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Abstract. This paper of tutorial nature gives some further details of proofs of some
theorems related to the quantum dynamical Yang-Baxter equation. This mainly expands
proofs given in “Lectures on the dynamical Yang-Baxter equation” by Etingof and
Schiffmann, math.QA/9908064. This concerns the intertwining operator, the fusion
matrix, the exchange matrix and the difference operators. The last part expands
proofs given in “Traces of intertwiners for quantum groups and difference equations, I”
by Etingof and Varchenko, math.QA/9907181. This concerns the dual Macdonald-
Ruijsenaars equations.
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1. Introduction. The quantum dynamical Yang-Baxter equation (QDYBE) was first
considered by Gervais and Neveu [9], with motivation from physics (for monodromy
matrices in Liouville theory). A general form of QDYBE with spectral parameter was
presented by Felder [7, 8] at two major congresses. The corresponding classical dy-
namical Yang-Baxter equation (CDYBE) was presented there as well. Next Etingof and
Varchenko started a program to give geometric interpretations of solutions of CDYBE
[3] and of QDYBE [4] in the case without spectral parameter. In the context of this
program they pointed out a method to obtain solutions of QDYBE by the so-called ex-
change construction [5]. This uses, for any simple Lie algebra g, representation theory
of U(g) or of its quantized version Uq(g) in order to define successively the inter-
twining operator, the fusion matrix and the exchange matrix. The matrix elements
of the intertwining operator and of the exchange matrix generalize respectively the
Clebsch-Gordan coefficients and the Racah coefficients to the case where the first ten-
sor factor is a Verma module rather than a finite dimensional irreducible module. The
exchange matrix is shown to satisfy QDYBE. Etingof and Varchenko also started in
[6] a related program to connect the above objects with weighted trace functions and
with solutions of the (q-)Knizhnik-Zamolodchikov-Bernard equation (KZB or qKZB).
A nice introduction to the topics indicated above was recently given by Etingof and

Schiffmann [2]. While I was reading this paper in connection with a seminar in Amster-
dam during the fall of 1999, I added some details of proofs for my own convenience,
and I put these notes in TEX in order that the other participants in the seminar could
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take profit of it. I put these informal notes on my homepage. Since Version 2 of [2] is
now referring to these notes, I decided to give my notes a more official status.
I want to emphasize that these notes are purely meant as a tutorial giving some

details of the sometimes rather succinct proofs in [2]. However, I did not try to cover
the full contents of [2]. Most of my paper only treats the q = 1 case. Only the second
part of the section on the exchange matrix also covers the quantum case. In general,
the extension to the quantum case will usually be straightforward.
As for the contents, Sections 2, 3, and 4, respectively deal with the intertwining

operator, the fusion matrix and the exchange matrix. In [2] these topics are all covered
in Section 2. Sections 5 and 6 on difference operators and on weighted trace functions
address some topics in Section 9 of [2] (Transfer matrices and generalized Macdonald-
Ruijsenaars equations). The details of proofs in Section 6 concern q = 1 analogues of
proofs given in Section 3 of [6] in connection with the dual Macdonald-Ruijsenaars
equations.
I want to call attention to one conceptual aspect. This concerns formulas (4.11)

and (4.12). The first formula expresses an exchange matrix RU,V⊗W(λ) after shifted
conjugation by the fusion matrix JVW(λ) as a product of RUV(λ) (with appropriately
shifted λ) and RUW(λ). The second formula is analogous. These formulas are not
explicitly given in [2], but they do occur in [6] without getting particular emphasis.
They can be used in order to prove that R(λ) satisfies QDYBE. This is analogous to
the role of the quasi-triangularity property of the (non-dynamical) universal R-matrix
for proving the QYBE in that case. In fact, it is possible to see (4.11) and (4.12) in
the context of a certain quasitriangular quasi-Hopf algebra, see Babelon, Bernard, and
Billey [1, Section 3]) for the quantum sl(2) case.

Notation. Throughout this paper I denote by [E-S] the paper [2] by Etingof and
Schiffmann, and by [E-V] the paper [6] by Etingof and Varchenko.

2. The intertwining operator. First I make two preliminary remarks in preparation
of the proof of [E-S], Proposition 2.2.
Let g be a Lie algebra with Lie subalgebra l , and let V be a l -module. Then

Indg
l V :=U(g)⊗l V with a·(u⊗l v

)
:= (au)⊗l v

(
a∈ g, u∈U(g), v ∈ V

)
. (2.1)

Let W be a g-module. Then Frobenius reciprocity states that there is an isomorphism
of linear spaces

f ←→ F : Homl (V ,W)←→Homg
(
U(g)⊗l V,W

)
(2.2)

given by F(u⊗l v) :=u·f(v), f (v) := F(1⊗l v) (u∈U(g), v ∈ V).
For the other remark let g be a Lie algebra and let Z,W,V be g-modules. Then there

is an isomorphism of linear spaces

f ←→ F : Homg(Z,W ⊗V)←→Homg
(
Z⊗W∗,V

)
(2.3)

given by F(z⊗w∗)= 〈f(z),w∗〉 (z ∈ Z, w∗ ∈W∗).
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Proof of [E-S], Proposition 2.2. We have a composition of five isomorphisms

