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Abstract. We determine a locally symmetric or a Ricci-parallel contact Riemannian man-
ifold which satisfies a D-homothetically invariant condition.
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1. Introduction. In [8] Tanno proved that a locally symmetric K-contact Riemann-
ianmanifold is of constant curvature 1, which generalizes the corresponding result for
a Sasakian manifold due to Okumura [6]. For dimensions greater than or equal to 5 it
was proved by Olszak [7] that there are no contact Riemannian structures of constant
curvature unless the constant is 1 and in which case the structure is Sasakian. Further,
Blair and Sharma [4] proved that a 3-dimensional locally symmetric contact Riemann-
ian manifold is either flat or is Sasakian and of constant curvature 1. By the recent
result [5] and private communication with Blair we know that the simply connected
covering space of a complete 5-dimensional locally symmetric contact Riemannian
manifold is either S5(1) or E3 × S2(4). The question of the classification of locally
symmetric contact Riemannian manifolds in higher dimensions is still open.
On the other hand, recently, Blair, Koufogiorgos and Papantoniou [3] introduced a

class of contact Riemannian manifolds which is characterized by the equation

R(X,Y)ξ = κ(η(Y)X−η(X)Y )+µ(η(Y)hX−η(X)hY ), (1.1)

where κ,µ are constant and 2h is the Lie derivative of φ in the direction ξ. It is
remarkable that this class of spaces is invariant under D-homothetic deformations
(see [3]). It was also proved in [3] that a Sasakian manifold, in particular, is determined
by κ = 1 and further that this class contains the tangent sphere bundle of Riemannian
manifolds of constant curvature. In this paper, we determine a locally symmetric or
a Ricci-parallel contact Riemannian manifold which satisfies (1.1). More precisely, we
prove the following two Theorems 1.1 and 1.2 in Sections 3 and 4.

Theorem 1.1. Let M be a contact Riemannian manifold satisfying (1.1). Suppose
thatM is locally symmetric. ThenM is the product of flat (n+1)-dimensional manifold
and an n-dimensional manifold of positive constant curvature equal to 4, or a space of
constant curvature 1 and in which case the structure is Sasakian.

Theorem 1.2. Let M be a contact Riemannian manifold satisfying (1.1). Suppose
thatM is Ricci-parallel. ThenM is the product of flat (n+1)-dimensional manifold and
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an n-dimensional manifold of positive constant curvature equal to 4 or an Einstein-
Sasakian manifold.

2. Preliminaries. All manifolds in the present paper are assumed to be connected
and of class C∞. A (2n+1)-dimensional manifold M2n+1 is said to be a contact mani-
fold if it admits a global 1-form η such that η∧(dη)n ≠ 0 everywhere. Given a contact
form η, we have a unique vector field ξ, which is called the characteristic vector field,
satisfying η(ξ)= 1 and dη(ξ,X)= 0 for any vector field X. It is well known that there
exists an associated Riemannian metric g and a (1,1)-type tensor field φ such that

η(X)= g(X,ξ), dη(X,Y)= g(X,φY), φ2X =−X+η(X)ξ, (2.1)

where X and Y are vector fields on M . From (2.1) it follows that

φξ = 0, η◦φ= 0, g(φX,φY)= g(X,Y)−η(X)η(Y). (2.2)

A Riemannian manifold M equipped with structure tensors (η,g) satisfying (2.1) is
said to be a contact Riemannian manifold and is denoted by M = (M ;η,g). Given a
contact Riemannian manifold M , we define a (1,1)-type tensor field h by h= Lξφ/2,
where L denotes Lie differentiation. Then we may observe that h is symmetric and
satisfies

hξ = 0, hφ=−φh, (2.3)

∇Xξ =−φX−φhX, (2.4)

where ∇ is Levi-Civita connection. From (2.3) and (2.4), we see that each trajectory of
ξ is a geodesic.
A contact Riemannian manifold for which ξ is Killing is called a K-contact Riemann-

ian manifold. It is easy to see that a contact Riemannian manifold is K-contact if and
only ifh= 0. For a contact RiemannianmanifoldM onemay define naturally an almost
complex structure J on M×R;

