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ABSTRACT. This paper of tutorial nature gives some further details of proofs of some
theorems related to the quantum dynamical Yang-Baxter equation. This mainly expands
proofs given in “Lectures on the dynamical Yang-Baxter equation” by Etingof and
Schiffmann, math.QA/9908064. This concerns the intertwining operator, the fusion
matrix, the exchange matrix and the difference operators. The last part expands
proofs given in “Traces of intertwiners for quantum groups and difference equations, I”
by Etingof and Varchenko, math.QA/9907181. This concerns the dual Macdonald-
Ruijsenaars equations.
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1. Introduction. The quantum dynamical Yang-Baxter equation (QDYBE) was first
considered by Gervais and Neveu [9], with motivation from physics (for monodromy
matrices in Liouville theory). A general form of QDYBE with spectral parameter was
presented by Felder [7, 8] at two major congresses. The corresponding classical dy-
namical Yang-Baxter equation (CDYBE) was presented there as well. Next Etingof and
Varchenko started a program to give geometric interpretations of solutions of CDYBE
[3] and of QDYBE [4] in the case without spectral parameter. In the context of this
program they pointed out a method to obtain solutions of QDYBE by the so-called ex-
change construction [5]. This uses, for any simple Lie algebra g, representation theory
of U(g) or of its quantized version U,(g) in order to define successively the inter-
twining operator, the fusion matrix and the exchange matrix. The matrix elements
of the intertwining operator and of the exchange matrix generalize respectively the
Clebsch-Gordan coefficients and the Racah coefficients to the case where the first ten-
sor factor is a Verma module rather than a finite dimensional irreducible module. The
exchange matrix is shown to satisfy QDYBE. Etingof and Varchenko also started in
[6] a related program to connect the above objects with weighted trace functions and
with solutions of the (g-)Knizhnik-Zamolodchikov-Bernard equation (KZB or gKZB).

A nice introduction to the topics indicated above was recently given by Etingof and
Schiffmann [2]. While I was reading this paper in connection with a seminar in Amster-
dam during the fall of 1999, I added some details of proofs for my own convenience,
and I put these notes in TgX in order that the other participants in the seminar could
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take profit of it. I put these informal notes on my homepage. Since Version 2 of [2] is
now referring to these notes, I decided to give my notes a more official status.

I want to emphasize that these notes are purely meant as a tutorial giving some
details of the sometimes rather succinct proofs in [2]. However, I did not try to cover
the full contents of [2]. Most of my paper only treats the g = 1 case. Only the second
part of the section on the exchange matrix also covers the quantum case. In general,
the extension to the quantum case will usually be straightforward.

As for the contents, Sections 2, 3, and 4, respectively deal with the intertwining
operator, the fusion matrix and the exchange matrix. In [2] these topics are all covered
in Section 2. Sections 5 and 6 on difference operators and on weighted trace functions
address some topics in Section 9 of [2] (Transfer matrices and generalized Macdonald-
Ruijsenaars equations). The details of proofs in Section 6 concern g = 1 analogues of
proofs given in Section 3 of [6] in connection with the dual Macdonald-Ruijsenaars
equations.

I want to call attention to one conceptual aspect. This concerns formulas (4.11)
and (4.12). The first formula expresses an exchange matrix Ry,yew (A) after shifted
conjugation by the fusion matrix Jyw (A) as a product of Ryy (A) (with appropriately
shifted A) and Ryw(A). The second formula is analogous. These formulas are not
explicitly given in [2], but they do occur in [6] without getting particular emphasis.
They can be used in order to prove that R(A) satisfies QDYBE. This is analogous to
the role of the quasi-triangularity property of the (non-dynamical) universal R-matrix
for proving the QYBE in that case. In fact, it is possible to see (4.11) and (4.12) in
the context of a certain quasitriangular quasi-Hopf algebra, see Babelon, Bernard, and
Billey [1, Section 3]) for the quantum sl(2) case.