Φ←→ Φ1←→ Φ2←→ Φ3←→ Φ4←→ Φ5 = 〈Φ〉 : Homg
(
U(g)⊗h⊗n+ Cλ, Mµ⊗V

)

←→Homh⊗n+
(
Cλ,Mµ⊗V

)←→Homh⊗n+
(
Cλ⊗M∗

µ ,V
)

←→Homh⊗n+
(
U(n+)⊗hC−µ,V ⊗C∗λ

)←→Homh
(
C−µ,V ⊗C∗λ

)

←→Homh
(
Cλ⊗C−µ,V

)
,

(2.4)

where

Φ1
(
xλ
)
:= Φ(xλ

)
,

Φ2
(
xλ⊗u∗

)
:= 〈Φ(xλ

)
,u∗

〉 (
u∗ ∈M∗

µ
)
,

Φ3(u∗) :=
〈
Φ
(
xλ
)
,u∗

〉⊗x∗λ
(
u∗ ∈M∗

µ � C−µ⊗h U(n+)
)
,

Φ4
(
x−µ

)
:= 〈Φ(xλ

)
,x∗µ

〉⊗xλ,

Φ5
(
xλ⊗x−µ

)
:= 〈Φ(xλ

)
,x∗µ

〉= 〈Φ〉.

(2.5)

Proof that the coefficients of Φv
λ are rational in λ (statement in para-

graph after the proof of [E-S], Proposition 2.2; the proof below is essen-

tially due to Eric Opdam). Let α1, . . . ,αN be the positive roots (the elements of
∆+). Let V be a finite-dimensional g-module, and let v ∈ V\{0} be h-homogeneous.
Consider the Verma module Mλ−wt(v) for generic values of λ ∈ h∗, where it is irre-
ducible. By Proposition 2.2, there is a unique g-intertwining linear map Φv

λ : Mλ →
Mλ−wt(v)⊗V such that

Φv
λ
(
xλ
)=

∑

k1,...,kN≥0
fk1
α1 ···fkN

αN ·xµ⊗vk1,...,kN with v0,...,0 = v. (2.6)

Here µ := λ−wt(v). Clearly wt(vk1,...,kN )= λ−µ+k1α1+···+kNαN . It is sufficient to
show that the vk1,...,kN are rational in λ.
The unique existence of Φv

λ satisfying the above conditions is equivalent to the
unique existence of w ∈Mµ⊗V such that wt(w) = λ, eαi ·w = 0 for i = 1, . . . ,N and
such that w has the form of the right-hand side of (2.6) with v0,...,0 = v . We show that
the unique existence of w with these properties implies that the vk1,...,kN are rational
in λ.
Note that

eαi f
k1
α1 ···fkN

αN ·xµ =
∑

l1,...,lN≥0,
k1α1+···+kNαN=
αi+l1α1+···+lNαN

pk1,...,kN
i;l1,...,lN (λ)f l1

α1 ···f lN
αN ·xµ (2.7)

with pk1,...,kN
i;l1,...,lN (λ) polynomial in λ. So, for i= 1, . . . ,N , we have

0=eαi ·w=
∑

l1,...,lN

f l1
α1 ···f lN

αN ·xµ⊗

eαi ·vl1,...,vN+

∑

k1,...,kN≥0,
k1α1+···+kNαN=
αi+l1α1+···+lNαN

pk1,...,kN
i;l1,...,lN (λ)vk1,...,kN


.

(2.8)
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So the inhomogeneous system of linear equations in the coordinates of the vectors
vl1,...,lN (l1, . . . , lN nonnegative integers, not all 0) given by

eαi ·vl1,...,vN +
∑

k1,...,kN≥0,
k1α1+···+kNαN=
αi+l1α1+···+lNαN

pk1,...,kN
i;l1,...,lN (λ)vk1,...,kN = 0 (i= 1, . . . ,N) (2.9)

has, for generic λ, a unique solution. Since the coefficients are polynomials in λ it
follows that the solution must be rational in λ.

3. The fusion matrix

Proof of [E-S], Proposition 2.3, Part 2.

Φv
λ
(
xλ
)∈ xλ−wt(v)⊗v+Mλ−wt(v)

[
< λ−wt(v)

]⊗V
[
>wt(v)

]
. (3.1)

Hence

Φv
λ
(
Mλ[< λ]

)⊂ xλ−wt(v)⊗V
[
<wt(v)

]+Mλ−wt(v)
[
< λ−wt(v)

]⊗V. (3.2)

It follows that
(
Φw

λ−wt(v)⊗1
)(
Φv

λ
(
xλ
))

∈ Φw
λ−wt(v)

(
xλ−wt(v)

)⊗v+Φw
λ−wt(v)

(
Mλ−wt(v)

[
< λ−wt(v)

])⊗V
[
>wt(v)

]

⊂ xλ−wt(v)−wt(w)⊗w⊗v+Mλ−wt(v)−wt(w)
[
< λ−wt(v)−wt(w)

]⊗W ⊗V

+xλ−wt(v)−wt(w)⊗W
[
<wt(w)

]⊗V
[
>wt(v)

]

+Mλ−wt(v)−wt(w)
[
< λ−wt(v)−wt(w)

]⊗W ⊗V.

