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THE PRODUCT OF r−k AND ∇δ ON Rm
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Abstract. In the theory of distributions, there is a general lack of definitions for products
and powers of distributions. In physics (Gasiorowicz (1967), page 141), one finds the need
to evaluate δ2 when calculating the transition rates of certain particle interactions and
using some products such as (1/x)·δ. In 1990, Li and Fisher introduced a “computable”
delta sequence in an m-dimensional space to obtain a noncommutative neutrix product
of r−k and �δ (� denotes the Laplacian) for any positive integer k between 1 andm−1
inclusive. Cheng and Li (1991) utilized a net δε(x) (similar to the δn(x)) and the normal-
ization procedure of µ(x)xλ+ to deduce a commutative neutrix product of r−k and δ for
any positive real number k. The object of this paper is to apply Pizetti’s formula and the
normalization procedure to derive the product of r−k and ∇δ (∇ is the gradient operator)
on Rm. The nice properties of the δ-sequence are fully shown and used in the proof of our
theorem.

Keywords and phrases. Pizetti’s formula, delta sequence, neutrix limit and distribution.

2000 Mathematics Subject Classification. Primary 46F10.

1. Introduction. Let ρ(x) be a fixed infinitely differentiable function with the fol-
lowing properties:

(i) ρ(x)≥ 0,
(ii) ρ(x)= 0 for |x| ≥ 1,
(iii) ρ(x)= ρ(−x),
(iv)

∫ 1
−1ρ(x)dx = 1.

The function δn(x) is defined by δn(x) = nρ(nx) for n = 1,2, . . . . It follows that
{δn(x)} is a regular sequence of infinitely differentiable functions converging to the
Dirac delta-function δ(x).
Now let � be the space of infinitely differentiable functions of a single variable with

compact support and let �′ be the space of distributions defined on �. Then if f is
an arbitrary distribution in �′, we define

fn(x)=
(
f ∗δn

)
(x)= (f(t),δn(x−t)) (1.1)

for n= 1,2, . . . . It follows that {fn(x)} is a regular sequence of infinitely differentiable
functions converging to the distribution f(x) in �′.
The following definition for the noncommutative neutrix product f ·g of two dis-

tributions f and g in �′ was given by Fisher in [2].

Definition 1.1. Let f and g be distributions in �′ and let gn = g∗δn. We say that
the neutrix product f ·g of f and g exists and is equal to h if
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N− lim
n→∞

(
fgn,φ

)= (h,φ) (1.2)

for all functions φ in �, where N is the neutrix (see [6]) having domain N′ = {1,2, . . .}
and range N′′ the real numbers, with negligible functions that are finite linear sums
of the functions

nλ lnr−1n, lnr n (λ > 0, r = 1,2, . . .) (1.3)

and all functions of n which converge to zero in the normal sense as n tends to
infinity.

The product of Definition 1.1 is not symmetric and hence f ·g ≠ g ·f in general.
Extending definitions of products from one-dimensional space R tom-dimensional

space Rm by using appropriate delta-sequences has recently been an interesting topic
in distribution theory. In order to define a neutrix product of two separable forms of
distributions in �′

m (anm-dimensional space of distributions), Fisher and Li provided
the following definition in [3].

Definition 1.2. Let f(x) and g(x) be distributions in �′
m, where x = (x1,x2,

. . . ,xm). The function gn(x) is defined by

gn(x)=
(
g∗δn

)
(x), (1.4)

where δn(x)= δn1(x1)···δnm(xm)=n1ρ(n1x1)···nmρ(nmxm). Hence {δn(x)} is
a regular sequence converging to the Dirac delta-function δ(x). The neutrix product
f ·g is defined to be equal to h if

N− lim
n1→∞

···N− lim
nm→∞

(
fgn,φ

)= (h,φ) (1.5)

for all φ in �m (anm-dimensional Schwartz space).

With Definition 1.2, Fisher and Li (also in [3]) show the following results.
Let

xr = x−r11 ···x−rmm and δ(p)(x)= δ(p1)
(
x1
)···δ(pm)(xm

)
. (1.6)

Then the noncommutative neutrix product x−r ·δ(p)(x) exists and

x−r ·δ(p)(x)= (−1)rp!
(p+r)! δ

(p+r)(x) (1.7)

for r1, . . . ,rm = 1,2, . . . and p1, . . . ,pm = 0,1,2, . . . .
The following work on the commutative neutrix product of distributions on Rm is

due to Cheng and Li (see [1]).
Let Rm be an Euclidean space with dimensionm, and let ρ(s), for s ∈R, be a fixed

infinitely differentiable function having the properties:
(i) ρ(s)≥ 0,
(ii) ρ(s)= 0 for |s| ≥ 1,
(iii) ρ(s)= ρ(−s),
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(iv)
∫
|x|≤1ρ(|x|2)dx = 1, x ∈Rm.