NOTATION. Throughout this paper I denote by [E-S] the paper [2] by Etingof and
Schiffmann, and by [E-V] the paper [6] by Etingof and Varchenko.

2. The intertwining operator. First I make two preliminary remarks in preparation
of the proof of [E-S], Proposition 2.2.
Let g be a Lie algebra with Lie subalgebra [, and let V be a [-module. Then
md{V:=U(@@) eV witha- (uerv):=(au)ev (acg, uclU(g), veV). (2.1)

Let W be a g-module. Then Frobenius reciprocity states that there is an isomorphism
of linear spaces

S — F:Hom¢(V,W) — Homg (U(g) ®V,W) (2.2)
given by F(u®rv):=u-f(v), f(v):=F(1&;v) (ueU(g), veV).
For the other remark let g be a Lie algebra and let Z, W,V be g-modules. Then there
is an isomorphism of linear spaces

f — F:Homg(Z,W®V) — Homg (Z@W*,V) (2.3)

given by F(zow*) = (f(z),w*) (z€ Z, w* e W*).
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PROOF OF [E-S], PROPOSITION 2.2. We have a composition of five isomorphisms

¢ — P — Py — P3 — Py — P5 = (P) : Hom, (U(g) ®fen, Cay My ®V)
— Homggy, (Ca,M, ®V) — Homge,, (CA® M5, V)

(2.4)
— Homggy, (U(n,) ®5C_,, Ve CY) — Homg (C_p, V& CY)
— Homg (CA®C_,,, V),
where
®1(xa) :=P(xa),
@2 (xreu) = (@(x),u*) (u* €M),
d3(u*) = (P(xa),u*)®xy (uW*eM;=C,e;Un,)), (2.5)
Dy (x-p) = (P(xa),x;) @ X2,
b5 (xa®x_y) 1= (P(xa),x5) = (P). O

PROOF THAT THE COEFFICIENTS OF ®} ARE RATIONAL IN A (STATEMENT IN PARA-
GRAPH AFTER THE PROOF OF [E-S], PROPOSITION 2.2; THE PROOF BELOW IS ESSEN-
TIALLY DUE TO ERIC OPDAM). Let «q,...,xy be the positive roots (the elements of
A*). Let V be a finite-dimensional g-module, and let v € V\{0} be h-homogeneous.
Consider the Verma module Mj_y ) for generic values of A € h*, where it is irre-
ducible. By Proposition 2.2, there is a unique g-intertwining linear map &3 : M) —
Ma—wiwv)®V such that

Y (xa) = D N faN X, ® Uk, ok  With Vg

o="1. (26)

.....

Here p:= A—wt(v). Clearly wt(v,,..xy) = A—p+kicxi + - - - + kyay. It is sufficient to
show that the vy, .k, are rational in A.

The unique existence of ®} satisfying the above conditions is equivalent to the
unique existence of w € M, ® V such that wt(w) = A, ey, -w =0 fori=1,...,N and
such that w has the form of the right-hand side of (2.6) with vy, ¢ = v. We show that
the unique existence of w with these properties implies that the vy, x, are rational
in A.

Note that
k kv o N ke
e Joi + oo foy Xy = Z pzll ..... lN()\)f : aN “ Xy 2.7)
I1,-IN=0
k10(1+ --+kN(XN=
o+l o+ HINan
with pl 1 lN(M polynomial in A. So, for i = 1,...,N, we have
..... k
O=eq W= Z Fao R xu® | ewy Vit > PN () Uk ek |-

..... IN k1. kN =0,
kiog+---+knyan=
0(,'+l10(1+---+lN0(N

(2.8)
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So the inhomogeneous system of linear equations in the coordinates of the vectors
v,y (L1,..., Iy nonnegative integers, not all 0) given by

VLo > PN (M Uk ky =0 (i=1,..,N)  (2.9)

has, for generic A, a unique solution. Since the coefficients are polynomials in A it
follows that the solution must be rational in A. O

