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ABSTRACT. We provide in this paper sufficient conditions for the complete convergence
for the partial sums and the random selected partial sums of B-valued L?-mixingales.
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1. Introduction and results. McLeish [7] introduced first the concept of mixingales,
a generalization of the concepts of mixing sequences and martingale differences,
where the mixingale convergence theorems and the strong laws of large numbers
have been proved. Furthermore, McLeish [6, 8] studied the invariance principles for
mixingales. Yin [9] generalized McLeish’s concept of mixingales to operator-valued
mixingales, and proved the operator-valued mixingale convergence theorems. Hall and
Heyde [2] also pointed out that mixingales include martingale differences, lacunary
functions, linear processes, and uniformly mixing processes (also called ®-mixing).

On the other hand, up till now, there have been an extensive literatures in complete
convergence for independent and dependent random sequences (especially, martin-
gale differences and various mixing sequences), see partially the references here. How-
ever, there are few papers reported on the complete convergence for mixingales; see,
for example, Liang and Ren [5].

Preceding observations stir us to investigate the complete convergence for mixin-
gales. In the present paper, we first generalize slightly McLeish’s definition of mixin-
gales to B-valued L?-mixingales, and then give some general results about complete
convergence for B-valued L?-mixingales.

Next, we introduce some notations. Let (B, || - ||) be a Banach space. B is said to be
g-smooth (1 < g < 2) if there exists a constant C; > 0 such that for every B-valued
Li-integrable martingale difference sequence {D;;i > 1},

1 n
<Cy D EIDil%, n=1. (1.1)
i=1

E

n
>D,
i=1

Let {Xy; n = 1} be B-valued L”-integrable (1 < p < 2) random variables on a prob-
ability space (Q,%,P), and let {F,;—c < n < o} be an increasing sequence of sub
o-fields of %. Then {X,,%,} is called a L?-mixingale if there exist sequences of non-
negative constants C, and (n), where ¢(m) | 0 as m — o, which satisfy the follow-
ing properties:
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@) IEXn | Fn-m)llp < @ (m)Cy;
1) IXn —EXn | Fnem)llp < @(m+1)Cy, for all n = 1 and m = 0, where || X1, =
(ElIX|1P)LP,
Let {Xy;n > 1} be B-valued random variables, and X, be a real nonnegative random
variable. We call that {X,,} is bounded in probability by X, (abbreviated {X,,} < Xj) if

P(|IXull>t) <P(Xo>t) Vt>O. (1.2)

Given a positive function I(x) defined on (0, + o), we say that L(x) is a slowly variable
function as x — o, if for all ¢ > 0,

im lcx)
x—+o0 [(x) -

1, (1.3)

see also Laha and Rohatgi [4].

From now on, we use C to denote finite positive constants whose value may change
from statement to statement. For real numbers x,y, [x] denotes the largest integer
k < x, and x Ay means min(x, y).

The following are the main results of this paper.

THEOREM 1.1. letl1 <t<q<2,0<6<1A3(q/t-1),1<p <2.Bisaq-smooth
Banach space. Suppose { Xy, %} is aB-valued L? -mixingale, and X is a real nonnegative
random variable satisfying {X,} < X. Suppose l(x) is an increasing slowly variable
function as x — co. IFE(X'*01(X!+9)) < co and there exist A (1 <A < p) and B > 0 such
thatt+ (1-t)A >0, B <min(6/2t, 6/(t+qt), (q—t)/(t+qt)), and

0o

> g ([nf]) max C) < o0, (1.4)
n=1 <i<n
then
> “T”)P(nsnn >nlte) < oo (1.5)

n=1

for e >0, where S, = > | Xi.

THEOREM 1.2. let1 <t <q =<2, 0<6<1A3(q/t—-1),and1l <p <2.Bisa
q-smooth Banach space. Suppose {X,,,%,} is a B-valued L? -mixingale, and X is a real
nonnegative random variable satisfying {X, } < X. Suppose l(x) is an increasing slowly
variable function as x — c. If E(X**3[(Xt*%)In* X) < oo and there are A (1 <A < p)
and B > 0 satisfying B <min(8/2t, §/(t+qt),(q—t)/(t +qt)) and

> j2u2NigA([287]) max C} < oo, (1.6)

i=1 1<i<2j+1

then

> 5) < o0 (1.7)

for e >0, where S, = >, X;.
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Based on Theorem 1.2, we can now obtain the analogue to random selected partial
sums of LP-mixingales.