The property (iv) in the spherical coordinates is represented as
(v) Ωm

∫ 1
0 ρ(s2)sm−1ds = 1,

whereΩm is the surface area of the unit sphere inRm. Putting δε(x)= ε−mρ(|ε−1x|2),
where ε > 0, it follows that ε-net {δε(x)} converges to the Dirac delta-function δ(x).

Definition 1.3. Let f and g be arbitrary distributions in �′
m and let

fε = f ∗δε, gε = g∗δε. (1.8)

We say that the neutrix product f ·g of f and g exists and is equal to h on the open
domain Ω ⊆Rm if the neutrix limit

N− lim
ε→0+

1
2

{(
f ·gε,φ

)+(g ·fε,φ)}= (h,φ) (1.9)

for all test functions φ with compact support contained in the domain Ω, where N is
the neutrix having domain N′ =R+, the positive numbers, and range N′′ =R, the real
numbers, with negligible functions that are linear sums of the functions

ε−λ lnr−1 ε, lnr ε (1.10)

for λ > 0 and r = 1,2, . . . , and all functions of ε which converge to zero as ε tends
to zero.

In this paper, we would like to give a definition for the noncommutative neutrix
product f ·g of two distributions f and g in �′

m by applying the below δ-sequence.
This definition is particularly useful in computing products of distributions of the
variable r (radius).
From now on we let ρ(s) be a fixed infinitely differentiable function defined on

R+ = [0,∞) having the properties:
(i) ρ(s)≥ 0,
(ii) ρ(s)= 0 for s ≥ 1,
(iii)

∫
Rm δn(x)dx = 1,

where δn(x)= Cmnmρ(n2r 2) and Cm is the constant satisfying (iii).
It follows that {δn(x)} is a regular δ-sequence of infinitely differentiable functions

converging to δ(x) because of the above three conditions. The following definition
will be applied in Section 3 to evaluate our product mentioned in the abstract.

Definition 1.4. Let f and g be distributions in �′(m) and let

gn(x)=
(
g∗δn

)
(x)= (g(x−t),δn(t)), (1.11)

where t = (t1, t2, . . . , tm). We say that the neutrix product f ·g of f and g exists and
is equal to h if

N− lim
n→∞

(
fgn,φ

)= (h,φ), (1.12)

where φ∈�m.
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2. The distribution rλ. Let r = (x21 +···+x2m)1/2 and consider the functional rλ
(see [5]) defined by

(
rλ,φ

)=
∫
Rm

rλφ(x)dx, (2.1)

where Reλ >−m and φ(x)∈�m. Because the derivative

∂
∂λ
(
rλ,φ

)=
∫
rλ lnrφ(x)dx (2.2)

exists, the functional rλ is an analytic function of λ for Reλ >−m.
For Reλ≤−m, we should use the following identity (2.4) to define its analytic con-

tinuation. For Reλ > 0, we could deduce

�(rλ+2)= (λ+2)(λ+m)rλ (2.3)

simply by calculating the left-hand side, where� is the Laplacian operator. By iteration
we find, for any integer k, that

rλ = �krλ+2k

(λ+2)···(λ+2k)(λ+m)···(λ+m+2k−2) . (2.4)

On making substitution of spherical coordinates in (2.1), we come to

(rλ,φ)=
∫∞
0
rλ
{∫

r=1
φ(rω)dω

}
rm−1dr, (2.5)

where dω is the hypersurface element on the unit sphere. The integral appearing in
the above integrand can be written in the form

∫
r=1

φ(rω)dω=ΩmSφ(r), (2.6)

where Ωm is the hypersurface area of the unit sphere imbedded in Euclidean space of
m dimensions, and Sφ(r) is the mean value of φ on the sphere of radius r .
It was proved in [5] that Sφ(r) is infinitely differentiable for r ≥ 0, has bounded

support, and that

Sφ(r)=φ(0)+a1r 2+a2r 4+···+akr 2k+o
(
r 2k

)
(2.7)

for any positive integer k. From (2.5) and (2.6), we obtain

(
rλ,φ

)=Ωm

∫∞
0
rλ+m−1Sφ(r)dr (2.8)

which indicates the application of Ωmx
µ
+ with µ = λ+m−1 to the testing function

Sφ(r). Using the following Laurent series for xλ+ about λ=−k,

xλ
+ =

(−1)k−1δ(k−1)(x)
(k−1)!(λ+k) +x−k+ +(λ+k)x−k+ lnx+··· (2.9)
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we could show that the residue of (rλ,φ(x)) at λ=−m−2k for nonnegative integer
k is given by

Ωm

(
δ(2k),φ(x)

)
(2k)!

