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ABSTRACT. We give the second -, y-, and f-duals of the sets wg(A), wk(A) (0<p < ),
el (AN), ¢ (A), and ¢k (A) (0 < p < 1) and the second continuous dual spaces of w (A),
cg (A), and c?(A) for 0 < p < 1. Furthermore, we determine the «-duals of cg (A), c?P (A),
and c& (A) for 1 < p < co.
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1. Introduction and well-known results. We write w for the set of all complex
sequences X = (xXx)r_g, ¢, Lo, ¢ and ¢g for the sets of all finite, bounded, convergent
sequences, and sequences convergent to naught, respectively, further cs, bs, and [,
for the sets of all convergent, bounded, and absolutely convergent series.

By e and e™ (n € Ny), we denote the sequences such thatey = 1 for k =0,1,..., and
ew? =1 and e = 0 for k # n. For any sequence x = (x;)%, let xI") = S xe®)
be its n-section.

Let X,Y C w and z € w. Then we write

z7'xX={xew:xz=(xxzi)po € X},

1.1
MX,Y)=(1x'xY={acw:ax €Y Vx e X} (-1

xeX
for the multiplier space of X and Y. The sets M (X,l;), M(X,cs), and M(X,bs) are
called the «-, -, and y-duals of X.

A Fréchet subspace X of w is called an FK space if it has continuous coordinates,
that is, if convergence in X implies coordinatewise convergence. An FK space X D ¢
is said to have AK if, for every sequence x = (xy);_, € X, xM o x (n - ©); and it is
said to have AD if ¢ is dense in X. A BK space is an FK space which is a Banach space.

If X is a p-normed space, then we write X* for the set of all continuous linear
functionals on X, the so-called continuous dual of X, with its norm || - || is given by

Il =sup {[f)|:lxll =1} VfeX*, (1.2)

Let X D ¢ be an FK space. Then the set X/ = {(f(e™))%_,: f € X*} is called the
f-dual of X.

Given any infinite matrix A = (dnk); g0 Of complex numbers and any sequence
X € w,let Ap(x) = > ¢ ¢ankXxk (n=0,1,...), and let A(x) = (A, (x))5_, provided the
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series converge, and X4 = {x € w: A(x) € X}. If 0 < p < o, then we write |x|V =
(IxklP)_o and Xpapr = {x € w1 A(|x|F) € X}.

Let 0 < p < o0 and u = (Un);,_o be a nondecreasing sequence of positive integers
tending to infinity, throughout. We define the matrices A and M by

1 (k=n),
Ank: -1 (k:n—l),

0  (otherwise), (1.3)

ip (0<k=<n)
Myx =1 Hn (n=0,1,...)
0 (k>n)

and use the convention that any symbol with a negative subscript has the value zero.
The sets

wg (n) = (co) arye s wl () = (L) aryrs

=W rxwlw),y, B =@ Ix(Wwh),,  cP(p)=cl(wee
(1.4)

were studied in [1], and their first duals were given there. If p = 1, then we omit the
index p, i.e., we write wo (1) = wg (u), etc.

Following the notation introduced in [3], we say that a nondecreasing sequence A =
(An)p—o of positive reals tending to infinity is exponentially bounded if there are reals
s and t with 0 < s <t < 1 such that for some subsequence (A, (,));5 -y of A, we have

s 4oy, o, (1.5)
n(v+1)
such a subsequence (A, ())5-( is called an associated subsequence.

If (n(v));_, is a strictly increasing sequence of nonnegative integers, then we write
K™ for the set of all integers k with n(v) <k <n(v+1) -1, and 3, and max, for
the sum and maximum taken over all k in K,

If X?(A) denotes any of the sets w{ (A), wk(A), ¢ (A), c?(A), or c&(A), then we
write X? (A) for the respective space with the sections 1/A% S ko--- replaced by the
blocks 1/AY .1, >, ... . Furthermore, we define

( n
sup (1p 2. xkl”> (O<p=1,
n _
12 (a) = 1 1" . 1p
sup(pz xkl”> (1<p<w),
L n ‘Vl k=0
. (1.6)
sup(Ap lekl”) (0O<p<1),
_ nv+1) v
HXHL'UKQ(A) =1 1 1/p
sup(Ap leklp) (1<p <),
(v+1) v

