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1. Introduction. In [8] Tanno proved that a locally symmetric K-contact Riemann-
ian manifold is of constant curvature 1, which generalizes the corresponding result for
a Sasakian manifold due to Okumura [6]. For dimensions greater than or equal to 5 it
was proved by Olszak [7] that there are no contact Riemannian structures of constant
curvature unless the constant is 1 and in which case the structure is Sasakian. Further,
Blair and Sharma [4] proved that a 3-dimensional locally symmetric contact Riemann-
ian manifold is either flat or is Sasakian and of constant curvature 1. By the recent
result [5] and private communication with Blair we know that the simply connected
covering space of a complete 5-dimensional locally symmetric contact Riemannian
manifold is either S°(1) or E3 x $2(4). The question of the classification of locally
symmetric contact Riemannian manifolds in higher dimensions is still open.

On the other hand, recently, Blair, Koufogiorgos and Papantoniou [3] introduced a
class of contact Riemannian manifolds which is characterized by the equation

R(X,Y)E=k(n(Y)X-n(X)Y) +u(n(Y)hX —n(X)hY), (1.1)

where k,u are constant and 2h is the Lie derivative of ¢ in the direction &. It is
remarkable that this class of spaces is invariant under D-homothetic deformations
(see [3]). It was also proved in [3] that a Sasakian manifold, in particular, is determined
by k = 1 and further that this class contains the tangent sphere bundle of Riemannian
manifolds of constant curvature. In this paper, we determine a locally symmetric or
a Ricci-parallel contact Riemannian manifold which satisfies (1.1). More precisely, we
prove the following two Theorems 1.1 and 1.2 in Sections 3 and 4.

THEOREM 1.1. Let M be a contact Riemannian manifold satisfying (1.1). Suppose
that M is locally symmetric. Then M is the product of flat (n + 1) -dimensional manifold
and an n-dimensional manifold of positive constant curvature equal to 4, or a space of
constant curvature 1 and in which case the structure is Sasakian.

THEOREM 1.2. Let M be a contact Riemannian manifold satisfying (1.1). Suppose
that M is Ricci-parallel. Then M is the product of flat (n + 1)-dimensional manifold and
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an n-dimensional manifold of positive constant curvature equal to 4 or an Einstein-
Sasakian manifold.

2. Preliminaries. All manifolds in the present paper are assumed to be connected
and of class C®. A (2n + 1)-dimensional manifold M?"*! is said to be a contact mani-
fold if it admits a global 1-form n such that n A (dn)™ # 0 everywhere. Given a contact
form n, we have a unique vector field &, which is called the characteristic vector field,
satisfying n(&) = 1 and dn(&,X) = 0 for any vector field X. It is well known that there
exists an associated Riemannian metric g and a (1,1)-type tensor field ¢ such that

n(X)=g(X,8), dn(X,Y)=gX,pY), ¢*X=-X+n(X)§, (2.1)
where X and Y are vector fields on M. From (2.1) it follows that
$E =0, nog =0, 9(PX,pY) =g(X,Y)—n(X)n(Y). (2.2)

A Riemannian manifold M equipped with structure tensors (n,g) satisfying (2.1) is
said to be a contact Riemannian manifold and is denoted by M = (M;n,g). Given a
contact Riemannian manifold M, we define a (1,1)-type tensor field h by h = Lg¢p /2,
where L denotes Lie differentiation. Then we may observe that h is symmetric and
satisfies

h& =0, he = —h, (2.3)

Vx&=—-¢pX—-phX, (2.4)

where V is Levi-Civita connection. From (2.3) and (2.4), we see that each trajectory of
¢ is a geodesic.

A contact Riemannian manifold for which € is Killing is called a K-contact Riemann-
ian manifold. It is easy to see that a contact Riemannian manifold is K-contact if and
only if h = 0. For a contact Riemannian manifold M one may define naturally an almost
complex structure J on M X R;

J(xr2) = (ex-rEn05), 2.5)

where X is a vector field tangent to M, t the coordinate of R, and f a function on M x R.
If the almost complex structure J is integrable, M is said to be normal or Sasakian. It
is known that M is normal if and only if M satisfies

[b,pl+2dne& =0, (2.6)

where [, ¢] is the Nijenhuis torsion of ¢. A Sasakian manifold is characterized by a
condition

(Vxp)Y =g(X,Y)E-n(Y)X (2.7)

for all vector fields X and Y on the manifold. We denote by R the Riemannian curvature
tensor of M defined by