J
(
X,f

d
dt

)
=
(
φX−fξ,η(X) d

dt

)
, (2.5)

whereX is a vector field tangent toM , t the coordinate ofR, and f a function onM×R.
If the almost complex structure J is integrable, M is said to be normal or Sasakian. It
is known that M is normal if and only if M satisfies

[φ,φ]+2dη⊗ξ = 0, (2.6)

where [φ,φ] is the Nijenhuis torsion of φ. A Sasakian manifold is characterized by a
condition

(∇Xφ
)
Y = g(X,Y)ξ−η(Y)X (2.7)

for all vector fieldsX and Y on themanifold. We denote byR the Riemannian curvature
tensor of M defined by

R(X,Y)Z =∇X
(∇YZ

)−∇Y
(∇XZ

)−∇[X,Y]Z (2.8)
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for all vector fields X,Y ,Z on M . It is well known that M is Sasakian if and only if

R(X,Y)ξ = η(Y)X−η(X)Y (2.9)

for all vector fields X and Y . For a contact Riemannian manifoldM , the tangent space
TpM of M at each point p ∈ M is decomposed as TpM = Dp ⊕ {ξ}p (direct sum),
where we denote Dp = {v ∈ TpM | η(v) = 0}. Then D : p →Dp defines a distribution
orthogonal to ξ. The 2n-dimensional distribution D is called the contact distribution.
A contact Riemannian manifold is said to be η-Einstein if

Q= aI+bη⊗ξ, (2.10)

where Q is the Ricci operator and a,b are smooth functions on M .
For more details about the fundamental properties on contact Riemannian mani-

folds we refer to [1, 2]. Blair [2] proved the following theorem.

Theorem 2.1. Let M = (M ;η,g) be a contact Riemannian manifold and suppose
that R(X,Y)ξ = 0 for all vector fields X,Y on M . Then M is locally the product of
(n+1)-dimensional flat manifold and an n-dimensional manifold of positive constant
curvature 4.

Recently, Blair, Koufogiorgos, and Papantoniou [3] introduced a class of contact
Riemannian manifolds which are characterized by equation (1.1). A D-homothetic de-
formation (cf. [9]) is defined by a change of structure tensors of the form

η̄= aη, ξ̄ = 1
a
ξ, φ̄=φ, ḡ = ag+a(a−1)η⊗η, (2.11)

where a is a positive constant. It was shown that [3] a contact Riemannian manifold
M satisfying (1.1) is obtained by applying a D-homothetic deformation on a contact
Riemannian manifold with R(X,Y)ξ = 0 and that the property (1.1) is invariant
under the D-homothetic deformation. It is well known that the tangent sphere bun-
dle of a flat Riemannian manifold admits a contact Riemannian structure satisfying
R(X,Y)ξ = 0 [1, page 137]. In [3] the authors classified the 3-dimensional case and
showed that this class contains the tangent sphere bundles of Riemannian manifolds
of constant sectional curvature. Furthermore in the same paper they showed that M
satisfies

(∇Zh
)
X = (1−κ){(1−κ)g(Z,φX)+g(Z,hφX)}ξ+η(X)(hφ+hφh)Z−µη(Z)φhX

(2.12)

for any vector fields X,Z on M . Here, we state some useful results in [3] to prove our
Theorems 1.1 and 1.2.

