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Abstract. This paper is concerned with a Cauchy-Poisson problem in a weakly stratified
ocean of uniform finite depth bounded above by an inertial surface (IS). The inertial surface
is composed of a thin but uniform distribution of noninteractingmaterials. The techniques
of Laplace transform in time and either Green’s integral theorem or Fourier transform have
been utilized in themathematical analysis to obtain the form of the inertial surface in terms
of an integral. The asymptotic behaviour of the inertial surface is obtained for large time
and distance and displayed graphically. The effect of stratification is discussed.
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1. Introduction. The classical two-dimensional problem of generation of unsteady
motion in deep water due to initial surface disturbances in the form of initial eleva-
tion or impulse concentrated at a point on the free surface was studied in the treatise
of Lamb [4] and Stoker [9] assuming linear theory. Fourier transform technique was
used in the mathematical analysis and the free surface elevation was obtained in the
form of an infinite integral which was then evaluated asymptotically for large time
and distance by the method of stationary phase. Kranzer and Keller [3] considered
the three-dimensional unsteady motion in water of uniform finite depth due to initial
surface impulse or elevation applied on a circular area on the free surface. Chaudhuri
[1] and Wen [10] extended these results for surface impulse and elevation across ar-
bitrary regions.
When an ocean is covered by an inertial surface consisting of a thin but uniform

distribution of non-interacting materials such as broken ice, a number of problems of
unsteady motion created due to initial disturbances at the inertial surface were con-
sidered by Mandal [5], Mandal and Ghosh [6, 7], Mandal and Mukherjee [8]. Study of
these classes of problems involving inertial surface has acquired some importance be-
cause of increase in the various types of scientific activities in antartica in the vicinity
of which the ocean is sometimes covered by broken ice.
In all the above studies, the ocean is assumed to be a homogeneous fluid. However,

because of salinity the density of the ocean increases with depth and it is thus realistic
if one models an ocean as a stratified fluid.
For a weakly stratified fluid with constant Brunt-Vaisala parameter, Debnath and

Guha [2] formulated the problem of wave generation due to prescribed initial
disturbance of the free surface in terms of an acceleration potential and obtained
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the free surface profile asymptotically for large time and distance far away from the
region of disturbance. However, their modelling a deep ocean by a stratified fluid of
infinite depth with constant Brunt-Vaisala parameter is questionable since the density
at very large depth becomes very large even if the Brunt-Vaisala parameter is small.
In the present paper, we study the problem of wave generation due to initial distur-
bances in a weakly stratified fluid of finite depth covered by an inertial surface. The
initial disturbances are prescribed at the inertial surface. Assuming linear theory the
problem is formulated in terms of pressure under Boussinesq approximations and
constant but small Brunt-Vaisala parameter. By using Laplace transform technique,
the initial value problem is reduced to a boundary value problem which is then solved
by two methods, one based on an appropriate use of Green’s integral theorem and the
other on Fourier transform. The form of the inertial surface is then obtained in terms
of an integral. This integral is evaluated asymptotically for large times and distances
by the method of stationary phase when the initial disturbances at the inertial sur-
face is concentrated at a point taken as the origin. The asymptotic form of the inertial
surface profile is depicted graphically and compared with the result for an ideal fluid
covered by an inertial surface. It is found that the effect of weak stratification is not
of much significance.

2. Formulation of the problem. We consider an incompressible inviscid weakly
stratified fluid of uniform finite depth h covered by an inertial surface composed
of a thin but uniform distribution of disconnected floating materials of area density
ρ0(0)ε (ε≥ 0), where ρ0(0) is the density of the fluid at the top. It may be noted that
ε = 0 corresponds to a fluid with a free surface. We choose a rectangular cartesian
coordinate system in which the y-axis is taken vertically downwards into the fluid,
y = 0 is the position of the inertial surface at rest. The motion in the fluid is generated
due to an initial disturbance prescribed on the inertial surface in the form of an initial
depression of the inertial surface or initial impulse. We assume the resulting motion
to be two-dimensional. We denote by p(x,y,t) and ρ(x,y,t) the perturbed pressure
and density of the fluid, respectively, while ρ0(y) denotes the density of the fluid at
rest, u(x,y,t) and v(x,y,t) are respectively, the horizontal and vertical components
of velocity.
Under the assumption of linear theory the relevant equations satisfied in the fluid

region are

ux+vy = 0, ρt+vρ′0(y)= 0, ρ0ut =−px, ρ0vt =−py+gρ. (2.1)