R(X,Y)Z =Vx(VyZ) - Vy(VxZ) - Vixy1Z (2.8)
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for all vector fields X,Y,Z on M. It is well known that M is Sasakian if and only if
R(X,Y)E=n(Y)X-n(X)Y (2.9)

for all vector fields X and Y. For a contact Riemannian manifold M, the tangent space
T,M of M at each point p € M is decomposed as T,M = D, & {&}, (direct sum),
where we denote D, = {v € T,M | n(v) = 0}. Then D : p — D, defines a distribution
orthogonal to €. The 2n-dimensional distribution D is called the contact distribution.
A contact Riemannian manifold is said to be n-Einstein if

Q=al+bneg, (2.10)

where Q is the Ricci operator and a, b are smooth functions on M.
For more details about the fundamental properties on contact Riemannian mani-
folds we refer to [1, 2]. Blair [2] proved the following theorem.

THEOREM 2.1. Let M = (M;n,g) be a contact Riemannian manifold and suppose
that R(X,Y)&E = 0 for all vector fields X,Y on M. Then M is locally the product of
(n + 1)-dimensional flat manifold and an n-dimensional manifold of positive constant
curvature 4.

Recently, Blair, Koufogiorgos, and Papantoniou [3] introduced a class of contact
Riemannian manifolds which are characterized by equation (1.1). A D-homothetic de-
formation (cf. [9]) is defined by a change of structure tensors of the form

n=an, Eziﬁ, p=¢, g=ag+ala-1)nen, (2.11)

where a is a positive constant. It was shown that [3] a contact Riemannian manifold
M satisfying (1.1) is obtained by applying a D-homothetic deformation on a contact
Riemannian manifold with R(X,Y)E = 0 and that the property (1.1) is invariant
under the D-homothetic deformation. It is well known that the tangent sphere bun-
dle of a flat Riemannian manifold admits a contact Riemannian structure satisfying
R(X,Y)E = 0 [1, page 137]. In [3] the authors classified the 3-dimensional case and
showed that this class contains the tangent sphere bundles of Riemannian manifolds
of constant sectional curvature. Furthermore in the same paper they showed that M
satisfies

(Vzh)X = (1-){(1-K)g(Z,dX) +g(Z,hpX)}E+n(X)(hd+hdph)Z —un(Z) phX
(2.12)

for any vector fields X, Z on M. Here, we state some useful results in [3] to prove our
Theorems 1.1 and 1.2.

PROPOSITION 2.2. Let M = (M;n,g) be a contact Riemannian manifold which sat-
isfies (1.1), where k < 1.
(i) If X,Y € D(A)(respectively, D(—A)), then VxY € D(A) (respectively, D(—A)).
(i) If X € D(A), Y € D(-A), then VxY(respectively, VyX) € D(—A) & D(0)
(respectively, D(A) @ D(0)).
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THEOREM 2.3. Let M = (M;n,g) be a contact Riemannian manifold which satis-
fies(1.1), thenk < 1.Ifk =1, then h = 0 and M is a Sasakian manifold. If k < 1, then M
admits three mutually orthogonal and integrable distributions D(0), D(A), and D(—A),
defined by the eigenspaces of h, where A = \/1 — k. Moreover

R(Xa\,Ya)Zoa = (k=) {g(PpYa, Z-2) pXa—g(PpXa, Z-2) PpYa},
XA, YA)Za = (k= {g(PpY-a,Za) pX-a—g(PX_a,Za) PY-a},
X\, YA)Za=kg(pXa, Z_2)PY A+ ug(dXa, Y_a)PZ 4,

R(
R(
(2.13)
R(Xa,Y_A)Zr = —kg(PpY_r, Z2) pXa —ug(pY_r, Xa) P Za,
R(
R(

X0, Ya)Za = {2(1+2) —put{g (Ya, Zx) Xa — g (Xx, Za) Ya},
XA, Ya)Zoa={20-2) —pHg(Y-a, Z-2) XA —g(Xa, Z-a) Ya
where Xy, Ya, Zx € D(A) and X_), Y_x, Z_y € D(-A).

THEOREM 2.4. For a contact Riemannian manifold satisfying (1.1) with k < 1, the
Ricci operator Q is given by

Q=2n-1)-nuH+{2(n-1)+uth+{2(1-n)+nRxk+u)Ine&. (2.14)

For more results about a contact Riemannian manifold satisfying (1.1), we refer to [3].