THEOREM 1.3. let 1 <t <g<2, 0<d0<1A3(q/t-1),1<p<2.Bisagq-
smooth Banach space. Suppose {X,,%,} is a B-valued LY -mixingale and X is a real
nonnegative random variable satisfying {X,} < X. Suppose {vy,;n > 1} are random
variables which only take positive integer values and are defined on the same proba-
bility space as {Xy}. Suppose l(x) is an increasing slowly variable function as x — .
If E(Xt91(Xt9)In* X) < oo, and there exist positive constants A, f, and n such that
B <min(5/2t,5/(t+qt),(q—t)/(t+qt)),

> 1(n)
> (Y <) <, (1.8)
n=1
> j2ur2NigA([287]) max 1 C) < oo, (1.9)
1<i<2i+

j=1
then for € > 0,
Vn

2. Xi

i=1

Z ), ( > v},”-s) < oo, (1.10)
oon

REMARK 1.4. To our best knowledge, even if B = R (the real numbers), the
results here are new. Furthermore, conditions (1.4), (1.6), and (1.9) are reasonable.
For this purpose, we now particularize the general situation as follows. Let B = R.
In return, g = 2. Let ¢ = 1, p = 2 and {X,,,%,} be a L2-mixingale (coinciding
with mixingale of McLeish [7] or Hall and Heyde [2]). Consequently, 1 A 3(q/t — 1)
= 1. Given 0 < § < 1, then min(8/2t, 6/(t + qt), (q—t)/(t +qt)) = min(6/2, &/3,
1/3) =46/3.

Suppose that {C;; i = 1} is bounded or ;7 C; < oo and that y/(m) = o(m9)
for some constant 6 satisfying 6 - 6 > 3, then condition (1.4) is satisfied with
A =1 and each B € (1/0, 6/3), as can be easily verified. Moreover, in addition to
the above assumptions, suppose that ¢ (m) = o(m~Y) for some constant 0 satis-
fying 6 - 6 > 9, then conditions (1.6) and (1.9) are satisfied with A = 1 and each
Be(3/0,6/3).

On the other hand, condition y(m) = o(m~?) is implied with summability condi-
tions such as > ,,_; ¢/ (m) < oo (see also [6, 7]).

REMARK 1.5. In general, if {C;; i > 1} is bounded or Zf‘;lC{‘ < oo for some
1 <A < p satisfying t + (1 —£)A > 0, and y(m) = o(m~?9) for some sufficiently
large O satisfying (1 +2A)/0A < min(6/2t, 6/(t +qt), (q—1t)/(t +qt)) then condi-
tions (1.4), (1.6), and (1.9) are satisfied with the above A and each B € ((1+2A)/0A,
min(6/2t, §/(t +qt), (q—1t)/(t +qt))). Meanwhile, condition y(m) = o(m~?9) can
also be implied with summability conditions such as > _, ¢?(m) < o (see
also [6, 7]).
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In any case, roughly speaking, conditions such as {C;; i > 1} is bounded or >} Ci" <
oo for some 1 < A < p satisfying t + (1 —t)A > 0, plus a specific rate of convergence of
Y (m) to 0, ensure conditions (1.4), (1.6), and (1.9).

REMARK 1.6. Condition (1.8) is just one which is usually employed in literatures.

2. Proofs of the main results. For the sake of convenience, we begin with two
lemmas, which will be needed below.

LEMMA 2.1. Suppose that l(x) is a slowly variable function as x — oo, then we have

(1) Iimy_l(x+u)/l(x)=1, Yu > 0;

(2) limg_. o SUPok <y <ok+1 L(X) /1(2%) = 1;

(3) limy_ 100 x%1(x) = +00, limy ., x 9l(x) =0, V3 > 0;

4) C-2%l(n-2%) < Z.I;=1 207 (n-27) < C -2k 1(n - 2) for every positive v,n and
integer k;

(5) C-2¥I(n-2%) < ik 2071(n-27) < C-2kI(n-2k), C-k2k"[(2k) < Z;‘;kj2ﬂl(21)
< C-k2*[(2k) for everyr <0, n > 0 and integer k.