3. The fusion matrix
PROOF OF [E-S], PROPOSITION 2.3, PART 2.
®F (x2) € Xa—wtw) ®V + Ma_wiy [ <A—wt(v) @ V[ >wt(v)]. (3.1)
Hence
®Y (MAl< A1) C Xacwiv) ® V[ <wt(v) ]+ Ma—wiw) [ < A—wt(v)]® V. (3.2)
It follows that

((bk}—wt(v)@l) (‘I’X (XA))
€ DY vy (Xawtn) @V + BV ) (Mawrw) [ <A—wt(v)]) @ V[ > wt(v)]
C Xa—wt(w)—wi(w) ®W OV + My _wiv)-wtw) [ <A—wWt(v) —wt(w)]eW eV (3.3)
+ Xa—wtw)—witaw) @ W[ <wt(w) ] @ V[ > wt(v)]

+M)\—wt(v)—wt(w)[ <A-wt(v) —Wt(W)] WeV.
Hence

Jwv QD) (wev) ewev+W|[ <wt(w)]®V[>wt(v)]. (3.4)

PROOF OF [E-S], PROPOSITION 2.3, PART 3. On the one hand we have

(PY i) witwy ®181) 0 (X1, ®1) 0@ (x2) (3.5)
Jwv (A)(wev)
= (q)}/\twt(v)fwt(w) ®le 1) Oq))\wv (x?\)
_ (piu,vv@\/(/\)0(1®Jwv()\))(u®w®v)(X/\). (3.6)

On the other hand, expression (3.5) also equals

_ /®1)(A)o A—w
(q){ziv&t(z\v)wt(v))(ueaw) ® 1) orb}\’ (XA) _ @/(\Juaw,wzz Y(A)eJyw ( M(v))(u@w@v)(x]\)_ (3.7)

Hence, by equality of expressions (3.6) and (3.7), we have

Juwev(A) e (1 Jwy (D) (uewev) = (Juew,y ®1)(A) o Juyw (A-wt(v)) (uewev).
(3.8)
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Hence we arrive at the dynamical 2-cocycle condition, which was to be proved:

Juwev (D)o (18 Jiwv(A)) = (Juew,y ®1)(A) o Jyw (A—h3). (3.9)
O

4. The exchange matrix. Proposition 2.4 in [E-S] states that the exchange matrix
Ryw (A) := Jyw (A)~1 34, (A) satisfies the QDYBE

Ryw (A=h®)Ryy (M) Ry (A—hV) = Ryy (M) Rvy (A—h?)Ryw (A) 4.1)

as an identity of operators on Ve W e U.
In preparation of the proof recall that &y := (®}_ ;) ® 1) o ®}. We have the fol-
lowing.

LEMMA 4.1 [E-S]. Ryw(A)(vew) = 3;vi®w;, where )"’ = (1®P) 3,;®""".
PROOF. Assume Ry (A)(vow) =>;v; ®w;. Then

w,v _ g JwvQ)(wev) _ xPJyw (A)Ryw (A)(vew)
(I)?\ - (I)/\ - (I))\

=(1 ®p)¢§vw(A)va(A)(v®w) —(1eP) zq)ivw()\)(vi@wi)

- 4.2)
=(1&P)> &, -
i
FIRST PROOF OF QDYBE (4.1). Put
DY = (DX i) i) @ L@1) 0 (B 1, ®1) 00} ws
= (‘bxf\l/}vt(v) ® 1) ody = (q):\t—wt(v)—wt(w) ®le 1) o®y".
Now we have on the one hand
oy = (q)%—wt(v)—wt(w) ®le 1) o®y""
Vi, Wi
—P34Z (DY vy wicwy ©1®1) 0@}
= p3 Z (@3 i) ®1) 0 @Y
vi)iu
= p3ip23 Z Z (‘I’A iy ®1) 0@y’ (4.4)

_P34P23ZZ (q)l\vv)»’t(w) —wi(u; jelel)oa™
_PMPZSP“ZZE( Wlw t((wi) ) —wt((u)) ®1®1) q)(WL)k o
i