=Ωm
S(2k)φ (0)
(2k)!

. (2.10)

On the other hand, the residue of the function rλ of (2.4) for the same value of λ is

Ωm�kδ(x)
2kk!m(m+2)···(m+2k−2) . (2.11)

(See [5].) Therefore we get

S(2k)φ (0)= (2k)!�kφ(0)
2kk!m(m+2)···(m+2k−2) . (2.12)

This result can be used to write out the Taylor’s series for Sφ(r), namely

Sφ(r)=φ(0)+ 1
2!
S′′φ(0)r

2+···+ 1
(2k)!

S(2k)φ (0)r 2k+···

=
∞∑
k=0

�kφ(0)r 2k

2kk!m(m+2)···(m+2k−2)
(2.13)

which is the well-known Pizetti’s formula.

3. The product r−k and ∇δ. The following normalization procedure is needed in
the proof of our theorem regarding the product of r−k and ∇δ.

The distribution µ(x)xλ+. Let µ(x) be an infinitely differentiable function onR+

having properties:
(i) µ(x)≥ 0,
(ii) µ(0) �= 0,
(iii) µ(x)= 0 for x ≥ 1.

Let φ(x) be a testing function. Then the functional

(
µ(x)xλ

+,φ
)=

∫ 1
0
µ(x)xλφ(x)dx (3.1)

is regular for Reλ >−1. It can be extended to the domain Reλ >−n−1 (λ �= −1,−2, . . .)
by analytic continuation along Gelfand and Shilov (see [5]):

(
µ(x)xλ

+,φ
)=

∫ 1
0
µ(x)xλφ(x)dx

=
n∑

k=1

φ(k−1)(0)µ(θk−1)
(k−1)!(λ+k)

+
∫ 1
0
µ(x)xλ

[
φ(x)−φ(0)−xφ′(0)−···− xn−1

(n−1)!φ
(n−1)(0)

]
dx

(3.2)

on applying the mean value theorem with 0< θk−1 < 1 for 1≤ k≤n. This means that
the generalized function µ(x)xλ+ is well defined for λ �= −1,−2, . . . .
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We thus normalize the value of the functional (µ(x)xλ+,φ) at −n by

(
µ(x)x−n+ ,φ

)= n−1∑
k=1

φ(k−1)(0)µ(θk−1)
(k−1)!(−n+k)

+
∫ 1
0
µ(x)x−n

[
φ(x)−φ(0)−xφ′(0)−···− xn−1

(n−1)!φ
(n−1)(0)

]
dx.

(3.3)

Theorem 3.1. The noncommutative neutrix product r−k ·∇δ exists. Furthermore

r−2k∇δ=− 1
2k+1(k+1)!(m+2)···(m+2k)

m∑
i=1

(
xi�k+1δ

)
,

r 1−2k ·∇δ= 0,
(3.4)

where k is a positive integer and ∇ is the gradient operator.

Proof. Since ∇= ∂/∂x1+···+∂/∂xm =
∑m

i=1 ∂/∂xi, we have

∇δn(x)= 2Cmnm+2
m∑
i=1

ρ′
(
n2r 2

)
xi = 2Cmnm+2ρ′

(
n2r 2

) m∑
i=1

xi. (3.5)

We note that r−k is a locally summable function on Rm for k= 1,2, . . . ,m−1. There-
fore

I = (r−k ·∇δn,φ)=
∫
Rm

r−k∇δn(x)φ(x)dx

= 2Cmnm+2
m∑
i=1

∫
Rm

r−kρ′
(
n2r 2

)
xiφ(x)dx.

(3.6)

On changing to spherical polar coordinates and then making the substitution t =nr ,
we arrive at

I = 2CmΩmnm+2
m∑
i=1

∫ 1/n
0

rm−k−1ρ′
(
n2r 2

)
Sψi(r)dr

= 2CmΩmnk+2
m∑
i=1

∫ 1
0
tm−k−1ρ′

(
t2
)
Sψi

(
t
n

)
dt,

(3.7)

where ψi(x)= xiφ(x). By Taylor’s formula, we obtain

Sψi(r)=
k+1∑
j=0

S(j)ψi (0)
j!

r j+ S(k+2)ψi (0)
(k+2)! r

k+2+ S(k+3)ψi (ζr)
(k+3)! rk+3, (3.8)
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where 0< ζ < 1. Hence

I = 2CmΩmnm+2
m∑
i=1

k+1∑
j=0

S(j)ψi (0)
j!

