equation(
λ0λ2(g+h)

(
λ0,λ1,λ2

)
,
g
(
λ0,λ1,λ2

)
|Kλ|

)
Kλ

+
(
µ0µ2(g+h)

(
µ0,µ3,µ2

)
,
h
(
µ0,µ3,µ2

)
|Kµ|

)
Kµ

=0.
(3.8)

On the other hand, it is not difficult to see from (3.3) that

1
Kλ

∫
Kλ
λ0λ2

(
g2+gh)(λ0,λ1,λ2)dx = 1

Kµ

∫
Kµ

µ0µ2
(
g2+gh)(µ0,µ3,µ2)dx. (3.9)

Combining (3.8) and (3.9) we get

1
Kµ

∫
Kµ

µ0µ2(g+h)2
(
µ0,µ3,µ2

)
dx = 0 (3.10)

which implies

(g+h)(µ0,µ3,µ2)= 0. (3.11)

Then we have

px|Kµ =−
g
(
µ0,µ3,µ2

)
|Kµ| . (3.12)

By the same argument we obtain

px|Kτ =
g
(
τ0,τ3,τ1

)
|Kτ | , px|Kλ =−

g
(
λ0,λ2,λ1

)
|Kλ| . (3.13)

Thus g is a polynomial satisfying

g
(
λ0,λ1,λ2

)=−g(λ0,λ2,λ1),
g
(
µ0,µ2,µ3

)=−g(µ0,µ3,µ2),
g
(
τ0,τ3,τ1

)=−g(τ0,τ1,τ3).
(3.14)

Let us consider the case k = 4 first before we turn to the general case k ≥ 1. From
(3.6), (3.14), and the assumption k= 4, we can write

px|Kλ =
a
|Kλ|

(
λ21−λ22

)+ b
|Kλ|

(
λ1λ0−λ2λ0

)
(3.15)
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with two parameters a and b in R. Similarly, py |Kλ can be written as the right-hand
side of (3.15) with the parameters a and b replaced by a′ and b′, respectively. Note
also that px and py in Kµ or Kτ can be expressed using a,b and a′,b′, respectively.
Then from (3.6), (3.15), and

(
px
)
y =

(
py
)
x (3.16)

which are valid on each K ∈�h, we get

a
(
λ1,y−λ2,y

)= a′
(
λ1,x−λ2,x

)
, b

(
λ1,y−λ2,y

)= b′
(
λ1,x−λ2,x

)
. (3.17)

Applying (3.2) and (3.17) in Kλ, Kµ , or Kτ , we find that (a,a′) and (b,b′) satisfies the
homogeneous system in (s,t),

s
(
x1−x0

)+t(y1−y0)= 0, s
(
x2−x0

)+t(y2−y0)= 0, (3.18)

of which the solution is trivial since the determinant of the coefficient matrix is equal
to |Kλ|/2 > 0. This implies that |p|M = 0 when k = 4. For the general case k ≥ 2, we
can write

px|Kλ =
1
|Kλ|

∑
i+j+l=k−2
i≥j≥0, l≥0

ai,j,l
(
λi1λ

j
2−λi2λj1

)
λl0. (3.19)

Similarly, py |Kλ can be written as the right-hand side of (3.19) with the parameters
ai,j,l replaced by a′i,j,l. Moreover px and py in Kµ or Kτ can be expressed using ai,j,l

and a′i,j,l analogously. Then we find that (ai,j,l,a′i,j,l) satisfies (3.18) for each i,j,l. It
follows that ai,j,l = a′i,j,k,l = 0 for each i,j,l and that ∇p|K = 0, for all K ⊂ M . This
completes the proof.

Thus we have a nonoverlapping macroelement partitioning, with one class of
macroelements equivalent to K′ ∈ �′h, which satisfies (M1), (M2), and (M3). A care-
ful observation of the analysis of Section 2 also shows that for a nonoverlapping
macroelement partitioning the coefficient of εβ in the approximation scheme (1.10)
can be reduced to

∑
K′∈�′h

∑
T∈ΓK′

hT
(
[[p]],[[q]]

)
T , (3.20)

where ΓK′ denotes the collection of edges of elements of �h in the interior of K′. We
will call the resulting scheme as the locally stabilized approximation scheme (cf. [11]).
Since the approximation properties (2.33) and (2.34) are valid, we obtain the following
result for the cross-grid Pk−Pk−1 elements, k≥ 1, using discontinuous pressures.



710 Y. KIM AND S. LEE

Theorem 3.2. Suppose that �h, which is obtained from �′h, is a regular triangula-
tion of Ω. For k≥ 1, define Vh and Ph by (2.2) and (3.4), respectively. Then Theorem 2.8
is valid with β > 0 for the approximation scheme (1.10) or for the locally stabilized
approximation scheme.