(3.3)

Hence

JWV (λ)(w⊗v)∈w⊗v+W
[
<wt(w)

]⊗V
[
>wt(v)

]
. (3.4)

Proof of [E-S], Proposition 2.3, Part 3. On the one hand we have

(
Φu

λ−wt(v)−wt(w)⊗1⊗1
)
◦
(
Φw

λ−wt(v)⊗1
)
◦Φv

λ
(
xλ
)

(3.5)

=
(
Φu

λ−wt(v)−wt(w)⊗1⊗1
)
◦ΦJWV (λ)(w⊗v)

λ
(
xλ
)

= ΦJU,W⊗V (λ)◦(1⊗JWV (λ))(u⊗w⊗v)
λ

(
xλ
)
. (3.6)

On the other hand, expression (3.5) also equals

(
ΦJUW (λ−wt(v))(u⊗w)

λ−wt(v) ⊗1
)
◦Φv

λ
(
xλ
)= Φ(JU⊗W,V⊗1)(λ)◦JUW (λ−wt(v))(u⊗w⊗v)

λ
(
xλ
)
. (3.7)

Hence, by equality of expressions (3.6) and (3.7), we have

JU,W⊗V (λ)◦
(
1⊗JWV (λ)

)
(u⊗w⊗v)= (JU⊗W,V ⊗1

)
(λ)◦JUW

(
λ−wt(v)

)
(u⊗w⊗v).

(3.8)
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Hence we arrive at the dynamical 2-cocycle condition, which was to be proved:

JU,W⊗V (λ)◦
(
1⊗JWV (λ)

)= (JU⊗W,V ⊗1
)
(λ)◦JUW

(
λ−h(3)). (3.9)

4. The exchange matrix. Proposition 2.4 in [E-S] states that the exchange matrix
RVW(λ) := JVW(λ)−1 J21WV(λ) satisfies the QDYBE

RVW
(
λ−h(3))RVU(λ)RWU

(
λ−h(1))= RWU(λ)RVU

(
λ−h(2))RVW(λ) (4.1)

as an identity of operators on V ⊗W ⊗U .
In preparation of the proof recall that Φw,v

λ := (Φw
λ−wt(v)⊗1)◦Φv

λ . We have the fol-
lowing.

Lemma 4.1 [E-S]. RVW(λ)(v⊗w)=∑i vi⊗wi, where Φ
w,v
λ = (1⊗P)

∑
iΦ

vi,wi
λ .

Proof. Assume RVW(λ)(v⊗w)=∑i vi⊗wi. Then

Φw,v
λ = ΦJWV (λ)(w⊗v)

λ = ΦPJVW (λ)RVW (λ)(v⊗w)
λ

= (1⊗P)ΦJVW (λ)RVW (λ)(v⊗w)
λ = (1⊗P)

∑

i
ΦJVW (λ)(vi⊗wi)

λ

= (1⊗P)
∑

i
Φvi,wi

λ .

(4.2)

First proof of QDYBE (4.1). Put

Φu,w,v
λ :=

(
Φu

λ−wt(v)−wt(w)⊗1⊗1
)
◦
(
Φw

λ−wt(v)⊗1
)
◦Φv

λ

=
(
Φu,w

λ−wt(v)⊗1
)
◦Φv

λ =
(
Φu

λ−wt(v)−wt(w)⊗1⊗1
)
◦Φw,v

λ .
(4.3)

Now we have on the one hand

Φu,w,v
λ =

(
Φu

λ−wt(v)−wt(w)⊗1⊗1
)
◦Φw,v

λ

= P34
∑

i

(
Φu

λ−wt(vi)−wt(wi)⊗1⊗1
)
◦Φvi,wi

λ

= P34
∑

i

(
Φu,vi

λ−wt(wi)⊗1
)
◦Φwi

λ

= P34P23
∑

i

∑

j

(
Φ

(vi)j ,uj
λ−wt(wi)⊗1

)
◦Φwi

λ

= P34P23
∑

i

∑

j

(
Φ

(vi)j
λ−wt(wi)−wt(uj)⊗1⊗1

)
◦Φuj,wi

λ

= P34P23P34
∑

i

∑

j

∑

k

(
Φ

(vi)j
λ−wt((wi)k)−wt((uj)k)⊗1⊗1

)
◦Φ(wi)k,(uj)k

λ

= P34P23P34
∑

i

∑

j

∑

k
Φ

(vi)j ,(wi)k,(uj)k
λ ,

(4.4)
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and accordingly

RWU(λ)RVU
(
λ−h(2))RVW(λ)(v⊗w⊗u)=

∑

i
RWU(λ)RVU

(
λ−h(2))(vi⊗wi⊗u

)

=
∑

i
RWU(λ)RVU

(
λ−wt(wi

))(
vi⊗wi⊗u

)

=
∑

i

∑

j
RWU(λ)

((
vi
)
j⊗wi⊗uj

)

=
∑

i

∑

j

∑

k

(
vi
)
j⊗
(
wi
)
k⊗
(
uj
)
k.