3. Proof of Theorem 1.1. Let M2"*1 be a (21 + 1)-dimensional contact Riemannian
manifold which satisfies (1.1). Suppose that M is locally symmetric, thatis, VR = 0. In
view of the results of the Sasakian case [6] and the 3-dimensional contact Riemannian

case [4], we now assume that n > 1 and M is non-Sasakian (k = 1). From h& = 0,
with (2.4) we have

(Vzh)E = Vz(hE) —hVzE = (hp+hdh)Z. 3.1)

If we differentiate (1.1) covariantly, then using (2.4) we get

RIX,Y)(~pZ—phZ) =k{g(—pZ—PphZ,Y)X - g(-pZ —phZ,X)Y}
+ulg(—pZ—-phZ,Y)hX+n(Y)(Vzh)X (3.2)
—g(—pZ—PphZ,X)hY -n(X)(Vzh)Y}

for any vector fields X,Y on M. Putting Y = &, then with (2.2), (2.3), and (3.1) we have
R(X, &) (—pZ-phZ) = kg(PZ+dhZ, X)E+p{(Vzh)X —n(X)(hdp+hdph)Z}. (3.3)
Together with (1.1) we have
u(Vzh) X = u{in(X)(hp+hdph)Z+g((he + hdph)Z,X)E}. (3.4)
From (2.12) and (3.4) we have

p{n(X)(h¢ +hph)Z +g((h+hdh)Z,X)E}

=p{1-x){(1-K)g(Z,$X)+9(Z,hpX)}E+n(X)(hp+hph)Z —un(Z)phX}
(3.5)
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for any vector fields X, Z in M. If we put Z = &, then we have
u2phXx =0. (3.6)

Since M is not Sasakian, we have u = 0. Now, we consider the following equation
in Theorem 2.3:

R(X)\,YA)Z)\ = 2(1 +2\){g(Y;\,Z,\)X,\—g(X;\,Z,\)Y,\}, 3.7)

where X,, Y, Zx € D(A). Differentiating (3.7) covariantly with respect to V_, € D(—A),
then since M is locally symmetric we have

R(VviAX/\, Y)\)Z;\ +R(X)\, Vv7A Y,\)Z]\ +R(X/\, YA)VVJ\ZA
=21+ M) {g(Vv_Ya, Z\)Xa +g(Ya, Vv, Za) Xa + g (Y, Z2) Vv, Xa (3.8)
=9 (Vv Xa, ZA) YA = g(Xa, Vv, Za) Ya— g (Xx, Za) Vv, Ya ).

Together with Proposition 2.2 and using (3.7) again we get

I(Vv_, X2, E)R(E,YA) Za+ g (Vv YA, E)R(XA, E) Za + g (Vv_, Za, E)R (X, Ya) E

3.9
=2(1+A){g(Ya,Z\)g(Vv_, X2, E)E - g (X, Zr) g (Vv , YA, E)E}. 69

From (1.1), by using the property of the curvature tensor, we get
REX)Y =k(g(Y,X)E—n(Y)X) +u(ghY,X)E—n(Y)hX). (3.10)

By using (1.1), (2.1), and (3.10) we have

(K=2A=2){g(Yr, Z7)g(Xa, dV_r+ PhV_2)E — g(Xa, Z7) g (Ya, PV _r+ PhV_)E} =0,
(3.11)

and thus we have

(1-2)(k—=2A-2){g(Yr,Z2)g(Xr, pV-2)E—g(Xr,Z7) g (Yr,dpV_2)E} =0.  (3.12)

We may take an adapted orthonormal basis {&,e;,¢e;} such that hE = 0, he; = Aje;
and heoe; = —Aje;, i = 1,2,...,n at any point p € M. Since g(¢e;,pV_») = 0 and
g(Yr,E)g(E,pV_x) =0, from (3.12) we have

(1—A)(x—zA—2){Zg(n,ei)g(ei,¢v_n§
1

+> g(Ya, dpei)g(Ppei, V) E+g(Ya,E)g(E,dV_1)E  (3.13)
1

—Zg(ei,ei)gm,wﬂ)g} _o.