Combining the kinematic and dynamic conditions at the inertial surface, we find

p−εpy =mg+Π−εgρ−gρ0η on y = 0, t > 0, (2.2)

where η(x,t) is the depression of the inertial surface, g is the gravity and Π is the
atmospheric pressure. The initial conditions are

u= v = 0, at t = 0 η(x,t)= η0(x) at t = 0, (2.3)

where η0(x) is the prescribed initial depression of the inertial surface.
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Let p̄(x,y ;s), η̄(x;s), ρ̄(x,y ;s), and v̄(x,y ;s) denote the Laplace transform of
p(x,y,t), η(x,t), ρ(x,y,t), and v(x,y,t) in time, respectively.
Under Boussinesq approximation, equations (2.1) produce

p̄xx+λ2p̄yy = 0, 0≤y ≤ h, −∞<x <∞, (2.4)

where λ= s/(s2+N2)1/2 is chosen such that Reλ > 0, and

N2 = g
ρ0
ρ′0(y) (2.5)

is the Brunt-Vaisala parameter which is assumed to be constant and small. The small-
ness of N characterizes weakly stratified fluid.
We now solve (2.4) along with the boundary conditions

s2

λ2
p̄(x,0;s)−(g+εs2)p̄y =−sgρ0(0)η0(x)λ2

on y = 0,

p̄y = 0 on y = h.
(2.6)

p̄(x,y ;s) is obtained in the next section by employing two methods, one based on
an appropriate use of Green’s integral theorem and the other on Fourier integral
transform.

3. Methods of solution

3.1. Method based on Green’s integral theorem. We use the transformation x =X,
y = λY and denote P̄ (X,Y)= p̄(X,λY), then P̄ (X,Y) satisfies

∇2P̄ = 0 in 0≤ Y ≤ h
λ
, −∞<X <∞, (3.1)

with

s2

λ
P̄(X,0;s)−(g+εs2)P̄Y =−sgρ0(0)η0(X)λ

on Y = 0,

P̄Y = 0 on Y = h
λ
= h′.

(3.2)

The boundary value problem described by (3.1) and (3.2) is now solved by an appro-
priate use of Green’s integral theorem to the functions G(X,Y ;X′,Y ′;s) and P̄ (X,Y),
where G satisfies

∇2G = 0, 0≤ Y ≤ h′ except at (X′,Y ′),
s2

λ
G−(g+εs2)GY = 0 on Y = 0,

G �→ lnR as R =
[(
X−X′)2+(Y −Y ′)2]1/2 �→ 0,

GY = 0 on Y = h′,
G �→ 0 as R �→∞.

(3.3)
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Then, G(X,Y ;X′,Y ′;s) can be obtained as

G
(
X,Y ;X′,Y ′;s

)
=U(X,Y ;X′,Y ′)−2

∫∞
0

coshk
(
h′ −Y ′)coshk(h′ −Y )
D(k)

(
s2+λµ2)

λµ2

ksinhkh′
cosk

(
X−X′)dk,

(3.4)

where

U
(
X,Y ;X′,Y ′

)= ln
R
R′
−2λ

∫∞
0

[
coshk

(
h′ −Y ′)coshk(h′ −Y )

D(k)

+ exp
(−kh′)sinhkY ′ sinhkY

k

]
cosk

(
X−X′)

coshkh′
dk

(3.5)

with

R′ =
[(
X−X′)2+(Y +Y ′)2]1/2, (3.6)

D(k)= coshkh′ +εkλsinhkh′, µ2 = gksinhkh′

D(k)
. (3.7)