(4.5)

On the other hand, we have

Φu,w,v
λ =

(
Φu,w

λ−wt(v)⊗1
)
◦Φv

λ = P23
∑

i

(
Φwi,vi

λ−wt(v)⊗1
)
◦Φv

λ

= P23
∑

i

(
Φwi

λ−wt(v)−wt(ui)⊗1⊗1
)
◦Φui,v

λ

= P23P34
∑

i

∑

j

(
Φwi

λ−wt(vj)−wt((ui)j)⊗1⊗1
)
◦Φvj ,(ui)j

λ

= P23P34
∑

i

∑

j

(
Φ

wi,vj
λ−wt((ui)j)⊗1

)
◦Φ(ui)j

λ

= P23P34P23
∑

i

∑

j

∑

k

(
Φ

(vj)k,(wi)k
λ−wt((ui)j)⊗1

)
◦Φ(ui)j

λ

= P23P34P23
∑

i

∑

j

∑

k
Φ

(vj)k,(wi)k,(ui)j
λ ,

(4.6)

and accordingly

RVW
(
λ−h(3))RVU(λ)RWU

(
λ−h(1))(v⊗w⊗u)

= RVW
(
λ−h(3))RVU(λ)RWU

(
λ−wt(v)

)
(v⊗w⊗u)

=
∑

i
RVW

(
λ−h(3))RVU(λ)

(
v⊗wi⊗ui

)

=
∑

i

∑

j
RVW

(
λ−h(3))(vj⊗wi⊗

(
ui
)
j
)

=
∑

i

∑

j
RVW

(
λ−wt((ui

)
j
))(

vj⊗wi⊗
(
ui
)
j
)

=
∑

i

∑

j

∑

k

(
vj
)
k⊗
(
wi
)
k⊗
(
ui
)
j

(4.7)

It follows from (4.4) and (4.6) that

∑

i

∑

j

∑

k
Φ

(vi)j ,(wi)k,(uj)k
λ =

∑

i

∑

j

∑

k
Φ

(vj)k,(wi)k,(ui)j
λ . (4.8)

Hence the right-hand sides of (4.5) and (4.7) are equal. Thus the left-hand sides of (4.5)
and (4.7) are also equal.
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As pointed out in [E-S], Section 2.2 the construction of intertwining operators, fusion
and exchange matrices admit natural quantum analogues. Most definitions, results
and proofs go on essentially unchanged compared to the q = 1 case. However, in the
definition of the exchange matrix the R-matrix �VW associated to Uq(g)-modules V
andW , and induced by the universal R-matrix�, is also needed. I will use the notation

�21
WV :=

(
�WV

)21 = PWV �WVPVW . (4.9)

This is different from the notation �21
VW := (�21)VW in [E-S], Section 2.2. The exchange

matrix in the quantum case is now defined by

RVW(λ) := JVW(λ)−1�21
WVJ

21
WV(λ). (4.10)

The dynamical two-cocycle condition (3.9) will remain valid in the quantum case. I
will now discuss a second proof of the QDYBE (4.1), which is briefly sketched in the
remark in [E-S] after Proposition 2.4, and which also holds in the quantum case. In the
following, when being in the q = 1 case, just put �VW equal to 1 (for any V,W ).
I derive first the following two important formulas (not given in [E-S]) for the ex-

change matrix:

JVW(λ)−1RU,V⊗W(λ)JVW
(
λ−h(U))= RUV

(
λ−h(W))RUW(λ), (4.11)

JUV
(
λ−h(W))−1RU⊗V,W (λ)JUV (λ)= RVW(λ)RUW

(
λ−h(V)), (4.12)

where both sides in (4.11) and (4.12) are acting on U⊗V ⊗W . Here we have adapted
the notation introduced in [E-S] just before Proposition 2.3 as follows. If U =Ai then
F(λ−h(U)) will mean F(λ−h(i)).
One of the formulas (4.11) and (4.12) can be obtained by specialization of formula

(2.42) in [E-V]. Note that (4.11) and (4.12) are also dynamical analogues of the formulas

�U⊗V,W =�UW �VW , �U,V⊗W =�UW �UV , (4.13)

obtained from the following formulas for the universal R-matrix:

(∆⊗ id)(�)=�13�23, (id⊗∆)(�)=�13�12, (4.14)

which belong to the defining properties of a quasitriangular Hopf algebra. Another
defining property of a quasitriangular Hopf algebra is that

P
(
∆(u)

)=�∆(u)�−1, (4.15)

which implies for the universal fusion matrix J(λ) (see [E-S], Section 8) that

P12 (∆⊗1)
(
J(λ)

)=�12(∆⊗1)
(
J(λ)

)
�−112 ,

P23(1⊗∆)
(
J(λ)

)=�23(1⊗∆)
(
J(λ)

)
�−123 ,

(4.16)

and hence

PWVJW⊗V,U(λ)PVW =�VWJV⊗W,U(λ)�−1VW ,

PUWJV,U⊗W(λ)PWU =�WUJV,W⊗U(λ)�−1WU.
(4.17)

In the proof of (4.11) and (4.12) I need (4.13) and (4.17).
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Proof of (4.11).

