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1. Introduction. Bramanti and Cerutti [3] and Bramanti [2] extended a classical
commutator theorem for fractional integrals due to Chanillo [5] to the context of
spaces of homogeneous type. In [3] Bramanti and Cerutti follow an idea contained
in [7], based in holomorphic families of operators, used to study the L? boundedness
of singular integrals in Euclidean spaces. In [2] Bramanti investigated the boundedness
of the commutator of certain integral operators having positive kernels. A fractional
integral appears as a particular case. Bramanti deduces the boundedness of the com-
mutator from a suitable inequality that involves the maximal sharp function. In this
paper, we give a different proof to the commutator theorem for fractional integrals in
spaces of homogeneous type. We follow the original proof of Chanillo [5] and a good
A inequality is essential.

We firstly recall the main definitions needed in the paper (see [8, 9, 11]). (X,5,u)
will be a space of homogeneous type. That is, X is a nonvoid set, § is a quasidistance
on X, i.e.,, §: XxX —[0,0) is a function satisfying the following properties:

(i) 6(x,y)=0if and only if x =y,
(ii)) o(x,y) =05(y,x), for every x,y € X, and
(iii) there exists a positive constant k such that for every x,y,z € X

6(x,y) <k(6(x,z)+6(z,y)), (1.1)

and u is a positive regular measure on X defined on a o-algebra of subsets of X which
contains the open sets (in the topology induced by the uniform structure associated
to §) and the ball B(x,r) ={y € X:6(x,y) <r}, for every x € X and r > 0, and that
satisfies the doubling condition: there exists A > 0 for which

0 < u(B(x,2r)) < Au(B(x,7)), (1.2)

for each x € X and r > 0. Note that if X has more than one element, then k > 1. The
trivial case k < 1 is not considered in this paper.

There are many interesting examples of spaces of homogeneous type. For instance,
any C® compact Riemannian manifold with the Riemaniann metric and volume and


http://ijmms.hindawi.com
http://www.hindawi.com

404 JORGE J. BETANCOR

the boundary of any bounded Lipschitz domain in R™ with the induced Euclidean
metric and the Lebesgue measure are spaces of homogeneous type.

A space of homogeneous type is said to be normal if there exist positive constants
A; and A, such that for every x € X,

A1r <u(B(x,r)), whenO <7 <Ry,

u(B(x,r)) < Apr, ifr =7y, (1.3)
where
- inf{r >0:B(x,r) =X}, if u(X) < o,
(1.4)
- _lo if u({x}) =0,
o sup{r > 0:B(x,r) = {x}}, if u({x})>0.

Sufficient conditions, in order that a space (X,d,u) of homogeneous type admits
a quasidistance d that is equivalent to é and such that (X,d, u) is normal, are given
in [14, Lemma 22].

A space of homogeneous type is of order p, 0 < p < 1, if there is a positive constant
C such that for every x,y,z€ X

[6(x,2)-6(v,2)| < Cé(x,y)p(max{é(x,z),é(y,z)})lfp. (1.5)

Foreachl < p < oo, LP(X,u) and || - ||, have the usual meanings. We say that a complex
valued measurable function f on X is in Lﬁ)C(X,u), 1<p<o,if jB(W) |f(x)|Pdu(x) <
oo, for every v > 0 and for some (and then for all) x € X.

Let b € Llloc(X,u). We define b.(x), with x € X and € > 0, as the mean value

1

bel¥) = L Bx,0)

j b(y)du(y). (1.6)
B(x,e)

If 1 < p < oo we will say that a function b € L}, .(X,u) is in BMO,, if and only if,

1/p
1
b =:||s 7J b(y)-be(x)|"d < o0, 1.7
I121%,p GEE{U(B(XlE)) B(M)( () =be(x) | u(y)} < (L.7)
We define on BMO,, a “norm” as follows:

1D1l,p5 if p(X) = o,
b1 = . (1.8)

Dl +| [ bCoUG) |, it 00 <

When p(X) < oo, (BMO,, || - |'?)) is a Banach space. If u(X) = oo, then we introduce
in BMO,, the following relation: let by and b, be in BMO,,

b1 ~ by < there exists C € C such that by — b, =C. (1.9)

It is clear that if by,b, € BMO, and by ~ by, then ||b1||?) = ||b2||P). The quotient
space BMO, / ~ will be denoted again by BMO, and by considering on it the norm
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induced by || - ||?, BMO,, is a Banach space. As it was proved by Coifman and Weiss
[9, page 594], if 1 < p,q < «, the spaces BMO, and BMO, coincide and the norms
II-11®» and || - |9 are equivalent. In the sequel, as usual, we will denote by BMO the

space BMOy, 1 < p < co.
Let 0 < o < 1. The fractional maximal function My f of f € Llloc(X,u) is defined by