Thus we find

P̄
(
X′,Y ′

)= gρ0(0)s
π
(
g+εs2)λ

∫∞
−∞
G
(
X,0;X′,Y ′;s

)
η0(X)dX. (3.8)

Using (2.4) and reverting to the original variables we find that

p̄(x,y)≡ P̄
(
x,
y
λ

)

=−gρ0(0)s
Π

∫∞
0

coshk
(
h′ −y/λ)

D(k)
(
s2+λµ2)

∫∞
−∞
η0
(
X′
)
cosk

(
x−X′)dX′dk. (3.9)

3.2. Method based on Fourier transform technique. Employing Fourier transform
in x, the boundary value problem described by (2.4) and (2.6) reduces to

¯̄p′′(y)− ξ
2

λ2
¯̄p = 0, 0≤y ≤ h, (3.10)

s2

λ2
¯̄p−(g+εs2) ¯̄p′(y)=−sgρ0(0)η̄0(ξ)

λ2
on y = 0, (3.11)

¯̄p′(y)= 0 on y = h, (3.12)

where ¯̄p ≡ ¯̄p(ξ,y ;s) and η̄0(ξ) are the Fourier transform of p(x,y ;s) and η0(x),
respectively. Equation (3.10) is an ordinary differential equation and its solution sat-
isfying (3.11) and (3.12) is given by

¯̄p =−sgρ0(0)f (ξ;y)η̄0(ξ), (3.13)
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where

f(ξ;y)= cosh(ξ/λ)(h−y)
D(ξ)

(
s2+λµ2(ξ)) , (3.14)

so that f(ξ;y) is an even function of ξ. Using Fourier inversion, we find p̄(x,y), which
is the same as given by (3.9).
Now η̄(x;s) can be expressed in terms of p̄(x,y ;s) given by

η̄(x;s)= 1
gρ0

[
ελ2

∂p̄
∂y

(x,0;s)− p̄(x,0;s)
]

(3.15)

so that, after using (3.9), we find

η̄(x;s)= 1
π

∫∞
0

s
s2+λµ2

∫∞
−∞
η0
(
X′
)
cosk

(
x−X′)dX′dk. (3.16)

By Laplace inversion, equation (3.16) will produce η(x,t) in principle.
Now let us choose the initial displacement of the inertial surface to be concentrated

at the origin, then η0(X′) is taken as l2δ(x), where l is a typical length, then

η̄(x;s)= l2

π

∫∞
0

s
s2+λµ2 coskxdk (3.17)

which, when written fully, is equivalent to

η̄(x;s)= l2

π

∫∞
0

s
(
1+N2/s2

)1/2+εks tanh[kh(1+N2/s2
)1/2]

s2
(
1+N2/s2

)1/2+(εks2+gk)tanh[kh(1+N2/s2
)1/2] coskxdk.

(3.18)

For the purpose of Laplace inversion, we note that s = ±iN are not branch points.
This can be ascertained by noting that an even function of (1+N2/s2)1/2 results
after expanding the hyperbolic functions. Thus the only contribution to the Laplace
inversion integral comes from the zeros of the denominator in the complex s-plane.
The denominator has no real zero, and the only zeros are purely imaginary given by

s =±iw(k), (3.19)

where w(k) >N and

w2(k)= 2gktanhkh+N2(1−2kh/sinh2kh)
2(1+εktanhkh) +O(N4). (3.20)

Thus,

η(x,t)= 2l2

π

∫∞
0

F(k)
G(k)

cosw(k)t coskxdk, (3.21)

where

F(k)= (w2−N2)+εkw(w2−N2)1/2 tanh
[
kh
(
w2−N2

)1/2
w

]
,

G(k)= (2w2−N2)+2εkw(w2−N2)1/2 tanh
[
kh
(
w2−N2

)1/2
w

]

+
(
εk− gk

w2

)
N2khsech2

[
kh
(
w2−N2

)1/2
w

]
.