JVW(λ)−1RU,V⊗W(λ)JVW
(
λ−h(U))

= JVW(λ)−1JU,V⊗W(λ)−1J21V⊗W,U(λ)�21
V⊗W,UJVW

(
λ−h(U))

= JUV
(
λ−h(W))−1JU⊗V,W (λ)−1PVUPWU�V⊗W,UJV⊗W,U(λ)PUWPUVJVW

(
λ−h(U))

= JUV
(
λ−h(W))−1JU⊗V,W (λ)−1PVUPWU�VU�WUJV⊗W,U(λ)JVW

(
λ−h(U))PUWPUV

= JUV
(
λ−h(W))−1JU⊗V,W (λ)−1PVU�VUPWU�WUJV,W⊗U(λ)JWU(λ)PUWPUV

= JUV
(
λ−h(W))−1PVU�VUJV⊗U,W (λ)−1JV,U⊗W(λ)PWU�WUJWU(λ)PUWPUV

= JUV
(
λ−h(W))−1PVU�VUJVU

(
λ−h(W))JUW(λ)−1PWU�WUJWU(λ)PUWPUV

= JUV
(
λ−h(W))−1�21

VUJ21VU
(
λ−h(W))PVUJUW(λ)−1�21

WUJ21WU(λ)PUV

= RUV
(
λ−h(W))RUW(λ).

(4.18)

Proof of (4.12).

JUV
(
λ−h(W))−1RU⊗V,W (λ)JUV (λ)

= JUV
(
λ−h(W))−1JU⊗V,W (λ)−1�21

W,U⊗VJ
21
W,U⊗V (λ)JUV (λ)

= JVW(λ)−1JU,V⊗W(λ)−1PWVPWU�W,U⊗VJW,U⊗V (λ)PUWPVWJUV (λ)

= JVW(λ)−1JU,V⊗W(λ)−1PWVPWU�WV �WUJW,U⊗V (λ)JUV (λ)PUWPVW

= JVW(λ)−1JU,V⊗W(λ)−1PWV �WVPWU�WUJW⊗U,V (λ)JWU
(
λ−h(V))PWUPWV

= JVW(λ)−1PWV �WVJU,W⊗V (λ)−1JU⊗W,V (λ)PWU�WUJWU
(
λ−h(V))PUWPVW

= JVW(λ)−1PWV �WVJWV (λ)JUW
(
λ−h(V))−1PWU�WUJWU

(
λ−h(V))PUWPVW

= JVW(λ)−1�21
WVJ

21
WV(λ)PWVJUW

(
λ−h(V))−1�21

WUJ21WU
(
λ−h(V))PVW

= RVW(λ)RUW
(
λ−h(V)).

(4.19)

In both proofs we have used the 2-cocycle condition (3.9) for the fusion matrix three
times.

Second proof of QDYBE (4.1) (using (4.11) and (4.12); acting on V⊗W⊗U ).

RVW
(
λ−h(U))RVU(λ)RWU

(
λ−h(V))

= JWU(λ)−1RV,W⊗U(λ)JWU
(
λ−h(V))JWU

(
λ−h(V))−1�21

UWJ21UW
(
λ−h(V))

= JWU(λ)−1RV,W⊗U(λ)PUW �UWJUW
(
λ−h(V))PWU

= JWU(λ)−1PUW �UWRV,U⊗W(λ)JUW
(
λ−h(V))PWU

= JWU(λ)−1PUW �UWJUW(λ)RVU
(
λ−h(W))RVW(λ)PWU

= RWU(λ)PUWRVU
(
λ−h(W))RVW(λ)PWU

= RWU(λ)RVU
(
λ−h(W))RVW(λ).

(4.20)
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5. Difference operators. Next I give a proof for the q = 1 case of the formula

�U
V⊗W =�U

V �U
W =�U

W �U
V , (5.1)

stated at the end of Section 9.1 in [E-S] for the quantum case. Let g be a simple Lie
algebra. For any two finite-dimensional g-modules U and V let RVU(λ) be the exchange
matrix. Let RVU(λ) := RVU(−λ−ρ) denote the shifted exchange matrix. Let �U be the
space of U[0]-valued meromorphic functions on h∗. For ν ∈ h∗ let Tν ∈ End(�U) be
the shift operator (Tνf )(λ) := f(λ+ν). Define the difference operator �λ,U

V acting on
�U by

�λ,U
V :=

∑

ν∈h∗
Tr|V[ν]

(
RVU(λ)

)
Tν =

∑

ν∈h∗
Tr|V[ν]

(
RV[ν],U[0];V[ν],U[0](λ)

)
Tν, (5.2)

where RV[λ],U[µ];V[ν],U[σ] denotes the block of the matrix RVU corresponding to the
weight spaces V[λ],U[µ];V[ν],U[σ] (which block will be zero unless λ+µ = ν+σ ).

Proof of (5.1). We can rewrite (4.12) as

RW⊗V,U(λ)= JWV
(
λ+h(U))RVU(λ)RWU

(
λ+h(V))JWV(λ)−1, (5.3)

where JWV(λ) := J(−λ−ρ) denotes the shifted fusion matrix. Hence

RW[ν]⊗V[µ],U[0];W[ν]⊗V[µ],U[0](λ)=
∑

µ′,ν′,µ′′,ν′′,σ
JW[ν],V[µ];W[ν′],V[µ′](λ)

◦RV[µ′],U[0];V[µ′′],U[σ](λ)RW[ν′],U[σ];W[ν′′],U[0]
(
λ+µ′′

)

×JW[ν],V[µ];W[ν′′],V[µ′′](λ)−1.
(5.4)

Hence

Tr|W[ν]⊗V[µ]
(
RW[ν]⊗V[µ],U[0];W[ν]⊗V[µ],U[0](λ)

)

=
∑
σ
Tr|W[ν]⊗V[µ]

(
RV[µ],U[0];V[µ],U[σ](λ)RW[ν],U[σ];W[ν],U[0](λ+µ)

)

= Tr|W[ν]⊗V[µ]
(
RV[µ],U[0];V[µ],U[0](λ)RW[ν],U[0];W[ν],U[0](λ+µ)

)
.