1

And hence, we obtain

(1-n)(1-A)(k=2A-2)g(Ya,pV_r)E =0. (3.14)
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If we put ¢pV_, = Y, in (3.14), then it follows that
(1-n)(1-A)(k—-2A-2) =0, (3.15)

where X,Y are vector fields on M. Since n > 1 and k = 1 — A2, we conclude that x =
u = 0, that is, M satisfies R(X,Y)& = 0 for any vector fields X,Y in M. Therefore by
the results in [4, 6] and Theorem 2.1 we have proved Theorem 1.1.

4. Proof of Theorem 1.2. Let M be a contact Riemannian manifold which satis-
fies (1.1). Suppose that M is Ricci-parallel, thatis, VQ = 0. From (1.1) and (2.3) we have

Q& =2nké€. 4.1)
From (2.4) and (4.1), we have
(VzQ)E = —2nk(p+Pph)Z+Q(d+Ph)Z. (4.2)
Since M is Ricci-parallel, we have
Q(p+Ph)Z =2nk(p+Ph)Z 4.3)

for any vector field Z on M. If we substitute Z with ¢ Z, then by using (2.1) and (4.1),
we obtain that

QU —-h)=2nk(I—-h). (4.4)

If Kk =1 (h =0), then from (4.4) we see that M is Einstein-Sasakian and the scalar
curvature T = 2n(2n+1).

Now, we assume that k # 1, that is, M is non-Sasakian. Differentiating (2.14) covari-
antly, then it follows that

(VzQ)X ={2(n-1) +pu}(VzR)X - {2(1-n) +nRk + ) }g (P + Ph) Z,X)E

-{20-n)+nk+winX)(p+Ph)Z, *2)

and thus we get

2m-1)+ul(Vzh) X ={2(1-n)+nRk+ W Hg((p+Ph) Z,X)E+n(X) (P +Pph)Z}.
(4.6)

Together with (2.12) we have

2m-D)+u(1-{(1-K)g(Z,$X)+9(Z,hdpX)}E+n(X) (hp+hdph) Z—un(Z) PphX]

={21-n)+nRrk+u)Hg((Pp+Ph)Z,X)E+n(X)(p+ph)Z}.
4.7)

If we put Z = & in (4.7), then we have

u{2(n-1)+ulph =0, (4.8)



ON A CLASS OF CONTACT RIEMANNIAN MANIFOLDS 333

and hence we see that y = 0 or 2(n—1) + u = 0. Now, we discuss our arguments
divided into two cases: (i) y =0, (ii) 2(n—1) + u = 0.
The case (i) u = 0. Then (4.7) becomes

2n-D[1-x){(1-K)g(Z,pX)+g(Z,hpX)}E+n(X)(hd +hdh)Z]
={2(1-n)+2nk}{g((¢+Ph)Z,X)E+n(X)(p+ Ph) Z}.

Putting X = &, then by using (2.2) and (2.3) we get
2(1-n)(ph+¢h?)Z ={2(1-n)+2nk}(p+ph)Z. (4.10)
We apply ¢ and use (2.2), then we have
2m—1)h*Z +2nkhZ+{2(1-n)+2nk}(Z-n(Z)€) = 0. (4.11)
Since the trace of h? = 2n(1 — k) and the trace of h = 0, we have k¥ = 0. Thus, M
satisfies R(X,Y)& = 0. By Theorem 2.1 we conclude that M is locally the product of
(n + 1)-dimensional manifold and an n-dimensional manifold of positive constant
curvature 4.
The case (ii) 2(n—1) + u = 0. Then (2.14) is reduced to
Q=2n-1)-nu}I+{2(1-n)+nRk+w)}IneE, (4.12)
that is, M is n-Einstein. From (4.7) we get
20-n) +nx+wia(-(Pp+PN)Z,X)E+n(X) (P +Ph)Z} =0 (4.13)
for any vector field X, Z on M. Putting X = & in (4.13), then we have

21-n)+nk+w}(p+Ph)Z =0. 4.14)

If2(1-n)+n(k+pu) =0, since u=2(1-n) we have

(4.15)

But we know that k < 1, and thus we see that n must be equal to 1 and hence k = y = 0.
Otherwise, 2(1 —n) + n(2k + u) = 0, then (4.14) becomes

¢+¢ph=0, (4.16)

which is impossible. Therefore, summing up all the arguments in this section we
have Theorem 1.2. O

REMARK 4.1. R3(x1!,x2,x3) or T3 (torus) with n = 1/2(cosx3dx! +sinx3dx?) and
gij = 1/46;j is an n-Einstein, non-Sasakian, contact Riemannian manifold (cf. [1]).
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