We refer to Bai and Su [1] and Hu [3] for a proof of Lemma 2.1.
By applying integration by parts, it is easy to prove the following lemma.

LEMMA 2.2. Let X be a real random variable, then

E(IXI"I(|1X] <a)) < rrt<H>P(|X\ > t)dt,
0 . (2.1)
E(IX|I(IX] >a)) =aP(|X| > a) +J P(IX|>t)dt

forv =1, a >0, where and elsewhere I(|X| < a) means the indicator of {|X| < a}.

PROOF OF THEOREM 1.1. We write « = 1/t. Notice first that

n
Sn=> (Xi~E(Xi | Fiopne))) + > (E(Xi | Fous) ~E(Xi | Foropus) 1))
i=1 i=1

(2.2)
n
et Z (E(Xl | G}ii[ng]Jrl) —E(Xi | gi,[nﬂ])) + ZE(XI | @i—[nﬁ]).
i-1 =1
By denoting
n
Partl = Z (Xi—E<Xi | g"ﬁ[#‘]))’
i=1
mf1 n
Part?2 = Z Z (E(Xl ‘ @prl) _E(Xi ‘ E’T‘DiJrlfl))’ (23)

I=—[nB1+1 i=1

n
Part3 = > E(Xi | Fi_(p)),
i=1



ON COMPLETE CONVERGENCE FOR LP-MIXINGALES 741

it is sufficient for us to prove

(n)

S M b part 1)) = n%e) < o, (2.4)
n=1 n

> MP(Hlﬂ*art2|| > n%e) < oo, (2.5)
n=1 n

> l(Tn)P(HParBII > n%e) < oo. (2.6)
n=1

By Chebyshev inequality, C,-inequality, Lemma 2.1, and L”-mixingale property

we have
00 o0 A
l(n)

> = =P (IIPartll] = ne) Z l(n)n~(+ed 1 E(Xi | Fionm) ||, }

n=1 n=1
Z l(n)nt1- "‘?‘(,I/A([nﬁ])lmax ch (2.7)
— <i<n

<C Z ) max C} < oo,

l<i<n

which proves (2.4).
Similarly, we obtain

Y] n A
L) , P([|Part3|| = n%) < C- > l(m)n- 1~ {ZHE(XH%—MJ)HA]’
n=1 i=1

n

Me

n=1

Ln)n* 1= ([nf]) max C} (2.8)

l<i<n

<C-

<C nf]) max C} < o,

n=1
Z:: l<i<n
which is exactly (2.6).

To prove (2.5), let Y, = Xil (| Xill < n%), Zin = Xi — Yin, Wii = E(X; | Fig) —
EXi | Fivi1), Ui = EYin | Fi)) —EYin | Fivi1), Vii = E(Zin | Fin)) —E(Zip |
Fivo1),n=1,1<i<n, -[nBl+1 <1< [nfl.Clearly, X; = Yin+Zin, Wii=Ui+Vi,.
For fixed I, {U;i,%i+1,1 <i <n} and {V};,%;,1 <1 < n} are martingale difference
sequences. Hence,

o 1 n
the left hand side (LHS) of (2.5) < L) > P ( Sw nob. ;)
n=1 n I=—[nB]+1 i=1
o nf] n
L(n) ( L, oE
<> Soop|D v =net S
n=1 b i-1 4 (2.9)
00 n) nh] n e
z— > P( > Vi zn“ﬁ-)
n ‘ ’ 4
n=1 lI=—[nf]+1 i=1

= Part4 +Part5.
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By Kolmogorov inequality and Lemma 2.2,

[(nf]

=] n
Part4 < C Z Ln) > nFOY E|Y
=t " ka i=1
_ < l(n) B (B—o0)q < " aq-1 t
_Cz - [n]n Zo(q OS P(HXI.” >S)d5
n=1