_ P34P23P34ZZZ¢§\% Jrwik, (W
i j ok
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and accordingly

Rwu (A)Rvu(}\— h(z))va()\)(U PWRU) = ZRWU(A)RVU ()\—h(z)) (vi®wi ®'M,)
= ZRWU(A)RVU(/\—Wt(wi)) (view;®u)
= ZZRWU()\) );ewieu;)

_ZZZ Wi) ® (Uj)-

i j k
(4.5)

On the other hand, we have
B = (B3 81) 2 0F = PP X (24 91) o0
i
=p% Z (3 vy -wicuy @ 1®1) 0@}
P23P34ZZ (o3 wi(w)) () ® 1@ 1) oy
_P23P34ZZ (@ s, ©1) oy
S T (B 1) ool
i j ok

Wik, (Wig,(uq) j
— P23P34P23 ZZZq)AUJ ko (Wi)k,(Uj ‘1,
i j ok

(4.6)

and accordingly
Ryw (A—h®)Ryy M) Ryy(A—hV)(veweu)
= Ryw (A=h®)Ryy (M) Ryy (A —wt(v)) (vew e u)
= zva A=h®)Ryy(A) (vew;eu;)

—ZZRVW ~h®) (vjew; e (u;))) 4.7)
:ZZRVW (A —wt( (ui)j))(vj®wi®(ui)j)

i
=222 (Wj)®(wi) e (u),

i j ok
It follows from (4.4) and (4.6) that
Zzzq)/(\vi)j,(wi)k,(uj)k _ Zzzq);vj)k,(wi)k,(ui)j. 4.8)
i j ok i j ok

Hence the right-hand sides of (4.5) and (4.7) are equal. Thus the left-hand sides of (4.5)
and (4.7) are also equal. O
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As pointed out in [E-S], Section 2.2 the construction of intertwining operators, fusion
and exchange matrices admit natural quantum analogues. Most definitions, results
and proofs go on essentially unchanged compared to the g = 1 case. However, in the
definition of the exchange matrix the R-matrix Ry associated to U, (g)-modules V
and W, and induced by the universal R-matrix R, is also needed. I will use the notation

Ry = (Rwy)' = Pyy Ry Pyw. (4.9)

This is different from the notation 97{‘2/1“, 1= (R2)yy in [E-S], Section 2.2. The exchange
matrix in the quantum case is now defined by

Ryw (A) := Jyw (D) T1RGH JAL (A). (4.10)

The dynamical two-cocycle condition (3.9) will remain valid in the quantum case. I
will now discuss a second proof of the QDYBE (4.1), which is briefly sketched in the
remark in [E-S] after Proposition 2.4, and which also holds in the quantum case. In the
following, when being in the g = 1 case, just put Ry equal to 1 (for any V,W).

I derive first the following two important formulas (not given in [E-S]) for the ex-
change matrix:

Jvw Q) Ry yew (A)Jyw (A=h'") = Ryy (A= h™)Ryw (D), 4.11)
Juv (A= h(W))_l Ryevw (A)Juv(A) = Ryw (A)Ryw (A —hV)), (4.12)

where both sides in (4.11) and (4.12) are acting on U ® V ® W. Here we have adapted
the notation introduced in [E-S] just before Proposition 2.3 as follows. If U = A; then
F(A—hW) will mean F(A—h®).