∫ 1/n
0

rm−k−1ρ′
(
n2r 2

)
r j dr

+2CmΩmnm+2
m∑
i=1

∫ 1/n
0

rm−k−1ρ′
(
n2r 2

)S(k+2)ψi (0)
(k+2)! r

k+2dr

+2CmΩmnm+2
m∑
i=1

∫ 1/n
0

rm−k−1ρ′
(
n2r 2

)S(k+3)ψi (ζr)
(k+3)! rk+3dr

= I1+I2+I3,

(3.9)

respectively. Employing t =nr again, we get

I1 = 2CmΩm

m∑
i=1

k+1∑
j=0

nk+2−j S
(j)
ψi (0)
j!

∫ 1
0
tm+j−k−1ρ′

(
t2
)
dt (3.10)

whence

N− lim
n→∞I1 = 0 (3.11)

as for

I2 = 2CmΩm

m∑
i=1

S(k+2)ψi (0)
(k+2)!

∫ 1
0
tm+1ρ′

(
t2
)
dt (3.12)

integrating by parts, we have

2CmΩm

∫ 1
0
tm+1ρ′

(
t2
)
dt = CmΩm

∫ 1
0
tmdρ

(
t2
)

=−CmΩm ·m
∫ 1
0
tm−1ρ

(
t2
)
dt

=−m
∫
Rm

δn(x)dx =−m.

(3.13)

Hence

I2 =−m
m∑
i=1

S(k+2)ψi (0)
(k+2)! =−

m
(k+2)!

m∑
i=1

S(k+2)ψi (0). (3.14)

Putting

M = sup
{∣∣∣S(k+3)ψi (r)

∣∣∣ : r ∈R+ and 1≤ i≤m
}
, (3.15)

we obtain that

|I3| ≤ 2CmΩm
mM

n(k+3)!
∫ 1
0
tm+2

∣∣ρ′(t2)∣∣dt �→ 0 as n �→∞. (3.16)

Hence it follows from above that

N− lim
n→∞I = I2 =− m

(k+2)!
m∑
i=1

S(k+2)ψi (0). (3.17)
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We now turn our attention to the product r−k ·∇δ for k≥m. Note that, in this case,
the functional r−k is not locally summable. We assume k =m+q for q = 0,1,2, . . . ,
then −k+m−1≤−1. We apply the regularization in (3.3) to I of (3.7) to deduce

I = 2CmΩmnk+2
m∑
i=1

{q=k−m∑
j=1

S(j−1)ψi (0)ρ′
(
θ2j−1

)
(j−1)!(m−k−1+j)

(= I1
)

+
∫ 1
0
ρ′
(
t2
)
tm−k−1

×
[
Sψi

(
t
n

)
−Sψi(0)−···−

tq

nqq!
S(q)ψi (0)

]
dt
} (= I2

)
= I1+I2,

(3.18)

respectively.
Clearly,

N− lim
n→∞I1 = 0. (3.19)

Applying Taylor’s theorem, we obtain

I2 = 2CmΩmnk+2
m∑
i=1

∫ 1
0
ρ′
(
t2
)
tm−k−1

[
tq+1

nq+1(q+1)!S
(q+1)
ψi (0)+···

+ tq+m+2

nq+m+2(q+m+2)!S
(q+m+2)
ψi (0)

+ tq+m+3

nq+m+3(q+m+3)!S
(q+m+3)
ψi

(
θt
n

)]
dt,

(3.20)

where 0< θ < 1. Similarly, we could prove

N− lim
n→∞I2 = 2CmΩm

∫ 1
0
ρ′
(
t2
)
tm+1dt

m∑
i=1

S(q+m+2)ψi (0)
(q+m+2)!

=− m
(q+m+2)!

m∑
i=1

S(q+m+2)ψi (0)

=− m
(k+2)!

m∑
i=1

S(k+2)ψi (0)

(3.21)

because the other terms vanish upon taking their N-limits.
Using Pizetti’s formula, we get

S(k+2)ψi (0)=




(2l+2)!�l+1ψi(0)
2l+1(l+1)!m(m+2)···(m+2l) if k= 2l for l= 0,1, . . . ,
0 if k= 2l−1 for l= 1,2, . . . .

(3.22)

This completes the proof.
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Remark 3.2. The multiplication of xi and �k+1δ in our theorem is well defined
since

(
xi�k+1δ,φ

)= (δ,�k+1(xiφ
))
. (3.23)

In particular, we have the following

1
x2
·δ′(x)= 1

6
δ(3)(x) (3.24)

by setting m = 1 and k = 1 in the theorem, which identically coincides with equa-
tion (1.7) withm= 1, r = 2, and p = 1.
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