i=1 (2.10)
n
l(n)n(B“")“ﬁJ s*¥71p(Xt > 5)ds
0

A
0
Me

S
Il
—_

2J
2(1+B+qutxq)jl(2J')J s¥-1p(xt > ) ds.
0

A
0
Me

1

~.
I

Observing

2 J ook 1
J s¥71p(Xt > 5)ds = > J . 1s"‘q*IP(Xt > s)ds+J s47lp(Xt > s)ds  (2.11)
0 & ok 0

J
< C+ > 20akp(xt > 2k, (2.12)
k=1

we get

J
Part4 < C- Zz Leprba-«aljp(27) 4 C- Zz“*f”ﬁq xaip(27) Z 0akp(xt > 2k-1y,

Jj=1 j=1 k=1
(2.13)
Since 1+ S+ Bgq— xq < 0, from Lemma 2.1(5) we know that
> 2Urbrha-ca)i](27) < o, (2.14)
Now from Lemma 2.1(5) again, it follows that
) Jj ©
Z 2(1+B+Bq—(xq)jl(21) Z Z“qu(Xt > 2k—1) <C- Z 2<1+B+Bq)kl(2k)P(Xt > 21«1)
j=1 k=1 k=1
<C- E(Xt+(1+q)ﬁtl(Xt+(l+q)Bt))
< C-E(X'O1(XT9)) < oo,
(2.15)
By Kolmogorov inequality and Lemma 2.2 again, we get
> 1(n) (nf n
Part5 < C- z — > n O E|z,
n=1 n I=—[nBl+1 i=1
<C- Z l(:) B.pb-x.pn [n"‘P(Xt >n) +J P(X > s)ds] (2.16)
n«

n=1

[

Z n?fl(m)P(Xt > n) +C- anﬁ "‘l(n)J P(X > s)ds.

n=1 n=1
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Keeping Lemma 2.1 in mind, we obtain

> n?lm)P(Xt >n) <C- > 2@k (27)p (Xt > 2/71)

n=1 Jj=1
< C_£(xt+2ﬁtl(xf+2ﬁt))
< C-E(X"O1(X'*0)) < oo,

(2.17)

00

anﬁ""l(n)J P(X>s)dssC-Z2<“2ﬁ"")fl(21)j P(X>s)ds
_ n j=1 2%
i (1+2B)t (1+2p)t (2.18)
s e((5)U5) )
1 S S
SC'E(Xt+6l(Xt+5)) < 00.

Hence, equation (2.5) follows from (2.9), (2.13), (2.14), (2.15), (2.16), (2.17), and (2.18).
Theorem 1.1 is proved. O

PROOF OF THEOREM 1.2. By Lemma 2.1, we know first that

> n Sk ) & . Sk
——P|sup||l—||=z¢€] < 1(27)P (sup _— zs)
gl n (kzn kit g k20 1K
N (2.19)
<C-> ml(2m)P< max  ||Sk|| = 27"”5) .
m=1 oM<k <om+l
Hence, it is enough to show that
> jl(27)p ( max  ||Sy|| = 21'“5) <o Ve>0. (2.20)
1 2/ <n<2i+l
Observe that for 2/ <n < 2J/+1,
n
Sn= 2 (Xi~E(Xi|Fi, 1))
i=1
5
G (2.21)

n
+ > DUEXi | Fin) ~E(Xi | Fiio1)) + DO E(Xi | Fy_poiy)
1=—[2Ri1+1 i=1 i=1

=1 +1I> +1113,

we only have to prove

> jl(27)P ( max ||11||221'“g)<oo, (2.22)

i-1 27 <n<2i+1
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(2.23)

'l(21)P< ‘max || = 2”5) < o,
2J <n<2J+1
(2.24)

115 = 21'“5) < oo,

744

M

1

jl(2/)p ( “max
1 27 <n<2i+1

Mo =

J

To this end, we write &« = 1/t. By Lemma 2.1 and (1.6), we have

> z(al)jg)

(Xi —E(Xi | g”[zﬁj]))

1M

s o

LHS of (2.22) < > jl(27
2/ <n<2i+l

j=1
A
Jrey > 20N ( *E(Xi | @n[zﬁi])HA)
=l (2.25)

'MS

<C-
Jj=1 27 <n<2J+1
<C- ZJZ(ZJ) 21.2(1—0<>/\j.27\j.w7\([231]) max C’\
j=1 1<i<2J+l
<C- > j2Ur2NigM([287]) max lCA < o0,
: 1<i<2J+

1

J

Similarly, we can get
jl(24)-27 2A-ad)j , 2Aj, (IJA([ZBJ']) max 1 c}
1=<i<2J*
(2.26)

Mz

LHS of (2.24) < C-

.
Il
—

j2Ur2NigA([287]) max C} < 0.