(5.5)

Then

�λ,U
V �λ,U

W =
∑
µ
Tr|V[µ]

(
RV[µ],U[0];V[µ],U[0](λ)

)
Tµ
∑
ν
Tr|W[ν]

(
RW[ν],U[0];W[ν],U[0](λ)

)
Tν

=
∑
µ,ν
Tr|V[µ]

(
RV[µ],U[0];V[µ],U[0](λ)

)
Tr|W[ν]

(
RW[ν],U[0];W[ν],U[0](λ+µ)

)
Tµ+ν

=
∑
µ,ν
Tr|W[ν]⊗V[µ]

(
RV[µ],U[0];V[µ],U[0](λ)RW[ν],U[0];W[ν],U[0](λ+µ)

)
Tµ+ν

=
∑
µ,ν
Tr|W[ν]⊗V[µ]

(
RW[ν]⊗V[µ],U[0];W[ν]⊗V[µ],U[0](λ)

)
Tµ+ν

=
∑
σ
Tr|(W⊗V)[σ]

(
R(W⊗V)[σ],U[0];(W⊗V)[σ],U[0](λ)

)
Tσ =�λ,U

W⊗V .

(5.6)
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But also

�λ,U
W⊗V =

∑
µ,ν
Tr|W[ν]⊗V[µ]

(
RW[ν]⊗V[µ],U[0];W[ν]⊗V[µ],U[0](λ)

)
Tµ+ν

=
∑
µ,ν
Tr|W[ν]⊗V[µ]

(
PV[µ],W[ν];V[µ],W[ν]RV[µ]⊗W[ν],U[0];V[µ]⊗W[ν],U[0](λ)

×PW[ν],V[µ];W[ν],V[µ]
)◦Tµ+ν

=
∑
µ,ν
Tr|V[µ]⊗W[ν]

(
RV[µ]⊗W[ν],U[0];V[µ]⊗W[ν],U[0](λ)

)
Tµ+ν =�λ,U

V⊗W .

(5.7)

Hence

�λ,U
V �λ,U

W =�λ,U
W⊗V =�λ,U

V⊗W =�λ,U
W �λ,U

V . (5.8)

Note that it was possible to apply (4.12) in the above proof because we had assumed
that �λ,U

V acts on U[0]-valued functions, and because the definition of �λ,U
V involved

shift operators Tν .

6. Weighted trace functions. In Section 9.2 of [E-S] weighted-trace functions are
introduced and difference equations are given for them. [E-S] refers for the proofs
to [E-V]. Theorem 9.2 of [E-S] survives for q = 1, see [E-V], Theorem 10.4. I will give
a proof of that theorem parallel to the proof of the q-case, see Theorem 1.2 and
Section 3 in [E-V].
First consider the proof of Lemma 2.14 in [E-V]. Let W be a finite-dimensional g-

module. By the properties of the intertwining operator we can uniquely define a bilin-
ear form Bλ,W :W ×W∗ → C by the formula

(
1⊗〈 ,〉)◦

(
Φw

λ−wt(w∗)⊗1
)
◦Φw∗

λ = Bλ,W
(
w,w∗) idMλ . (6.1)

Note that Bλ,W (w,w∗)= 0 if wt(w)+wt(w∗) �= 0. Since

ΦJWW∗ (λ)(w⊗w∗)
λ =

(
Φw

λ−wt(w∗)⊗1
)
◦Φw∗

λ , (6.2)

we have

Bλ,W
(
w,w∗)= 〈 ,〉(JWW∗(λ)

(
w⊗w∗)). (6.3)

Define a generalized element Q(λ) in U(g) in terms of the universal fusion matrix by

Q(λ) := (m◦P ◦(1⊗S−1
))

J(λ). (6.4)

This induces an endomorphism QW(λ) of W given by

QW(λ)= CW

((
JWW∗(λ)t2

)21), (6.5)

where CW denotes contraction of an endomorphism of W ⊗W to an endomorphism
of W . Now we have

Bλ,W
(
w,w∗)= 〈QW(λ)w,w∗〉. (6.6)
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Indeed, if T ∈ End(W ⊗W) then 〈C(T)w,w∗〉 = 〈 ,〉((T 21)t2(w⊗w∗)). Hence
〈
QW(λ)w,w∗〉= 〈 ,〉(JWW∗(λ)

(
w⊗w∗))= Bλ,W

(
w,w∗). (6.7)

It follows from (6.6) that QW(λ) is a weight preserving endomorphism of W .
Next we have

Bλ,U⊗W ◦
(
JUW

(
λ−h(U∗)−h(W∗))⊗JU∗W∗(λ)