Remark 3.3. The case k = 1 can be considered as a special case of the scheme
in [11].

3.2. The P+k −Pk−1 elements, k≥ 2, using discontinuous pressures. The argument
of Lemma 3.1 shows that in general a macroelement M of type (b) in Figure 3.1 con-
sisting of n triangles with a common vertex A0 in the interior of M satisfies (M3a)
provided n is odd. When the index n of A0 is even, we augment bubble functions on
a triangle in M in order to verify (M3a). For a regular triangulation �h of Ω, we can
construct a macroelement partitioning �h, consisting of macroelements of type (b)
and (c) in Figure 3.1. Let � be a set of triangles in �h such that for each macroelement
M ∈�h with an interior vertex of even index there is a triangle K ∈ �. Then we have
the following result for P+k −Pk−1 element.

Theorem 3.4. Suppose that �h is a regular triangulation of Ω. Define

Vh =
{
v∈H1

0(Ω)
2 : v|K ∈ Pk(K)2, K ∈�h; v|K ∈ [Pk(K)⊕λ1λ2λ3Pk−2(K)]2, K ∈ �

}
,

Ph =
{
p ∈ L20(Ω) : p|K ∈ Pk−1(K), K ∈�h

}
.

(3.21)

Here λ1,λ2,λ3 are the barycentric coordinates of the corresponding triangle K. Then
Theorem 2.8 is valid for k≥ 2.

3.3. The cross-grid Pk−Pk elements, k≥ 1. In the cross-grid Pk−Pk elements, k≥ 1,
the triangulation �h for velocity is obtained from the triangulation �̃h for pressure
by dividing each K̃ ∈ �̃h into three triangles inserting an interior vertex A0 as in
Figure 3.1a, where A0 is not necessarily the center of gravity of K̃.
For k≥ 1 we define Vh by (2.2) and

Ph =
{
p ∈ L20(Ω) : p|K̃ ∈ Pk(K̃), K̃ ∈ �̃h

}
. (3.22)

Lemma 3.5. Let M be a macroelement consisting of three triangles aligned as in
Figure 3.1a. Define V0,M by (2.3) and

PM =
{
p ∈ Pk(M)

}
for k≥ 1. (3.23)

Then (M3a) is valid.

Proof. Let p ∈NM and choose u∈V0,M such that

u=



λ0∇p in Kλ,

µ0∇p in Kµ,

τ0∇p in Kτ.

(3.24)



STABLE FINITE ELEMENT METHODS FOR THE STOKES PROBLEM 711

Then (u,∇hp)M = 0 gives
(
λ0∇p,∇p

)
Kλ+

(
µ0∇p,∇p

)
Kµ +

(
τ0∇p,∇p

)
Kτ = 0 (3.25)

which implies ∇p|K = 0 for all K ⊂M and thus |p|M = 0.
Thus we have a nonoverlapping partitioning, with one class of macroelements equiv-

alent to (a) in Figure 3.1, satisfying (M1), (M2), and (M3). Since the approximation prop-
erties (2.33) and (2.34) are valid, we obtain the following result for the cross-grid Pk−Pk
elements, k≥ 1.

Theorem 3.6. Suppose that �h, which is obtained from �̃h, is a regular triangula-
tion ofΩ. For k≥ 1, defineVh and Ph by (2.2) and (3.22), respectively. Then Theorem 2.8
is valid with β= 0.

3.4. The iso-grid Pk − Pk elements, k ≥ 1, using continuous pressures. In the
Pk − Pk iso-grid elements, k ≥ 1, using continuous pressures, the triangulation �h

for velocity is obtained from a triangulation �̃h for pressure by dividing each K̃ ∈ �̃h

into four triangles inserting three vertices, one at each edge of K̃. Each of the inserted
vertices is not necessarily a mid-point of the corresponding edge. For k≥ 1 we define
Vh by (2.2) and

Ph =
{
p ∈ L20(Ω)∩C(Ω) : p|K̃ ∈ Pk(K̃), K̃ ∈ �̃h

}
. (3.26)

Lemma 3.7. Let M be a macroelement consisting of twelve triangles aligned as in
Figure 3.1d. Define

V0,M =
{
v∈H1

0(M)2 : v|K ∈ Pk(K)2, K ∈�h∩M
}
,

PM =
{
p ∈ C(M) : p|K̃ ∈ Pk(K̃), K̃ ∈ �̃h∩M

}
for k≥ 1. (3.27)

Then (M3a) is valid.