1<i<i+l

[\/]8

<C-
1

J
Now, all that remains is to prove (2.23). For this purpose, we denote Y; ; = X;I(I|.X; It
(Xi | Fir)) —EXi | Fip1-1), Uip = E(Yij | Fiv1) —E(Yyj |

<24, Z;j=Xi-Yij, Wii=E(X;
Firi-1), Vii *E(le ‘ J"Hl)_E(Zij | Fi+1-1) for 2l<m <2/t 1<i<n _[ZBJ]"‘l =

Ofp . _
1 < [2B7]. Therefore,

[287] n
LHS of (2. 23)<Z_]l () > P( max_|[> W, )

j=1 I=—[2Bi1+1 2i<n<2itl||i T
™ 2871 n

< > jl(2) P| max Uil = 2~ BU
gl l:—[%i]ﬂ 2/ <n<2i+l E (2.27)

® o128 €
Sae) S ( 3w =
j=1 1=—[2811+1 2 incae

=IV4+V5.
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By Kolmogorov inequality and Lemma 2.2,

00 [2B7] 2J+1
VIg<C- > jl2) > 264 3 E|u,|
Jj=1 I=—[2Bi]+1 i=1
00 [2B7] 241 5
<C-> @)y > 26 ZJ s@aDp( x|t > s)ds
j=1 1=—[2Bi]+1

S 7)o BJj B-ajnj 4 o(B-x)ajnj (xq-1) t (2.28)
<C-> jl(27)2 {2 2742 2 ZL“ P(X >5)d5]
<C- ZJZ(21)2(1+B+ﬁq—aq)j
Jj
Z 2] 2(1+B+l§q xq)j Z Xt>2k 1 Zo(qk

Since 1+ S+ Bq— xq < 0, by Lemma 2.2(5) we know

jl(27)20+B+Ba-e@] < oo, (2.29)

M

Jj=1

Furthermore, from Lemma 2.1, we get

J
ﬂ(2j)2(1+ﬁ+ﬁq—v‘q>j Z Zaqu(Xt > 2k-1)
1 k=1

M

J

< C- Y 20akp(xt > 2k-1) N ji(27) 2B +Pa-ea)i
k=1 j=k

<C- z 2(1+B+[5q)kl(2k)P(Xt > 2k—1) (2.30)
k=1

+C- Z (k—1)2@+hrpa k=D (pk-1)p(xt 5 pk-1)
J=1
<C 'E(Xt+(ﬁ+5q)tl(xt+(ﬁ+5q)t)) +C 'E(Xt+(ﬁ+5q)tl(Xt+(ﬁ+Bq)t)1n+ X)

< C-E(X"™°1(X"*%)) +C-E(X"I(X'"9)In" X) < o

since (1 +q)Bt < 8. Consequently, VI < co. Now all that remains is to prove Vs < oo.
In fact, by Chebyshev inequality and Lemma 2.2, we have

Vs <C- > jl(27)2Pi2h-i2] [Z“JP(X>2°‘J J P(X>S)ds]
o 2.31)

[

C- > j2U+2Ril(27)p(xt > 27) Z 1+2’*-°‘)J‘z(21)J P(X >s)ds.
247

J=1 -

IA
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Since 28t < 9,

> j2iUP(27)p (Xt > 27) < C- E(X"H2A(X!2Pt) In* X)
=1 (2.32)

<C-E(X'"1(X"*°)In* X) < o0

At the same time, by Fubini’s theorem,

00

> jalrzbmeip(2d) J P(X>s)ds= ZJ2<1+2B>11 27) J P(Xt>2Js)ds

| e R () ()

<C- E(xt+2[§tl(Xt+ZBt)ln+ X) st—(t+23t) ds
1

< C-E(X"*°1(X"*°)In" X) < oo,

(2.33)
which, together with (2.32), implies V5 < . This completes the proof. O
PROOF OF THEOREM 1.3. Because
k
( Zx >v} 5)<P( ) (ksup ka ) (2.34)
i=1 =nn

keeping in mind (1.8), it is enough to show

l(n)P(sup Sl—';t zs) < 00, (2.35)
o N kznnll K

where Sy = Z’le X;. Indeed Theorem 1.2 implies (2.35), hence Theorem 1.3 is proved.
O
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