Proposition 2.2. Let M = (M ;η,g) be a contact Riemannian manifold which sat-
isfies (1.1), where κ < 1.
(i) If X,Y ∈D(λ)(respectively, D(−λ)), then ∇XY ∈D(λ)(respectively, D(−λ)).
(ii) If X ∈ D(λ), Y ∈ D(−λ), then ∇XY(respectively, ∇YX) ∈ D(−λ) ⊕ D(0)

(respectively, D(λ)⊕D(0)).
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Theorem 2.3. Let M = (M ;η,g) be a contact Riemannian manifold which satis-
fies (1.1), then κ ≤ 1. If κ = 1, then h= 0 andM is a Sasakian manifold. If k < 1, thenM
admits three mutually orthogonal and integrable distributionsD(0),D(λ), andD(−λ),
defined by the eigenspaces of h, where λ=√1−κ. Moreover

R
(
Xλ,Yλ

)
Z−λ = (κ−µ)

{
g
(
φYλ,Z−λ

)
φXλ−g

(
φXλ,Z−λ

)
φYλ

}
,

R
(
X−λ,Y−λ

)
Zλ = (κ−µ)

{
g
(
φY−λ,Zλ

)
φX−λ−g

(
φX−λ,Zλ

)
φY−λ

}
,

R
(
Xλ,Y−λ

)
Z−λ = κg

(
φXλ,Z−λ

)
φY−λ+µg

(
φXλ,Y−λ

)
φZ−λ,

R
(
Xλ,Y−λ

)
Zλ =−κg

(
φY−λ,Zλ

)
φXλ−µg

(
φY−λ,Xλ

)
φZλ,

R
(
Xλ,Yλ

)
Zλ =

{
2(1+λ)−µ}{g(Yλ,Zλ)Xλ−g(Xλ,Zλ)Yλ},

R
(
X−λ,Y−λ

)
Z−λ =

{
2(1−λ)−µ}{g(Y−λ,Z−λ)X−λ−g(X−λ,Z−λ)Y−λ},

(2.13)

where Xλ, Yλ, Zλ ∈D(λ) and X−λ, Y−λ, Z−λ ∈D(−λ).
Theorem 2.4. For a contact Riemannian manifold satisfying (1.1) with κ < 1, the

Ricci operator Q is given by

Q= {2(n−1)−nµ}I+{2(n−1)+µ}h+{2(1−n)+n(2κ+µ)}η⊗ξ. (2.14)

For more results about a contact Riemannian manifold satisfying (1.1), we refer to [3].

3. Proof of Theorem 1.1. LetM2n+1 be a (2n+1)-dimensional contact Riemannian
manifold which satisfies (1.1). Suppose thatM is locally symmetric, that is,∇R = 0. In
view of the results of the Sasakian case [6] and the 3-dimensional contact Riemannian
case [4], we now assume that n > 1 and M is non-Sasakian (κ ≠ 1). From hξ = 0,
with (2.4) we have

(∇Zh
)
ξ =∇Z(hξ)−h∇Zξ = (hφ+hφh)Z. (3.1)

If we differentiate (1.1) covariantly, then using (2.4) we get

R(X,Y)(−φZ−φhZ)= κ{g(−φZ−φhZ,Y)X−g(−φZ−φhZ,X)Y}
+µ{g(−φZ−φhZ,Y)hX+η(Y)(∇Zh

)
X

−g(−φZ−φhZ,X)hY −η(X)(∇Zh
)
Y
} (3.2)

for any vector fields X,Y on M . Putting Y = ξ, then with (2.2), (2.3), and (3.1) we have

R(X,ξ)(−φZ−φhZ)= κg(φZ+φhZ,X)ξ+µ{(∇Zh
)
X−η(X)(hφ+hφh)Z}. (3.3)

Together with (1.1) we have

µ
(∇Zh

)
X = µ{η(X)(hφ+hφh)Z+g((hφ+hφh)Z,X)ξ}. (3.4)

From (2.12) and (3.4) we have

µ
{
η(X)(hφ+hφh)Z+g((hφ+hφh)Z,X)ξ}
= µ{(1−κ){(1−κ)g(Z,φX)+g(Z,hφX)}ξ+η(X)(hφ+hφh)Z−µη(Z)φhX}

(3.5)
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for any vector fields X,Z in M . If we put Z = ξ, then we have

µ2φhX = 0. (3.6)

Since M is not Sasakian, we have µ = 0. Now, we consider the following equation
in Theorem 2.3:

R
(
Xλ,Yλ

)
Zλ = 2(1+λ)