HXHCEQ(A) = HA(AX)HWEO(A), ”x”fopo(A) = ||A(AX)||L-U£(A)
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2. The second duals of the sets w{ (A) and wk (A) for 0 < p < 0. Let A = (A)5_,
be a nondecreasing exponentially bounded sequence of positive reals throughout and
let (An(v))5—o be an associated subsequence. We put

{aew:Z)\n(v+1)m§X|ak|<oo} (0<p<1),
WP (A) = v=0 2.1)

{aew:z/\n(v+1)<2|ak|p) <oo} (1<p<00,q:L)
v=0 v p-1
and, on W? (A),

ZAn(V+1>m3x|ak| 0O<p=<1),
laliye ) =42 2.2)

> o\ P p
Z)\n(wl)(zwﬂ ) <1<p<oo,q:71)_
v=0 v p-

In [1, Theorem 2], it was shown that if X?(A) = w! (A) or X?(A) = wk(A) and t
stands for «, B, y, or f, then (X?(A))" =W?(A), that the continuous dual (wg (A)*
of wé’(A) is norm isomorphic to W?(A) when w(’f(A) has the norm || - ngom), and
finally that H“prgg " = llallwr a) On (w& (A))B. Furthermore, W7 (A) is a BK space with
AK with || - |4 (a) (cf. [2]). Therefore the following result gives the second duals of the
sets wl (A) and w& (A).

THEOREM 2.1. We put p' =max{l,p}. If T stands for any of the symbols &, B, y,
or f, then (WP (AT = wk (A) forO < p < oo, and the continuous dual (WP (A))* of
WP(A) is norm lsomorphlc towk (A) with |- . o

PROOF. The statements of the theorem with the exception of those concerning the
y- and f-duals are well known (cf. [2, Theorems 2, 4, 5, and 6]).
Since W¥(A) has AK, it follows that (W? (A))# = (W?(A))/ by [4, Theorem 7.2.7(ii),
page 106], and so (W7 (A))S = w? (A). Further W7 (A) has AD, since it has AK, and so
(WP (A))B = (WP(A))Y by [4, Theorem 7.2.7(iii), page 106], hence (WP (A))Y = wo’i’,/ (A).

O
3. The «-duals of the sets cé’(A), cP(A),and c?(A) for 1 <p < o
THEOREM 3.1. We put
0 0 | a\ 1/q
%g(A)—{aew:ZAn(vﬂ)( (Z )) oo} (]<p<oo;q: p )’
v=0 k=n Ak p—1
0 a\ 1/a
gy, = z S (z ( > 1a ) ) .
v k=n
(3.1)

If X (A) denotes any of the sets c} (A), c? (A), and ck(A), then (XP(A))® = €h(A).
Furthermore, 6% (A) is a BK space with || - ||<@§(A)-
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PROOF. First, we assume a € ¢5%(A), and let x € c&(A). Then there is a constant
M such that

1/p
<Z|(A(Ax))n|p> <AppinM Vv =0,1,.... (3.2)

Putting R,, = > ¢, (lakxl/Ax) (n=0,1,...) and using Holder’s inequality, we obtain

i |axxi| < S k i | (A(AX)),, i ’;LH
o V; e " e 3.3)
=> > |(A(AX)), Ry =M Z Anw+1) (ZRn)
v=0 v v=0
This shows that €k (A) C (c&(A))* and that
D larxi] < llallgr ) l1xl gz n)- (3.4)
-0

Conversely, we assume a € cfj (A). We define the maps fi™ : ¢} (A) — [Rbyf,im) (x) =
Z’,fo larxk| (x € X). Then (f(m))i';L o 1s a sequence of seminorms on co (A) which

are continuous, since CO (A) is a BK space by [1, Theorem 1]. Further, f("” <
Seeolakxkl = M(x) < « for all m € Ny and for all x € X. By the uniform bound—
edness principle, there is a constant M such that
D larxkl <M Vx € cf (A) with [Ix]l gz ) < 1. (3.5)
k=0

Since a € (cf (A))* and 1/A = (1/Ax)p_ € ¢ (A), the numbers R,, are defined for all
n. We put

n(u+1)—
Su= > Rl Vu=0,1,.... (3.6)
l=n(u)

