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Abstract. The problem of peristaltic transport in a cylindrical tube through a porous
medium has been investigated. A perturbation solution is obtained, which satisfies the
momentum equation for the case in which the amplitude ratio is small. The results show
that the fluid phase mean axial velocity increases with increasing the permeability param-
eter k. The phenomena of reflux is discussed. Numerical results are reported for various
values of the physical parameter.
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1. Introduction. The word peristaltic stems from the Greek word peristaltikos,
which means clasping and compressing. It occurs due to the action of a progressive
waves which propagates along the length of a distensible tube containing liquid. Peri-
staltic pumping has been the object of scientific and engineering researchs during the
recent past few decades.
The pumping of fluids through muscular tubes by means of peristaltic waves is an

important biological mechanism. In particular, peristaltic mechanismmay be involved
in swallowing food through the oesophagus, urine transport from kidney to bladder
through the ureter.
Study of the mechanism of peristalsis from both the mechanical and physiological

view points has been the object of scientific research. Since the first investigation of
Latham [5], several theoretical and experimental attempts have been made to under-
stand peristaltic action in different situations. A review of much of the early literature
is presented by Jaffrin and Shapiro [4]. A summary of most of the experimented and
theoretical investigations reported with details of the geometry, fluid, Reynolds num-
ber, wavelength parameter, wave amplitude parameter, and wave shape have been
given by Srivastava and Srivastava [13]. Srivastava and Srivastava [14] studied the ef-
fects of Poiseuille flow on peristaltic transport of a particulate suspension. Recently
Saxena and Srivastava [11] studied the particulate suspension flow induced by sinu-
soidal peristaltic waves. In another type of studies on peristaltic transport, El Misery,
El Shehawey, and Hakkem [1] studied the peristaltic motion of an incompressible gen-
eralized Newtonian fluid in a planer channel. Mekheimer, El Shehawey, and Elaw [6]
studied the peristaltic motion of a particle fluid suspension in a planer channel. Flow
through a porous medium has been of considerable interest in recent years particu-
larly among geophysical fluid dynamicists. Many technical processes involve parallel
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flow of fluids of different viscosity and density through porous media. Such parallel
flows exist in packed bed reactors in the chemical industry, in petroleum production
engineering, and inmany other processes as well. Flows through porousmediumoccur
in filtration of fluids and seepage of water in river beds. Movement of underground,
water and oils, beach sand stand stone, limestone, rye bread, wood, the human lung,
bile duct, gall bladder with stones, and small blood vessels are some important exam-
ples of flow through porous medium. Another example is the seepage under a dam
which is very important [10]. Several works have been published by using the general-
ized Darcy’s law [12], where the convection acceleration and viscous-stress are taken
into account [16].
El Sayed [2] studied the electrohydrodynamic instability of two superposed viscous

and streaming fluids through porous medium. Varshney [15] studied the fluctuating
flow of a viscous fluid through a porous medium bounded by porous and horizontal
surface. Raptis et al. [8, 9] studied the steady free convection and mass transfer flow
of a viscous fluid through a porous media bounded by a vertical surface. El Shehawey
et al. [3] studied the peristaltic transport through a porousmedium. In the case of high
permeability parameter (as k→∞), our result is in agreement with Yih and Fung [17].

2. Formulation of the problem. We shall consider a two-dimensional circular cylin-
drical tube of radius R, with axisymmetric, moderate-amplitude traveling waves im-
posed on its wall is considered.
The fluid is assumed to be Newtonian, viscous, homogeneous, and incompressible

through a porousmedium occupying a semi-infinite region of the space. The equations
governing two-dimensional motion of a viscous incompressible fluid through a porous
medium are (see [7])
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and the equation of continuity is

∂vr

∂r
+ ∂vz

∂z
+ vr

r
= 0, (2.2)

where z is the axial coordinate in the direction of wave propagation, r is the radial
coordinate, ν is kinematic viscosity, ρ is the density, P is the pressure, t is the time,
vr and vz are velocity components in the r - and z-directions, respectively, and k is
the permeability parameter. Axisymmetric motion is assumed.
The velocity components can be written in terms of Stoke’s stream function Ψ as

vr = 1
r
∂Ψ
∂z

, vz =−1r
∂Ψ
∂r

. (2.3)
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Figure 2.1. Geometry of the problem.