{
g
(
Yλ,Zλ

)
Xλ−g

(
Xλ,Zλ

)
Yλ
}
, (3.7)

where Xλ,Yλ,Zλ ∈D(λ). Differentiating (3.7) covariantly with respect to V−λ ∈D(−λ),
then since M is locally symmetric we have

R
(∇V−λXλ,Yλ

)
Zλ+R

(
Xλ,∇V−λYλ

)
Zλ+R

(
Xλ,Yλ

)∇V−λZλ

= 2(1+λ){g(∇V−λYλ,Zλ
)
Xλ+g

(
Yλ,∇V−λZλ

)
Xλ+g

(
Yλ,Zλ

)∇V−λXλ

−g(∇V−λXλ,Zλ
)
Yλ−g

(
Xλ,∇V−λZλ

)
Yλ−g

(
Xλ,Zλ

)∇V−λYλ
}
.

(3.8)

Together with Proposition 2.2 and using (3.7) again we get

g
(∇V−λXλ,ξ

)
R
(
ξ,Yλ

)
Zλ+g

(∇V−λYλ,ξ
)
R
(
Xλ,ξ

)
Zλ+g

(∇V−λZλ,ξ
)
R
(
Xλ,Yλ

)
ξ

= 2(1+λ){g(Yλ,Zλ)g(∇V−λXλ,ξ
)
ξ−g(Xλ,Zλ)g(∇V−λYλ,ξ

)
ξ
}
.
(3.9)

From (1.1), by using the property of the curvature tensor, we get

R(ξ,X)Y = κ(g(Y ,X)ξ−η(Y)X)+µ(g(hY ,X)ξ−η(Y)hX). (3.10)

By using (1.1), (2.1), and (3.10) we have

(κ−2λ−2){g(Yλ,Zλ)g(Xλ,φV−λ+φhV−λ)ξ−g(Xλ,Zλ)g(Yλ,φV−λ+φhV−λ)ξ}= 0,
(3.11)

and thus we have

(1−λ)(κ−2λ−2){g(Yλ,Zλ)g(Xλ,φV−λ)ξ−g(Xλ,Zλ)g(Yλ,φV−λ)ξ}= 0. (3.12)

We may take an adapted orthonormal basis {ξ,ei,φei} such that hξ = 0, hei = λiei
and hφei = −λiφei, i = 1,2, . . . ,n at any point p ∈ M . Since g(φei,φV−λ) = 0 and
g(Yλ,ξ)g(ξ,φV−λ)= 0, from (3.12) we have

(1−λ)(κ−2λ−2)
{ n∑
1

g
(
Yλ,ei

)
g
(
ei,φV−λ

)
ξ

+
n∑
1

g
(
Yλ,φei

)
g
(
φei,φV−λ

)
ξ+g(Yλ,ξ)g(ξ,φV−λ)ξ

−
n∑
1

g
(
ei,ei

)
g
(
Yλ,φV−λ

)
ξ
}
= 0.

(3.13)

And hence, we obtain

(1−n)(1−λ)(κ−2λ−2)g(Yλ,φV−λ)ξ = 0. (3.14)
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If we put φV−λ = Yλ in (3.14), then it follows that

(1−n)(1−λ)(κ−2λ−2)= 0, (3.15)

where X,Y are vector fields on M . Since n > 1 and κ = 1−λ2, we conclude that κ =
µ = 0, that is, M satisfies R(X,Y)ξ = 0 for any vector fields X,Y in M . Therefore by
the results in [4, 6] and Theorem 2.1 we have proved Theorem 1.1.