Let v(m) € Ng be given. We define the sequence x™ by

1 v—1 Y n(p+1)-1 ) 1/ .
T z;\n(/ﬁ—l)su r Z Rq +z\n(v-H r Z Rq
n \u=0 k=n(u) k=n(v)
xym = (meN"v; 0<v<v(m)), (3.7)
1 v(m) ) np+1)-1 )
o > Anws)Su I > RY (mzn(vim)+1)).
" p=0 k=n(u)

Then

(A(Ax™Y), A SV PRET (me N v =0,1,..,v(m),
0 (meNY; v=v(m)+1),
A S S RE = A (0 <v<v(m) o
Z|(A(Ax”m)))n|= nv+1)°v . n = Sn(v+l) =V = ’

v 0 (v=v(im+1)).
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Thus x¥™ € ¢} (A) and [x”"™ || ,, = 1. Now, by (3.5) and (3.8) and since x} "™ = 0
forall k=0,1,...,

v(m) /a  v(m) v(
z An(v+1) (ZR;@[) Z )\n(v+1) (ZRn> vl/p Z
v=0 v

v(

( n(v+1 l/qu 1)Rn

<M

3

0 0 a
SIS, ks ), S
k=n

|ax|
Ak

[Me <[\/J
3

M=

(A(Axv(m)))n‘ _ Z |ak| Ak|X1‘:<m)|

=
Il
(=}

n=0

lak|[xy™ | <M.

[
Me

~
Il

0
(3.9)

Since v(m) € Ny was arbitrary, we have

0 1/q ©
Z v+1)(ZR1’L) < z |akxk]| < oo, (3.10)
v=0 k=0

that is, a € €% (A).

Therefore we have shown (ck(A))® = (c§ (A))* = €R(A). Since ¢l (A) € c?(A) C
cB(A) for 1 < p < oo (cf. [1, Lemma 1(b)]), we also have (c?(A))% = @GR (A).

Finally, €& (A) is a BK space with || - H%(A) by [4, Theorem 4.3.15, page 64], (3.4), and
(3.10). O

4. The second duals of the sets c{ (A), c”(A), and ck (A) for 0 < p < 1. We put

o Ak
%(A):{aew Z?\n(v+1)ma Z )\7 oo},
. . (4.1)
ag
llallen = Z Ansnpmax | > =
_ v Ak
v=0 k=n

In [1, Theorem 4], it was shown that if X? (A) is any of the sets c(’)J (A) or ¢k (A) and
t stands for any of the symbols B, y, or f, then (X?(A))t = €(A) and that this also
holds when X7 (A) = c(A) or X7 (A) = c?(A) for 0 < p < 1 whenever

lnl i,, Z A(ux) P < oo (4.2)

otherwise (c? (A))? =%4(A)ncs and (c? (A))Y = €(A) Nbs. Furthermore, it was shown
that the continuous dual (cé’ (A))* of c(’f (A) is norm isomorphic to % (A) when cg (A)
has the p-norm | - HC (A and |lal* Lo = [lalle) on cB(A). Finally, that f € c*(A)
if and only if f(x) = Ixs + D _oanxn for all x € c(A) where a € €(A), I € C with
x —le € co(A) and x5 = f(e) — Xp_oan, and that || f|| is equivalent to |xs| + llall¢n);
if condition (4.2) is satisfied, then this also holds for c?(A) (0 <p < 1).

Therefore the following result gives the second duals.
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THEOREM 4.1. (a) The space 6(\) with Il - Il is a BK space with AK.

(b) The set c (A) is B perfect, that is, ch (A) = Co (A). Further IIallfg(A) = [lalles ) for
alla € P (A).

(c) Finally, € (A) = @Y (A) = 6P (A).