Eliminating pressure P between equations (2.1a) and (2.1b) using equation (2.3)
yields the equation for the stream function,

∂
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where ∇̄2 is a special operator defined as

∇̄2 = ∂2

∂z2
+ ∂2

∂r 2
− 1
r

∂
∂r

. (2.5)

At the boundaries, the fluid is subjected to the motion of the wall in the form (see
Figure 2.1),

η= acos
2π
λ

(z−ct), (2.6)

where a is the amplitude, η is the radial displacement from the mean position of the
wall, λ is the wavelength, and c is the wave speed. The boundary conditions that must
be satisfied by the fluid on the walls are the no-slip and impermeability conditions.
The velocity components of the fluid particles on the wall are thus

vz = 0, vr = ∂η
∂t

, (2.7)

and in terms of the stream function Ψ ,

∂Ψ
∂r

= 0,
∂Ψ
∂z

= 2πacr
λ

sin
2π
λ

(z−ct), (2.8)

we introduce the non-dimensional variables and parameters as follows:
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R
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R
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c
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c
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R
,
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R2c
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R
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ρc2
, k∗ = k

R2
,

(2.9a)
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and the amplitude ratio ε, the wave number α, and the Reynolds number Re. These
parameters are defined as:

ε= a
R
, α= 2πR

λ
, Re= cR

ν
. (2.9b)

The non-dimensional forms of (2.4), (2.6), and (2.8), after dropping the star are:
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η= εcosα(z−t), (2.11)
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3. Method of solution. We expand Ψ and ∂P/∂z in a power series of the small
parameter ε,
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On substituting (3.1) into (2.10), collecting terms of equal powers of ε, and equating
the coefficients of like powers on both sides of the equation, we obtain
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We expand the boundary conditions (2.12) in power series of η:

Ψr (1)+ηΨrr (1)+ η2

2
Ψrrr (1)+··· = 0, (3.6)

Ψz(1)+ηΨrz(1)+ η2

2
Ψzrr (1)+··· =αεsinα(z−t). (3.7)

On substituting (2.11) and (3.1) into (3.6) and (3.7) and equating coefficients like pow-
ers of ε on both sides of the equation we obtain
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Equations (3.3), (3.8), and (3.11), together with a condition of uniform pressure gra-
dient (∂P/∂z)0 = constant, are satisfied to yield the classical Poiseuille flow for a fluid
through a porous medium
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is the Poiseuille flow parameter for a fluid through a porous medium, I0 and I1 are the
modified Bessel functions of the first kind.
Equation (3.4) with the corresponding boundary conditions (3.9) and (3.12) shows

that a solution can be chosen in the form

Ψ1 =φ1(r)eiα(z−t)+φ∗
1 (r)e

−iα(z−t), (3.16)

where the asterisk denote a complex conjugate.
On substituting (3.16) into (3.4), (3.9), and (3.12), we obtain the Orr-Sommerfeld

equation with the corresponding boundary conditions as follows:
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where the primes denote differentiation with respect to r .
Equation (3.5) with the corresponding boundary conditions (3.10) and (3.13)

shows that a solution can be chosen in the form
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On substituting (3.19) into (3.5), (3.10), and (3.13), we obtain the two equations for
φ20 and φ22 with the corresponding boundary conditions as follows:
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with
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4
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Thus, we obtained a set of differential equations together with the corresponding
boundary conditions which are sufficient to determine the solution of the problem up
to the second order in ε.
Now, our main purpose is to find out solutions of differential equations for φ1, al-

though equation (3.17) for φ1 is the fourth-order ordinary differential equation with
variable coefficients. However, we can restrict our investigation to the case of pump-
ing of an initially stagnant fluid, which is not subject to imposed pressure gradient.
Thus, in this case (∂P/∂z)0 = 0, which means constant k̄ vanishes and we would be
able to obtain a simple closed form analytical solution of this interesting case of free
pumping.
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4. Free pumping (originally stationary fluid). Let us consider the case in which
the pressure gradient (∂P/∂z)0 vanishes. In this case, there will be no flow if the wall
motion stops. Hence k̄= 0, then (3.17) becomes

(
d2

dr 2
− 1
r

d
dr

−β2
)(

d2

dr 2
− 1
r

d
dr

−α2
)
φ1 = 0, (4.1)

in which β2 =α2−iαRe−1/k and the boundary conditions (3.18) with k̄= 0 becomes

φ′
1(1)= 0, φ1(1)=−12 . (4.2)

The boundary condition (4.2), together with the condition that the velocity must
remain finite at r = 0, then lead to the solution
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On substituting (4.3) and its conjugate into (3.20) and (3.23), we obtain
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The right-hand side of (4.5) is a complicated function of r . We evaluate the right-
hand side numerically and represent the result approximately by a polynomial of the
following form:
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where L1 and L2 are constants.
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Defining the following function:

G(r)=
S∑

i=1
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we can write the boundary condition (4.6) in the form
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on substituting (4.9) and (4.10) into (4.8), we get
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if each term of (3.1), (3.2), (3.16), (3.19), and (4.3) is time-averaged over one period, we
obtain the mean pressure gradient
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substitution of (4.11) into (4.12) yields:
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)
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(4.13)

The time-averaged pressure gradient is not constant across the tube, but has a per-
turbation which varies with the radius. This perturbation function, which is denoted
by Z , is the expression enclosed in the brackets in (4.13).
The solution for the mean axial velocity (averaged over time) is

v̄z =−1r ε
2φ′

20

= ε2
[
−α2 Re2

[
G(1)− G(r)

r

]
−D+kRe

(
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(
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√
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2I0
(
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√
k
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]
.