Proof. Let p ∈NM and define

g =




τ0 in K017,

µ0 in K076,

λ0 in K062,

α0 in K028,

β0 in K089,

γ0 in K091,

0 otherwise,

(3.28)

where Kijk denotes the triangle with vertices Ai,Aj , and Ak. Let e = (e1,e2) be the
unit vector in the direction of

�������������������������������������������������������������������������������������������→A1A2, and choose u= (e1gpe,e2gpe)∈V0,M . Note that
pe =∇p ·e is continuous on K123∪K142. Then (u,∇hp)M = 0 gives

(
τ0pe,pe

)
K017+

(
µ0pe,pe

)
K076+···+

(
γ0pe,pe

)
K091 = 0 (3.29)
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which implies pe|K017 = 0, . . . ,pe|K091 = 0. The similar argument gives also pd|K091 = 0,
where d is the unit vector in the direction of

�������������������������������������������������������������������������������������������→A2A4. Since e and d are linearly indepen-
dent, we get ∇p|K091 = 0 and so ∇p|K123 = 0. Next consider u = (e2gp⊥e ,−e1gp⊥e ) ∈
V0,M , where p⊥e ∈ Pk−1(R2) is the extension of (e2px−e1py)|K142 . Then (u,∇hp)M = 0
gives

(
τ0p⊥e ,p⊥e

)
K017+

(
µ0p⊥e ,p⊥e

)
K076+

(
λ0p⊥e ,p⊥e

)
K062 = 0 (3.30)

which implies p⊥e |K062 = 0. Since (e1,e2) and (e2,−e1) are orthogonal, pe|K062 = p⊥e |K062
= 0 implies ∇p|K062 = 0 and so ∇p|K142 = 0. The analogous argument also gives
∇p|K135 = 0. It follows that |p|M = 0.
Now it is easy to construct a macroelement partitioning, with only one class of

macroelements equivalent to (d) in Figure 3.1, satisfying (M1), (M2), and (M3). Since
the approximation properties (2.33) and (2.34) are valid, we have the following result
for the iso-grid Pk−Pk elements, k≥ 1, using continuous pressures.

Theorem 3.8. Suppose that �h, which is obtained from �̃h, is a regular triangula-
tion ofΩ. For k≥ 1, defineVh and Ph by (2.2) and (3.26), respectively. Then Theorem 2.8
is valid with β= 0.

3.5. The Pk−Pk−1 Taylor-Hood elements, k≥ 2
Lemma 3.9. Let M be a macroelement consisting of three triangles aligned as in

Figure 3.1a. Define V0,M by (2.3) and

PM =
{
p ∈ C(M) : p|K ∈ Pk−1(K), K ⊂M

}
for k≥ 2. (3.31)

Then (M3a) is valid.

Proof. Let e = (e1,e2) be the unit vector in the direction of
�������������������������������������������������������������������������������������������→A0A2. Choose u =

(u1,u2)∈V0,M such that

u1 =



e1λ0λ2pe in Kλ,

e1µ0µ2pe in Kµ,

0 in Kτ,

u2 =



e2λ0λ2pe in Kλ,

e2µ0µ2pe in Kµ,

0 in Kτ,

(3.32)

where pe =∇p ·e. Let p ∈NM . Then (u,∇hp)M = 0 gives
(
λ0λ2pe,pe

)
Kλ+

(
µ0µ2pe,pe

)
Kµ = 0 (3.33)

which implies pe|Kλ = 0 and pe|Kµ = 0. Similarly, we have pd|Kλ = 0 and pd|K3 = 0,
where d is the unit vector in the direction of

�������������������������������������������������������������������������������������������→A0A3. Since e and d are linearly indepen-
dent, we have ∇p = 0 in Kµ . By the same reasoning we also have ∇p = 0 in Kλ or Kτ .
It follows that |p|M = 0.
Now it is not difficult to construct a macroelement partitioning �h, consisting of

macroelements of types (b) and (c) in Figure 3.1, satisfying (M1), (M2), and (M3). Since
the approximation properties (2.33) and (2.34) are valid, we get the following result
for Pk−Pk−1 Taylor-Hood elements, k≥ 2.
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Theorem 3.10. Suppose that �h is a regular triangulation of Ω. For k ≥ 2, define
Vh by (2.2) and

Ph =
{
p ∈ L20(Ω)∩C(Ω) : p|K ∈ Pk−1(K), K ∈�h

}
. (3.34)

Then Theorem 2.8 is valid with β= 0.

Remark 3.11. It should be pointed out that some restrictions (cf. [5]) inherited
from the result of Scott and Vogelius [14] are removed here. See [4] for a differ-
ent proof.
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