One of the formulas (4.11) and (4.12) can be obtained by specialization of formula
(2.42) in [E-V]. Note that (4.11) and (4.12) are also dynamical analogues of the formulas

Ruev,w = RuwRvw, Ruvew = RuwRuv, (4.13)
obtained from the following formulas for the universal R-matrix:
(Aeid)(R) = R13Ro23, (1Id®A) (R) = R13R12, (4.14)

which belong to the defining properties of a quasitriangular Hopf algebra. Another
defining property of a quasitriangular Hopf algebra is that
P(A(u)) = RA(W)R ™, (4.15)
which implies for the universal fusion matrix J(A) (see [E-S], Section 8) that
P2 (A® 1) (J(A)) = Ri2(A® 1) (J(A) Ry,
Pos(1828) (J(A)) = T3 (1©4) (J(A)) R34, @10

and hence
PwvIwev,u (M) Pvw = RywJvew,u (A)Ryiy,
PuwJv,uew (AN Pwy = RwuJvweu (A Ryl

In the proof of (4.11) and (4.12) I need (4.13) and (4.17).

(4.17)
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PROOF OF (4.11).

Jvw Q) Ry vew (A) Jyw (A—hD)
= JVW(A) .]U V®W(/\) lfv®w U(/\)%‘Z/IQQW,UJVW()\ - h(U))
= JuvA=h ™) Jyevw (A PuuPwuRvew,uJvew,u (N PuwPuvJvw (A= )

=Juv(A=h")”~

= Juv

= Juv

=Juv(A-

=Juv

(
(
(
(
(A-

A—
A—

1]U®vw(7\) LPyuPwuRvoRwuvew,u (A Jvw (A—hY) Py Pyy

N Juevar (A) T PyyBvy PwuRwu v weu (A) Jwu (A) Puw Puy
) PyuRvudveuw (A) T v uew (A) PwuRwuJwu (A) Puw Puy
h")” 1PVU%VUJVU( =) Juw ()~ PyyBRwu Jwu (A) Puw Pyy
R) Ry IR (A= ™) Py Juw (M) Ry TRy (V) Poy

w)y~1
w)y~1

h
h

hw

=RUV(A—h(W))RUW<A).

(4.18)
O

PROOF OF (4.12).

Jov(A=R™) " Ryeyw (A Juv (A)
=Juv(A—h"M)~ JU@VW(A) 1gim/U®\/JwU®v(7\)JUV(/\)

=Jyw(A)~
=Jyw(A)~
= Jyw(A)~

Y Tuwvew (A) T Pyy PwuRw, vevJw,usv (A) Puw Pyw Juv ()
Yuvew (A) T Py PwuRwy Rwo Jw,uev (M) Juv () Pyw Pyw
L Tuvew (A) L Puyv Ry PwuRwoJweu,y (N Jwy (A—hY)) PyyPyy  (4.19)

= Jvw Q) L Py Ry Juwev (D) L Juew v (D) PwuRwo Jwo (A — hY)) Pyw Py
= Jvw () L Pyy Ry Jwv (A) Juw (A= b)) ' PwuRwutwu (A=h")PywPyw
= Juw (D) IREN T3, () Py Juw (A —h™Y)) _197?«124/1UJI%VIU(7\ —h)Pyy

= Ryw (M) Ryw (A-h™)).

O

In both proofs we have used the 2-cocycle condition (3.9) for the fusion matrix three

times.

SECOND PROOF OF QDYBE (4.1) (USING (4.11) AND (4.12); ACTING ON VW ®U).

Ryw (A=) Ryy (M) Ry (A—h™)
= Jwu(N) Ry weu (M) Jwu (A —hY) Jywy (A=) ' REL T2, (A~ R V)
= Jwu Q) 'Ry weu (M) PuwRuw Juw (A —hY)) Pyy
= Jwu Q)" PuwRuw Rv,uew (A) Juw (A—hY)) Pyy (4.20)
= Jwu Q) ' PuwRuwJuw (M) Rvy (A= h™))Ryw (A) Pyy
= Rwu (A)PywRyy (A= h™))Ryw (A) Pyy

= Ryu(A)Ryy (A—h™)Ryw (A).
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5. Difference operators. Next I give a proof for the g = 1 case of the formula
@Yo =aval =alal, (5.1)

stated at the end of Section 9.1 in [E-S] for the quantum case. Let g be a simple Lie
algebra. For any two finite-dimensional g-modules U and V let Ryy (A) be the exchange
matrix. Let Ryy (A) := Ryy(—A —p) denote the shifted exchange matrix. Let %y be the
space of U[0]-valued meromorphic functions on h*. For v € h* let T,, € End(%Fy) be
the shift operator (T, f)(A) := f(A+ V). Define the difference operator QD?,’U acting on
Fu bY