(4.14)

From (4.14) a “critical reflux condition” can be defined as the condition v̄z = 0 at
r = 0 (i.e., at the centre of the tube) using (4.13), this condition is

(
∂̄P
∂z

)
2c.r

= H
Re

, (4.15)

where

H = [2I0(1/
√
k)−1]

k[I0(1/
√
k)−1]

(
α2 Re2G(1)+D). (4.16)
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5. Stokes approximation. As Re→ 0 (the Reynolds number is considered so small
that the inertia terms in the governing equations are negligible).
Equation (4.8) becomes

φ′
20(r)= L1+ i√

k
L2I0

(
r√
k

)
, (5.1)

we can write the boundary condition equation (4.6) in the form

φ′
20(1)=D = L1+ i√

k
L2I0

(
1√
k

)
, (5.2)

on substituting (5.2) into (5.1) we get

φ′
20(r)=

[
D+ i√

k
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(
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(

r√
k

)
−I0

(
1√
k

))]
r , (5.3)

the solution for the mean-axial velocity is

v̄z =−1r ε
2φ′

20(r)=−ε2
[
D+ i√

k
L2
(
I0
(

r√
k

)
−I0

(
1√
k
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, (5.4)

where

L2 =
( −i√kD
I0(1/

√
k)−1

)
. (5.5)

6. Numerical results and discussion. In order to study the behavior of the solu-
tion, numerical calculations for several values of α,k, and Re were carried out. Equa-
tion (4.14) shows that the mean axial velocity is dominated by the D term and the
parabolic term

kRe
(
∂P
∂z

)
2

(
I0(1/

√
k)−I0(r/

√
k)

2I0(1/
√
k)−1

)
. (6.1)

The constant D, which initially a rose from the non-slip conditions of the axial ve-
locity on the wall and is related to the mean-velocity at the boundary of the tube (at
r = 1) by v̄z = ε2D. The parabolic term is due to the time-averaged second order pres-
sure gradient set up by the peristaltic motion. In addition to the two terms mentioned
above, the velocity has a perturbation term which is a function of r , given by

(
G(1)− G(r)

r

)
. (6.2)

The variation of D with α for various values of Re and k is depicted in Figures 6.1,
6.2, and 6.3. The numerical results show that D decreases with increasing Re and
increases with increasing k.
The effects of k and (∂P/∂z)2 on themean-velocity distribution and reversal flow are

displayed in Figures 6.4–6.11. The results reveal that the mean-velocity distribution
increases with increasing the permeability parameter k and (∂P/∂z)2. We notice that
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Figure 6.1. Variation ofD with wave number α and permeability parameter
k at Re= 1.0.

10.80.60.4
α

0.20

4.6

4.4

4.2

−4

3.8

D k= 0.5
k= 0.7
k= 1.0
k= 3.0

Figure 6.2. Variation ofD with wave number α and permeability parameter
k at Re= 10.0.

10.80.60.4
α

0.20

−4.3
−4.2
−4.1
−4

−3.9
−3.8
−3.7

D
Re= 1.00
Re= 3.00
Re= 5.00
Re= 10.0

Figure 6.3. Variation of D with wave number α and Reynolds number Re at
k= 0.5.
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Figure 6.4. The effect of the permeability parameter k on the mean-velocity
distribution and reversal flow at Re= 5.0, (∂P/∂z)2 =−5, and α= 0.1.
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Figure 6.5. The effect of the permeability parameter k on the mean-velocity
distribution and reversal flow at Re= 10.0, (∂P/∂z)2 =−5, and α= 0.1.
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Figure 6.6. The effect of the permeability parameter k on the mean-velocity
distribution and reversal flow at Re= 5.0, (∂P/∂z)2 = 2.0, and α= 0.1.
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Figure 6.7. The effect of the permeability parameter k on the mean-velocity
distribution and reversal flow at Re= 10.0, (∂P/∂z)2 = 2.0, and α= 0.1.
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Figure 6.8. The effect of themean second-order pressure gradient (∂P/∂z)2
on the mean-velocity distribution and reversal flow at Re= 1.0, k= 0.5, and
α= 0.1.
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Figure 6.9. The effect of themean second-order pressure gradient (∂P/∂z)2
on the mean-velocity distribution and reversal flow at Re= 1.0, k= 0.5, and
α= 0.1.
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Figure 6.10. The effect of the permeability parameter k on the mean-
velocity distribution and reversal flow at Re = 1.0, (∂P/∂z)2 = −10.0, and
α= 0.1.
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Figure 6.11. The effect of the permeability parameter k on the mean-
velocity distribution and reversal flow at Re = 1.0, (∂P/∂z)2 = 10.0, and
α= 0.1.
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as k increases the velocity increases forward for (∂P/∂z)2 > 0, while for (∂P/∂z)2 < 0
the velocity increases backward (increasing the flux flow).
For (∂P/∂z)2 < (∂P/∂z)2c.r there is no reflux and if (∂P/∂z)2 > (∂P/∂z)2c.r , there

will be reflux and backward flow in the neighborhood of the centre line occurs.
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