(3.22)
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Thus the depression of the inertial surface is obtained in terms of an infinite integral.
We note that in the absence of stratification,N = 0, and for deep water (3.21) produces

η(x,t)= l2

π

∫ π
0
cos

[
gk

1+εk
]1/2

t coskxdk, (3.23)

which coincides with the result obtained by Mandal [5] earlier except for the scaling
factor l2.
In (3.21) we use the non-dimensional substitutions x̃ = x/l, t̃ = (g/l)1/2t, to obtain

the non-dimensional form of the inertial surface depression as

η̃
(
x̃, t̃

)≈ η(x,t)
l

= 2l
π

∫∞
0

F(k)
G(k)

cos

[
w(k)

(
l
g

)1/2
t̃
]
cos

(
lkx̃

)
dk. (3.24)

In the next section, asymptotic form of η̃(x̃, t̃) will be obtained for large x̃ and large
t̃ such that x̃/t̃ remains finite.

4. Asymptotic expansion. To obtain the asymptotic form of η̃(x̃, t̃), we use the
method of stationary phase. Now (3.24) can be written in the equivalent form

η̃
(
x̃, t̃

)= l
2π

∫∞
0

F(k)
G(k)


exp

[
it̃
(
w(k)

(
l
g

)1/2
+ klx̃

t̃

)]

+exp
[
−it̃

(
w(k)

(
l
g

)1/2
+ klx̃

t̃

)]

+exp
[
it̃
(
w(k)

(
l
g

)1/2
− klx̃

t̃

)]

+exp
[
−it̃

(
w(k)

(
l
g

)1/2
− klx̃

t̃

)]
dk.

(4.1)

Let

φ(k)=φ(k; x̃, t̃)=w(k)( l
g

)1/2
− klx̃

t̃
. (4.2)

The first two integrals in (4.1) have no stationary point in the range of integration
so that they do not contribute. The third and fourth integrals have stationary points
given by

φ′(k)= 0. (4.3)

Now

φ′(0)= l



(h

l

)1/2(
1+ N

2h
3g

)1/2− x̃
t̃


≡ l

(
M− x̃

t̃

)
, (4.4)

where

M =

(h

l

)1/2(
1+ N

2h
3g

)1/2, φ′(∞)=− x̃
t̃
. (4.5)
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Also we have verified that φ′′(k) < 0 for 0 < k < ∞ so that φ′(k) is monotone
decreasing for 0 < k < ∞. Now for x̃/t̃ > M , both φ′(0) and φ′(∞) are negative.
Hence there is no zero of φ′(k) for 0 < k <∞ so that there is no stationary point in
this case. However, for x̃/t̃ < M , φ′(0) is positive while φ′(∞) is negative and since
φ′(k) is a monotone decreasing function for k > 0, φ′(k) has a unique zero in (0,∞)
so that there exists only one stationary point at k = k0, say. Finally when x̃/t̃ = M ,
φ′(0) = 0 so that there is a stationary point at k = 0. But as φ′′(0) = ∞, it gives a
smaller contribution than the x̃/t̃ <M case, so that its contribution can be neglected.
Now applying the method of stationary phase to the third and fourth integrals and
combining we find

η̃(x̃, t̃)≈ l
π

[
2πl3/2g1/2

t̃
∣∣φ′′(k0)∣∣

]1/2
F
(
k0
)

G
(
k0
) cos(t̃φ(k0)− π4

)
. (4.6)

We may note that in (4.6), k0 is a function of x̃ and t̃, and can be evaluated numerically
for given x̃ and t̃ for which x̃/t̃ <M from the transcendental equation

φ′
(
k0; x̃, t̃

)= 0 (4.7)

and thus η̃(x̃, t̃) can be obtained numerically. In Figures 5.1 and 5.2, η̃(x̃, t̃) is depicted
graphically against x̃ (for fixed t̃) and t̃ (for fixed x̃), respectively, for various values
of other parameters. We note that for a homogeneous fluid of infinite depth, equation
(4.6) reduces to the classical result

η̃(x̃, t̃)≈ 1
x̃π1/2

(
t̃2

4x̃

)1/2
cos

(
t̃2

4x̃
− π
4

)
. (4.8)