PROOF. We apply Abel’s summation by parts. If a € cs, then we write R (a) for the
sequence with R, (a) = > ¢ ,ax (n=0,1,...). Then

Zanyn—ZRn(amy)n Rp(@)ym VYm=0,1,.... (4.3)

n=0

(@) The space W(A) is a BK space with | - [l (cf. [2, Theorem 2]). Further, the
matrix A defined by aux = 1/Ay fork=nand ayx=0for0<n-1(n=0,1,...) is
one-to-one, and x = A(y) € 6(A) if and only if y € W (A). So, by [4, Theorem 4.3.2,
page 61], €(A) is a BK space with ||x [l¢x) = I|A()) llw). Now, we show that €(A) has
AK. First, we observe that ¢ C 6(A), since €(A) is the B-dual of a sequence space. Now,
let x € 6(A) and let € > 0. For each m € Ny, let v, denote the uniquely determined
integer for which m € Nm), We choose m( € Ny such that

Z )\n(vﬂ)mvax |[Rn(x/A)| <& Vm=my. (4.4)

V=vm

Let m = my. Since the sequence A = (Ay,);_, is exponentially bounded, there is t €
(0,1) such that, by (1.5),

[l = xt™ [ n) = ZM y+1ymax | Rn ((x —xt"1) /A) |
v=0
vin—1
Z A1) | Rma1 (X/A) | + Z An v+1)maX|Rn x/A)|
v=0 v=vm
4.5)
vt )\n(v+1
<E+ m+1)Max | Ry (X /A
st
vin—1 1
<ete Y MV <E——.

ot 1-t
This shows that ¢(A) has AK.
(b) First, we show that €#(A) = ¢« (A).
For any X C w, X C X#8 by [4, Theorem 7.1.2, page 105]. So we have to show ¢ (A) C
%P(A) by [1, Theorem 4].
Let a € €% (A). We define f, : €(A) — Cby fa(x) = > o arxk for all x € €(A). Then
fa €6*(A) by [4, Theorem 7.2.9, page 107], and so

| faCGO | < Ifalllixllen) <o Vx €CA). (4.6)
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Let m € Ny be given and v,, the uniquely determined integer such that m € N{Vm},
Since A is exponentially bounded, there are s,t € (0,1) such that, by (1.5),

(m) elm & Anws)
ey = 3 Ao ma R (57 | - 3
Ak v=0 Am
- . 4.7)
< /\n(v+1) An(vm-*-l) < l Z tvm=v < 1
v=0 An(vm+1) An(vm) Rt s(1-t)
Now (4.6) implies
1
|am | = [ fa(™)| <||falllle™ [l < ||fa||75(1_t) Vm € No, (4.8)

and so a € l. Further, x € 6(A) implies that R,,(x/A) € cs for all n, and AR(x/A) €
co. Therefore aAR(x/A) € cyg. Now (4.3) yields

[

> an Z n(x/A)(A(AQ)), Vx €B(A). 4.9)

Thus R(x/A)A(Aa) € cs forall x € 6(A). Now x € 6(A) if and only if R(x/A) € W (A)
and, by [2, Theorem 4], A(Aa) € WE(A) = w. (A). But this means that a € ¢ (A). Thus
we have shown that 4#(A) C co (A).

Now we show

lallin, = llallean) Vaeeh (). (4.10)

Let a € 4#(A) = c (A), by what we have just shown. Then by (4.9), for all x € 6(A),

M

Ang ])maX|R )|
VZO v " Anwn) 5 " 4.11)

< lalleey 1X ey,

anX

n=0

and so
lallg ) < llallco - (4.12)

Let vy € No. By vo.m, we denote the smallest integer with 0 < vy, < vy, for which

> [(A(A)), | = max z{(A(Aa))n|). (4.13)

/\n(v0m+l) Vo 0<v<vim ()\n(wrl) 5
We define the sequences R and x™ by

Aisgn((A(Aa))n) for n € Nom),
R;M) _ n(vom+1) 4.14)

0 for n ¢ N{vom),
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and xy™ = RY™ —R!™) (n=0,1,...). Then we have

oo
HX(m) @A) = Z An(v+l)m§lX ‘Rf,[m) ’ = /\"(VO.erl)r\g(l)%Z( ‘Rilm) ‘ <1,
-0 8
N Y (4.15)
1
S anx™ | = max STHAGD) | < lalf IxTen < llaliie,.
n=0 0<v<vm ?\n(v+1) v

Since v,, was arbitrary, we obtain |lalls. ) < IIaHfg( A)- Together with (4.12), this yields
(4.10).

(c) Since 6 (A) has AK by part (b) and so AD, part (c) follows from [4, Theorem 7.2.7(ii)
and (iii), page 106]. O
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