)= Bλ,U ◦Bλ−h(U∗),W . (6.8)

Indeed,

Bλ,U
(
u,u∗

)
Bλ−wt(u∗),W idMλ

= (〈 ,〉⊗〈,〉)◦Φu
λ−wt(u∗)−wt(w∗)−wt(w) ◦Φw

λ−wt(u∗)−wt(w∗) ◦Φw∗
λ−wt(u∗) ◦Φu∗

λ

= (〈 ,〉⊗〈 ,〉)◦ΦJUW (λ−wt(u∗)−wt(w∗))(u⊗w)
λ−wt(u∗)−wt(w∗) ◦ΦJW∗U∗ (λ)(w∗⊗u∗)

λ

= Bλ,U⊗W
(
JUW

(
λ−wt(u∗)−wt(w∗))(u⊗w),J21W∗U∗(λ)

(
u∗⊗w∗)) idMλ .

(6.9)

Combination of (6.6) with (6.8) yields that

QU⊗W(λ)=
(
Jt1t2,21
W∗U∗ (λ)

)−1(
QU(λ)⊗QW

(
λ+h(U)))JUW

(
λ+h(U)+h(W))−1. (6.10)

It follows from (6.1) and (6.6) thatQU⊗W(λ)=Q21
W⊗U(λ). Hence we can rewrite (6.10) as

QU⊗W(λ)=
(
Jt1t2
U∗W∗(λ)

)−1(
QU
(
λ+h(W))⊗QW(λ)

)
J21WU

(
λ+h(U)+h(W))−1. (6.11)

Now eliminate QU⊗W(λ) from these two formulas and substitute

RUW(λ)= JUW(λ)−1J21WU(λ) (6.12)

(the defining formula for the exchange matrix in Section 2.1 of [E-S]). Then we obtain

Rt1t2
U∗W∗(λ)=

(
QU(λ)⊗QW

(
λ+h(U)))◦RUW

(
λ+h(U)+h(W))(QU

(
λ+h(W))⊗QW(λ)

)−1.
(6.13)

This is essentially the formula at the end of Section 3.3 in [E-V].
Next I discuss Proposition 3.1 in [E-V]. Fix finite-dimensional g-modules V andW . Let

B be a basis of V consisting of weight vectors. For v ∈ B let V∗ be the corresponding
dual basis vector of V∗. Define the operator

ΦV
µ :y � �→

∑

v∈B
Φv

µ (y)⊗v∗ :Mµ �→
⊕

λ

(
Mµ−λ⊗V ⊗V∗[−λ]), (6.14)

which is clearly independent of the choice of B. Define the isomorphism

ηW(µ) :
⊕
ν

(
W[ν]⊗Mµ+ν

)
�→Mµ⊗W, (6.15)

where

ηW(µ)(w⊗z) := Φw
µ+ν(z) if w ∈W[ν], z ∈Mµ+ν . (6.16)

Proposition 3.1 together with formula (3.2) in [E-V] can now be formulated as follows:

PV⊗V∗,W ◦
(
ΦV

µ ⊗ idW

)
◦ηW(µ)

∣∣
W[ν]⊗Mµ+ν

= (ηW(µ)⊗ idV ⊗ idV∗
)◦Rt2

WV(µ+ν)◦
(
idW ⊗ΦV

µ+ν
)∣∣∣

W[ν]⊗Mµ+ν
.

(6.17)
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Proof of (6.17). Write RWV(µ+ν)=∑i pi⊗qt
i . Let y ∈Mµ+ν andw ∈W[ν]. Then

(
PV⊗V∗,W ◦

(
ΦV

µ ⊗ idW

)
◦ηW(µ)

)
(w⊗y)

=
(
PV⊗V∗,W ◦

(
ΦV

µ ⊗ idW

)
◦Φw

µ+ν
)
(y)

= PVW
∑

v∈B

(
Φv

µ ⊗ id
)(
Φw

µ+ν(y)
)
⊗v∗

= PVW
∑

v∈B
ΦJVW (µ+ν)(v⊗w)

µ+ν (y)⊗v∗

=
∑

v∈B
Φ

J21VW (µ+ν)(w⊗v)
µ+ν (y)⊗v∗

=
∑

v∈B
ΦJWV (µ+ν)(RWV (µ+ν)(w⊗v))

µ+ν (y)⊗v∗

=
∑

v∈B

∑

i

(
Φpiw

µ+ν−wt(v)⊗ idV

)(
Φ

qt
iv

µ+ν(y)
)
⊗v∗

=
∑

v∈B

∑

i

(
Φpiw

µ+ν−wt(v)⊗ idV

)(
Φv

µ+ν(y)
)
⊗qiv∗

=
∑

v∈B

∑

i

(
ηW(µ)⊗ idV ⊗ idV∗

)(
piw⊗Φv

µ+ν(y)⊗qiv∗
)

= (ηW(µ)⊗ idV ⊗ idV∗
)◦Rt2

WV(µ+ν)◦
(
w⊗ΦV

µ+ν(y)
)
.