When the disturbance is in the form of an impulsive pressure I(x) per unit area
applied to the inertial surface, then the condition (2.6) is to be replaced by

s2

λ
p̄(x,0;s)−(g+εs2)p̄y = s2

λ
I(x) on y = 0 (4.9)

so that in this case, following the same procedure, we obtain instead of (3.9),

p̄(x,y)= s2

π

∫∞
0

coshk(h′ −y/λ)
D(k)

(
s2+λµ2)

∫∞
−∞
I
(
x′
)
cosk

(
x−x′)dx′dk. (4.10)

Thus instead of (3.16), we obtain

η̄(x,s)=− 1
πgρ0(0)

∫∞
0

s2

s2+λµ2
∫∞
−∞
I
(
x′
)
cosk

(
x−x′)dx′dk. (4.11)

If we assume the impulse to be concentrated at the origin, then

I
(
x′
)=Aδ(x′), (4.12)
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where, A is the total impulse per unit length so that

η̄(x,s)=− A
πgρ(0)

∫∞
0

s2

s2+λµ2 coskxdk. (4.13)

Laplace inversion gives

η(x,t)= 2A
πgρ(0)

∫∞
0

w(k)F(k)
G(k)

sin[w(k)t]coskxdk. (4.14)

We again use a similar non-dimensional substitution in (4.14). We get the non-
dimensional form of the inertial surface depression as

η̄
(
x̃, t̃

)= 2A
πgρ0(0)l

∫∞
0

w(k)F(k)
G(k)

sin

[
w(k)

(
l
g

)1/2
t̃
]
cos

(
lkx̃

)
dk. (4.15)

By the use of stationary phase, the asymptotic form of η̃(x̃, t̃) is given by

η̃
(
x̃, t̃

)≈ A
πgρ0(0)l

[
2πg1/2

l1/2t̃
∣∣φ′′(k0)∣∣

]1/2
w
(
k0
)
F
(
k0
)

G
(
k0
) sin

[
t̃φ
(
k0
)− π

4

]
. (4.16)

We note that for a homogeneous fluid of infinite depth, (4.15) reduces to the classical
result

η̃
(
x̃, t̃

)≈ A
4(πg)1/2ρ0(0)l5/2

t̃2

x̃5/2 sin

(
t̃2

4x̃
− π
4

)
, (4.17)

ρ0(0) being the density of the homogeneous fluid.

5. Discussion. To display the effect of stratification and the inertial surface on the
wave motion generated by the initial disturbances, the non-dimensional asymptotic
forms of η̃(x̃, t̃) are depicted graphically against x̃ for fixed t̃ and against t̃ for fixed
x̃ such that x̃/t̃ <M . We need to compute k0h, where k0 is the unique positive root of
the transcendental equation φ′(k) = 0. This root is obviously a function of x̃, t̃, and
other parameters. A representative set of values of k0h for different values of x̃ and
N2h/g choosing t̃ = 8, ε/h= 0.001, l/h= 1 is given in Table 5.1 while in Table 5.2 for
various values of t̃ and ε/h, choosing x̃ = 1, N2h/g = 0.01, l/h= 1.

Table 5.1. t̃ = 8, ε/h= 0.001.

N2h/g 0 0.01 0.1 0.5 1 2 3

x̃ k0h k0h k0h k0h k0h k0h k0h

1.5 6.964902 6.959943 6.915305 6.717025 6.469552 5.977292 5.493912

2.5 2.750016 2.747885 2.729317 2.658495 2.592053 2.508299 2.462785

3.5 1.777404 1.777614 1.779624 1.789625 1.803501 1.832352 1.860293

4.5 1.305230 1.306351 1.316251 1.356073 1.398425 1.466803 1.521161

5.5 0.972679 0.974439 0.989769 1.049653 1.110611 1.204210 1.275214
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Table 5.2. x̃ = 1, N2h/g = 0.01.