Dy’ = > Trlvi (Ryu Q) Ty = X Trlvi) (Rvpvoiorvivivio (M) T, (5.2)

veh* vehp*

where Rya,urulvivi,uiel denotes the block of the matrix Ryy corresponding to the
weight spaces V[A],U[u];V[v],U[o] (which block will be zero unless A +u =v +0).

PROOF OF (5.1). We can rewrite (4.12) as
Riwev,u(A) = Jwy (A + ) Ryy (M) Ry (A+hY)) Jyy (M) 7L, (5.3)
where Jyv (A) := J(—A — p) denotes the shifted fusion matrix. Hence

RwvisvigLutonwivieviuluiol (A) = > Iwiviawnvign (A)

Wy o

o Ryu1,utonvin o] (A Rwivutetwive,uio) (A +u")
X Iwiviviwiyvie (A) 7
(5.4)

Hence

Trlwivievig (Rwivieviulutoswivieviu,urol (A))

= D Trlwmvieviu (Rviayutonviunute1 () Ry utoswiviuto) (A + 1)) (5.5)

o

= Tr [wivieviu (Rvig,utonvip,uio (M) Rwiviurorwiviuro (A + ).
Then
A, A,
BB = > Tr v (Rvianutorvia,oion(A) Ty > T lwiv) (Rwiviuoswivioior (A) Ty
u v

= > Tr Iy (Rvranuionvian,uior () Tr lwivy (Rwiviotonwiviuor (A + 1)) Tuey
u,v

= > Trlwivieviu (Rvianuionviun,uior (A) Rwiyviutonwiviuior (A + ) Tusy
u,v

= D Trlwivieviel (Rwivieviu,utorwivieviuluol (A)) Tusy
u,v

A
= > Trlweviiol (Ruweviiolutolmweviioluo] (M) Te = Diyay.
g
(5.6)



802 TOM H. KOORNWINDER

But also

AU
Doy = 2. T lwivieviu (Rwivieviunuiorwivieviu,uio) (A) Tury
u,v

= > Trlwivieviu (Pyipwivivim wiviRvipew viutonviglew vi,uio) (A)
Ky (5.7)

X Pwivvigiwivvig) © Tusy

AU
= > Trlvpgewiv (Rviuewnvi,uiorvimew oo (A) Tury = Dyaw-
ITRY

Hence

Dy oy’ = Dy = Dew = Dy 9" (5.8)
O

Note that it was possible to apply (4.12) in the above proof because we had assumed
that SDC’U acts on U[0]-valued functions, and because the definition of @{‘,’U involved
shift operators T,,.

6. Weighted trace functions. In Section 9.2 of [E-S] weighted-trace functions are
introduced and difference equations are given for them. [E-S] refers for the proofs
to [E-V]. Theorem 9.2 of [E-S] survives for g = 1, see [E-V], Theorem 10.4. I will give
a proof of that theorem parallel to the proof of the g-case, see Theorem 1.2 and
Section 3 in [E-V].

First consider the proof of Lemma 2.14 in [E-V]. Let W be a finite-dimensional g-
module. By the properties of the intertwining operator we can uniquely define a bilin-
ear form By : W X W* — C by the formula

(18 (,)) 0 (X ype)®1) 0@ = By (w,w*)idy, . (6.1)
Note that By w (w,w*) =0 if wt(w) +wt(w*) # 0. Since
q)iww*()\)(w@w*) _ (q)}\u—wt(w*) ®1> oq)}\.,*’ 6.2)
we have
Baw (w,w*) = (,) (Jww+ Q) (weow*)). (6.3)
Define a generalized element Q (A) in U(g) in terms of the universal fusion matrix by
QA):=(moPo(18S71))J(A). (6.4)
This induces an endomorphism Qy (A) of W given by
Q) = Cw (Uww= (D)12)*), (6.5)

where Cyy denotes contraction of an endomorphism of W ® W to an endomorphism
of W. Now we have