4. Proof of Theorem 1.2. Let M be a contact Riemannian manifold which satis-
fies (1.1). Suppose thatM is Ricci-parallel, that is,∇Q= 0. From (1.1) and (2.3) we have

Qξ = 2nκξ. (4.1)

From (2.4) and (4.1), we have

(∇ZQ
)
ξ =−2nκ(φ+φh)Z+Q(φ+φh)Z. (4.2)

Since M is Ricci-parallel, we have

Q(φ+φh)Z = 2nκ(φ+φh)Z (4.3)

for any vector field Z on M . If we substitute Z with φZ , then by using (2.1) and (4.1),
we obtain that

Q(I−h)= 2nκ(I−h). (4.4)

If κ = 1 (h ≡ 0), then from (4.4) we see that M is Einstein-Sasakian and the scalar
curvature τ = 2n(2n+1).
Now, we assume that κ ≠ 1, that is, M is non-Sasakian. Differentiating (2.14) covari-

antly, then it follows that

(∇ZQ
)
X ={2(n−1)+µ}(∇Zh

)
X−{2(1−n)+n(2κ+µ)}g((φ+φh)Z,X)ξ

−{2(1−n)+n(2κ+µ)}η(X)(φ+φh)Z, (4.5)

and thus we get

{
2(n−1)+µ}(∇Zh

)
X = {2(1−n)+n(2κ+µ)}{g((φ+φh)Z,X)ξ+η(X)(φ+φh)Z}.

(4.6)

Together with (2.12) we have

{
2(n−1)+µ}[(1−κ){(1−κ)g(Z,φX)+g(Z,hφX)}ξ+η(X)(hφ+hφh)Z−µη(Z)φhX]

= {2(1−n)+n(2κ+µ)}{g((φ+φh)Z,X)ξ+η(X)(φ+φh)Z}.
(4.7)

If we put Z = ξ in (4.7), then we have

µ
{
2(n−1)+µ}φh= 0, (4.8)
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and hence we see that µ = 0 or 2(n− 1)+ µ = 0. Now, we discuss our arguments
divided into two cases: (i) µ = 0, (ii) 2(n−1)+µ = 0.
The case (i) µ = 0. Then (4.7) becomes

2(n−1)[(1−κ){(1−κ)g(Z,φX)+g(Z,hφX)}ξ+η(X)(hφ+hφh)Z]

= {2(1−n)+2nκ}{g((φ+φh)Z,X)ξ+η(X)(φ+φh)Z}. (4.9)

Putting X = ξ, then by using (2.2) and (2.3) we get

2(1−n)(φh+φh2)Z = {2(1−n)+2nκ}(φ+φh)Z. (4.10)

We apply φ and use (2.2), then we have

2(n−1)h2Z+2nκhZ+{2(1−n)+2nκ}(Z−η(Z)ξ)= 0. (4.11)

Since the trace of h2 = 2n(1− κ) and the trace of h = 0, we have κ = 0. Thus, M
satisfies R(X,Y)ξ = 0. By Theorem 2.1 we conclude that M is locally the product of
(n+ 1)-dimensional manifold and an n-dimensional manifold of positive constant
curvature 4.
The case (ii) 2(n−1)+µ = 0. Then (2.14) is reduced to

Q= {2(n−1)−nµ}I+{2(1−n)+n(2κ+µ)}η⊗ξ, (4.12)

that is, M is η-Einstein. From (4.7) we get

{
2(1−n)+n(2κ+µ)}{g(−(φ+φh)Z,X)ξ+η(X)(φ+φh)Z}= 0 (4.13)

for any vector field X,Z on M . Putting X = ξ in (4.13), then we have
{
2(1−n)+n(2κ+µ)}(φ+φh)Z = 0. (4.14)

If 2(1−n)+n(2κ+µ)= 0, since µ = 2(1−n) we have

κ = n2−1
n

. (4.15)

But we know that κ < 1, and thus we see thatnmust be equal to 1 and hence κ = µ = 0.
Otherwise, 2(1−n)+n(2κ+µ)≠ 0, then (4.14) becomes

φ+φh= 0, (4.16)

which is impossible. Therefore, summing up all the arguments in this section we
have Theorem 1.2.

Remark 4.1. R3(x1,x2,x3) or T 3 (torus) with η= 1/2(cosx3dx1+sinx3dx2) and
gij = 1/4δij is an η-Einstein, non-Sasakian, contact Riemannian manifold (cf. [1]).
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