(6.18)

For λ ∈ h∗ and U a g-module let eλ : u � e〈λ,wt(u)〉u : U → U . Let V be a finite di-
mensional g-module and let v ∈ V[0]. Let {yi} be a basis of Mµ consisting of weight
vectors. Since Φv

µ : Mµ → Mµ ⊗V is weight preserving, we have Φv
µ (yi) ∈ yi⊗V[0]+∑

j �=i yj⊗V . Hence, if B[0] is a basis of V[0] and if v∗ ∈ V∗[0] is the dual basis vector
corresponding to v ∈ B[0], we have

Φv
µ
(
eλyi

)⊗v∗ ∈yi⊗V[0]⊗V∗[0]+
∑

j �=i
yj⊗V ⊗V∗[0]. (6.19)

Let

ΦV[0]
µ :=

∑

v∈B[0]
Φv

µ ⊗v∗. (6.20)

Then

ΨV (λ,µ) := Tr∣∣Mµ

(
ΦV[0]

µ ◦eλ
)
∈ V[0]⊗V∗[0]. (6.21)

For W a finite dimensional g-module let

χW
(
eλ) := Tr∣∣Weλ =

∑
ν
dim

(
W[ν]

)
e〈λ,ν〉. (6.22)

A difference equation for ΨV (λ,µ) in the variable µ can be derived from (6.17). First
multiply both sides of (6.17) with e〈λ,µ+ν〉, observe that ηW(µ)◦(idW ⊗eλ)= (eλ⊗eλ)◦
ηW(µ), sum both sides of (6.17) with respect to ν , and next multiply both sides of
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(6.17) on the left with (ηW(µ)⊗idV ⊗ idV∗)−1. Then we obtain the following identity of
linear endomorphisms ⊕ν(W[ν]⊗Mµ+ν)→⊕ν(W[ν]⊗Mµ+ν⊗V ⊗V∗).

(
ηW(µ)⊗ idV ⊗ idV∗

)−1 ◦PV⊗V∗,W ◦
((
ΦV

µ ◦eλ
)
⊗(eλ ◦ idW

))◦ηW(µ)
∣∣⊕ν (W[ν]⊗Mµ+ν )

=
∑
ν

Rt2
WV(µ+ν)◦

(
idW ⊗

(
ΦV

µ+ν ◦eλ
))∣∣∣

W[ν]⊗Mµ+ν
.

(6.23)

Now take the trace with respect to ⊕ν(W[ν]⊗Mµ+ν) on both sides of (6.23) and use
(6.20). Then

(
Tr|Weλ)(Tr|MµΦ

V[0]
µ ◦eλ

)
=
∑
ν
Tr|W[ν]R

t2
WV(µ+ν)◦

(
idW ⊗Tr|Mµ+νΦ

V[0]
µ+ν ◦eλ

)
. (6.24)

Now substitute (6.21) and (6.22), and take, inside the sum on the right-hand side, the
transpose with respect to W . Then

χW
(
eλ)ΨV (λ,µ)=

∑
ν
Tr|W∗[−ν]R

t1t2
WV (µ+ν)◦( idW∗ ⊗ΨV (λ,µ+ν)

)
. (6.25)

On the right-hand side of formula (6.25) substitute (6.13). Next also substitute RVU(λ)
:= RVU(−λ−ρ) and QV (λ) :=QV(−λ−ρ). Then

χW
(
eλ)ΨV (λ,µ)

=
∑
ν
Tr|W∗[−ν]

(
QW∗(µ+ν)⊗QV∗

(
µ+ν+h(W∗)))◦RW∗V∗

(
µ+ν+h(V∗)+h(W∗))

◦(QW∗
(
µ+ν+h(V∗))⊗QV∗(µ+ν)

)−1 ◦( idW∗ ⊗ΨV (λ,µ+ν)
)

=
∑
ν
Tr|W∗[ν]

(
QW∗(µ+ν)⊗QV∗

(
µ+ν−h(W∗)))◦RW∗V∗

(
µ+ν−h(V∗)−h(W∗))

◦(QW∗
(
µ+ν−h(V∗))⊗QV∗(µ+ν)

)−1 ◦( idW∗ ⊗ΨV (λ,−µ−ν−ρ)
)

=
∑
ν
Tr|W∗[ν]

(
QW∗(µ+ν)⊗QV∗(µ)

)◦RW∗V∗(µ)◦(QW∗(µ+ν)⊗QV∗(µ+ν)
)−1

◦( idW∗ ⊗ΨV (λ,−µ−ν−ρ)
)

=QV∗(µ)◦
∑
ν
Tr|W∗[ν]RW∗V∗(µ)◦( idW∗ ⊗

(
QV∗(µ+ν)−1 ◦ΨV (λ,−µ−ν−ρ)

))
.

(6.26)

Let the Weyl denominator be given by

δ(λ) := e〈λ,ρ〉
∏

α>0

(
1−e−〈λ,α〉

)
. (6.27)

Define the weighted-trace function by

FV (λ,µ) :=Q−1V∗(µ)ΨV (λ,−µ−ρ)δ(λ). (6.28)

Now replace W∗ by W in (6.26) and substitute (5.2) and (6.28) in (6.26). We finally
obtain the formula which is the q = 1 case of Theorem 9.2 in [E-S]:

�
µ,V∗
W FV(λ,µ)= χW

(
e−λ

)
FV (λ,µ). (6.29)
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