Baw(w,w*) = (Qw Q) w,w*). (6.6)
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Indeed, if T € End(W @ W) then (C(T)w,w*) = {,)((T?")%2(w ®w*)). Hence
(Qw M w, w*) = () (Jww+ (A (wew*)) = Baw (w,w*). (6.7)

It follows from (6.6) that Q (A) is a weight preserving endomorphism of W.
Next we have

Bavew o (Juw (A=hY = hW9) @ Jysy (X)) = Bay °By_pw*) - (6.8)
Indeed,
Bau (U, u™) Baowequs),w 1dm,

* *
- (< !) ® (v >) ° q’%—wt(u*)—wt(w*)—wt(w) ° (I)}\U—wt(u*)—wt(w*) ° (b}\u—wt(u*) ° q))L\l 6.9)

Juw A-wt@*)—wt(w™)) (uew) _  Jy# g+ (A (w*eu*)
=((,)®(,)) °¢/\livvvvt(u*)fwt(uJ*) ody Y

= Bausw (Juw (A —=wt (u*) —wt (w*)) (wew), Jiky« (A) (u* @w*)) ida, -

Combination of (6.6) with (6.8) yields that

Quen@) = (JHEE M) (Qud) ©Qw (A+hD)) Juw A+h® + ") (6.10)

It follows from (6.1) and (6.6) that Quew (A) = Q%}W(A). Hence we can rewrite (6.10) as

Quew(A) = (Tt (2\))_l (QuA+h™)@Qu () J2, (A+h® + W) (6.11)
Now eliminate Qugw (A) from these two formulas and substitute

Ruw (A) = Juw (A) T3k (D) (6.12)

(the defining formula for the exchange matrix in Section 2.1 of [E-S]). Then we obtain

R« () = (Qud) ® Quw (A + R ) oRyw (A +h® + ™) (Qu(A+h™) 8 Qu (A)) .
(6.13)

This is essentially the formula at the end of Section 3.3 in [E-V].

Next I discuss Proposition 3.1 in [E-V]. Fix finite-dimensional g-modules V and W. Let
B be a basis of V consisting of weight vectors. For v € B let V* be the corresponding
dual basis vector of V*. Define the operator

Yy — > dL(y)ev* M, — P (My_a®VeV*[-A]), (6.14)
VEB A

which is clearly independent of the choice of B. Define the isomorphism

nw(p) : P (WivleM,.,) — MyeW, (6.15)

where
nwu)(wez):= <I>Zj’+v(z) ifweWlvl], ze Mysv. (6.16)
Proposition 3.1 together with formula (3.2) in [E-V] can now be formulated as follows:

Pyoys o (@X@idw> onw (1) | wiviemy.y 6.17)

= (nw () ®idy ®idy+ ) o Rify (u+v) o (idy ®9Y.., ) | Wi ToMuny’
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PROOF OF (6.17). Write Ryyy (u+v) = Zipicbql?. Lety € My,v and w € W[v]. Then
(Pvovewe (@) ®idy ) onw () (wey)
= (Pvoyew o (@} ®idy ) 0@, ) ()

=Py > (2} @id) (@Y, () @v*

veB
— Jyw (p+v)(vew) %
_PVWZ(I)[J+V (y)®v
veEB
21
_ z q)‘Jl‘%(uw)(w@v)(y)@v*
< (6.18)
_ Z QJ‘J]R;(““')(RWV<”+")(w®“)) (y)ev*
veB
i : atv
= z Z (q)ﬁ:\(j—wt(v) ®1dv)((1)u+v(y)) eu*
VEB i
= > > (eh ®idy ) (@Y., (1)) @ qiv*
H+v-wt(v) vV utv Y qi
veEB i
= Z Z(nw(u)@:idv@idv* )(piw ®<I>z+v(y)®qiv*)
veEB i
= (nw () ®idy ®idy+ ) o RiZy (U +V) o (w ®<1>L‘,/+V(y)>_ O