ε/h 0 0.001 0.01

t̃ k0h k0h k0h

2.0 1.518101 1.514281 1.481504

4.0 4.033437 3.988572 3.653465

6.0 8.995004 8.762423 7.283130

7.0 12.244996 11.820537 9.360162

8.0 15.994992 15.283113 11.527638

From these tables it is observed that the variation of k0h with N2h/g is to some ex-
tent insignificant compared to the variation with ε/h for fixed values of other param-
eters. Thus it appears that an exponentially stratified liquid with small Burnt-Vaisala
parameter bounded by an inertial surface does not affect the wave motion set up by
initial disturbances at the inertial surface significantly.
To visualize the nature of the wave motion set up, the form of η̃(x̃, t̃), obtained from

(4.6) (due to an initial depression concentrated at the origin) is plotted in Figure 5.1
against x̃ between 1 and 6 with fixed t̃ = 8 and in Figure 5.2 against t̃ between 2 and
8 with fixed x̃ = 1 for the following four cases:

(i) ε/h= 0.01, N2h/g = 0.1
(ii) ε/h= 0.01, N2h/g = 0
(iii) ε/h= 0, N2h/g = 0.1
(iv) ε/h= 0, N2h/g = 0.

Similarly, (ρ0g1/2l5/2/A)η̃(x̃, t̃)(= η̃∗, say) obtained from (4.16) (due to initial distur-
bance in the form of an impulse concentrated at the origin) is plotted against x̃ for
fixed t̃ in Figure 5.3 and against t̃ for fixed x̃ in Figure 5.4. Figures 5.1 and 5.3 depict
the wave profile at a particular instant. As the distance increases, the amplitude of
the wave profiles asymptotically becomes zero, which is plausible since the initial dis-
turbance is concentrated at the origin, and they die out at large distances. Figures 5.2
and 5.4 show the variation of η̃ at a particular place with time. As t̃ increases, the am-
plitudes are seen to be increasing which is rather unrealistic and arises due to strong
singularity at the origin. Thus the qualitative feature of the wave motion at the inertial
surface of stratified fluid are almost similar to those of the wave motion at the free
surface of a homogeneous fluid.
Now in the figures, I and III correspond to a weakly stratified fluid with an inertial

surface or a free surface while II and IV correspond to a homogeneous fluid with an
inertial surface or a free surface. It is observed that in all the figures, the curves I and II
are almost similar and similarly for III and IV. Thus weak stratification does not affect
the wave motion significantly. However, the figures demonstrate that the presence of
floating materials on the surface affects the wave motion significantly.
Wemay note that we have confined our study only on surface waves. So weak stratifi-

cation does not affect the wave motion much. However, this affects the internal waves,
which however, has not been studied here.
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I & II

III & IV

0 1 2 3 4 5 6

−2

−1

0

1

2

η̃

x̃

Figure 5.1. Wave profiles due to an initial disturbance in the form of an
initial depression (t̃ = 8.0), ε/h= 0.01, N2h/g = 0.1 I; ε/h= 0.01, N2h/g =
0.0 II; ε/h= 0.0, N2h/g = 0.1 III; ε/h= 0.0, N2h/g = 0.0 IV.

III & IV

I & II

2 3 4 5 6 7 8

−2

−1

0

1

2

η̃

t̃

Figure 5.2. Wave profiles due to an initial disturbance in the form of an
initial depression (x̃ = 1.0), ε/h= 0.01, N2h/g = 0.1 I; ε/h= 0.01, N2h/g =
0.0 II; ε/h= 0.0, N2h/g = 0.1 III; ε/h= 0.0, N2h/g = 0.0 IV.
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Figure 5.3. Wave profiles due to an initial disturbance in the form of an
impulse (t̃ = 8.0), ε/h = 0.01, N2h/g = 0.1 I; ε/h = 0.01, N2h/g = 0.0 II;
ε/h= 0.0, N2h/g = 0.1 III; ε/h= 0.0, N2h/g = 0.0 IV.
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Figure 5.4. Wave profiles due to an initial disturbance in the form of an
impulse (x̃ = 1.0), ε/h = 0.01, N2h/g = 0.1 I; ε/h = 0.01, N2h/g = 0.0 II;
ε/h= 0.0, N2h/g = 0.1 III; ε/h= 0.0, N2h/g = 0.0 IV.
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