For A € §* and U a g-module let e : 4 — AWl q : U — U. Let V be a finite di-
mensional g-module and let v € V[0]. Let {y;} be a basis of M, consisting of weight
vectors. Since &) : M, — M, ®V is weight preserving, we have o (yi) € yi®oV[O] +
Zj#iyj ®V.Hence, if B[0] is a basis of V[0] and if v* € V*[0] is the dual basis vector
corresponding to v € B[0], we have

Py (ey)@v* € y;0V[0]eV*[0]+ > y;eVeV*[0]. (6.19)
J#i
Let
oyl:= > @lev*, (6.20)
veB[0]
Then
Wy (A, ) i=Tr [, (op1! oe") e V[0]eV*[0]. (6.21)

For W a finite dimensional g-module let
xw(et) :=Tr | et => dim (W[v])eV, (6.22)
v
A difference equation for ¥y (A, i) in the variable u can be derived from (6.17). First

multiply both sides of (6.17) with e‘*#*) observe that nw (i) o (idy ®e?) = (e*®e) o
nw (1), sum both sides of (6.17) with respect to v, and next multiply both sides of
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(6.17) on the left with (nw (1) ®idy ®idy+) L. Then we obtain the following identity of
linear endomorphisms &, (W[v]®Myy) = &, (W[V]I®My.y @V O V™).

(nW(U)®idV®idV*)71°PV®V*,W°<(CDX°eA>®(eA°idW))OnW(U)|®V(W[v]®Mu+V)
:zR%V(lJ-l-V) <1dw®< v eA))
%

WvIeMusy
(6.23)

Now take the trace with respect to &, (W[v]® M,.,) on both sides of (6.23) and use
(6.20). Then

(Trlwe?‘) (TrIMucpl‘j[O] oe") = ZTr|W[V]R£5V(u+v) o (idW®Tr|Mu+v<I>L/R] oe ) (6.24)
v

Now substitute (6.21) and (6.22), and take, inside the sum on the right-hand side, the
transpose with respect to W. Then

X (€N) Py (A, 1) = D Tr s v Ry (1 +v) o (idw+ @Fy (A, 1+ V). (6.25)
v

On the right-hand side of formula (6.25) substitute (6.13). Next also substitute Ryy (A)
:=Ryy(-A—p) and Qy(A) := Qv(-A—p). Then

xw (€) ¥y (A, )
:ZTNW*[ v (Qwr (+v) @ Qus (H+v+h™ D)) o Rypsyx (u+v+hV) + WD)
o (Qu+(u+v+hV ) @Qus (u+v)) "o (idy+ ¥y (A, +V))
= > Trlws 1 (Qus (+v) @ Qux (+v=h")) oRpyeys (u+v—hV =)
o (Qus (H+v—hY)) ©Qus (u+v)) o (idws 8¥y (A, —u—v —p))
= > Tl w1 (Qu (H+V) ® Qu (1) 0 Riys v (1) © (Qus (H+V) ® Que (u+v)) ™!
o (idw+ ®¥v (A, —p—v—p))

= Qu () o > Tr [y (v Risyx () o (idwx @ (Qus (H+v) Lo ¥y (A, —pu—v —p))).

(6.26)
Let the Weyl denominator be given by
SA):=eM [T (1—e A, (6.27)
>0
Define the weighted-trace function by
Fy (A, 1) := Qul () ¥y (A, —p—p)S(A). (6.28)

Now replace W* by W in (6.26) and substitute (5.2) and (6.28) in (6.26). We finally
obtain the formula which is the g = 1 case of Theorem 9.2 in [E-S]:

Y Fy (A, 1) = xw (e ™) Fv (A, ). (6.29)
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