1
(Maf)(x) = Sup By

Here, for each x € X, the supremum is taken over all those B balls in X containing
to x. As usual we denote by M the maximal operator M.
The fractional integral of order « of f, I f, is given by

Llf(y)ldu(y), x € X. (1.10)

f)
I X) = J ————d . 1.11
(I f)(x) Xoix) 8(x, )1 @ u(y) ( )

In this paper, we study the boundedness of the commutator [, b] of the fractional
integral I, and the multiplier operator associated to a measurable function b on X
defined through

(s, b1(f) = bIu(f) —Ia(DS). (1.12)

Throughout this paper, for every 1 < p < o, we will denote by p’ the conjugate of p.
By C we will always represent a positive constant not necessarily the same in each
occurrence.

The following theorem is the main result of the paper.

THEOREM 1.1. [etO<ax<1,0<p<1,1<p<l/ax,andl/q=1/p— x. Assume
that (X,6,u) is a normal space of homogeneous type of order p such that u({x}) =
0, x € X. Then the commutator operator [1,b] is bounded from LP (X, u) into L9(X, u)
provided that b € BMO.

Let now (X, 6, u) be a normal space of homogeneous type and of order p € (0,1),
such that pu(X) = « and u({x}) = 0, for every x € X. Gatto, Segovia, and Vagi [10]
defined, for every 0 < & < 1, a function 6, on X x X as follows:

. 1/a-1
Sul(x,y) = (J t"‘ls(x,y,t)dt> , forx =1y, (1.13)
0

where s represents a symmetric approximation to the identity in the sense of Coifman,
and

Ox(x,y) =0, forx=y. (1.14)

In [10, Lemma 2] it is proved that, for every 0 < o < 1, d is a quasidistance equivalent
to 6. Moreover, for each 0 < x < 1, (X,d4, ) is a normal space of homogeneous type
of order p.

Also these authors introduced the fractional integral I, of order « € (0,1) through

(uf) ) = | S)

X—{x} Wd“(y)' (1.15)
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If we represent by BMO () the BMO-space associated to the quasidistance 64, 0 < x <
1, it is immediately deduced from Theorem 1.1 the following commutator theorem for
the fractional integral I,.

COROLLARY 1.2. Assume that (X,8,u) is a normal space of homogeneous type and
of order p € (0,1), such that u(X) = co and u({x}) =0, forevery x € X. Let 0 < x < 1.
Then the commutator operator [I,b] defined by

[Ia, ] (f) = bI(f) —In(Df), (1.16)

is a bounded operator from L (X,u) into L2(X,u) provided that 1 < p <1/«x, 1/q =
1/p—xand b € BMO(x).

2. The proof of the commutator theorem. In this section, we will prove Theorem
1.1. To see that result we previously establish six lemmas.

Boundedness of the fractional integral I, was studied in [11, Theorem 1] and
[12, Theorems 2.2 and 2.4].

LEMMA 2.1 (see [11, Theorem 1]). Letl <p <1l/xandl/q=1/p—- . If (X,0,u) is
a normal space of homogeneous type, then
(i) Iy maps continuously LY (X,u) into L2 (X, u).
(ii) There exists C; > 0 such that

LI\ e
A ) , @.1)

p(x e X: [I(f)x) | >A}) sCl(

for every f € LY (X,u) and A > 0.

Kokilashvili and Kufner [12, Theorem 3.2] proved a weighted version of [11, Theo-
rem 1].

Kokilashvili and Kufner [12] established weighted inequalities for the maximal frac-
tional operator M. Also Wheeden [15] and Bernardis and Salinas [1] gave characteri-
zations for the pairs of weight functions for which M, is a bounded operator between
the corresponding weighted L”-spaces.

The following result can be easily infered from [15, Theorem 4] (also from [12, Propo-
sition AJ).

LEMMA 2.2. letl <p <1/xand 1/q = 1/p — «. Then My is a bounded operator
from L? (X,u) into L1(X, u).

We now define the auxiliar operator C(b, f) on X as follows:

C(b,f)(x) =sup

e>0

’ J b(y)—bc(x)
X\B(x,)

Saix D], xEX, (2.2)

where b and f are measurable complex functions on X.
Next a useful weak type inequality for the operator C(b, f) is established.
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LEMMA 2.3. Assume that (X,6,u) is a normal space of homogeneous type. Let 1 <
p<l/o.If feLP(X,u) andb eU"(X,u), then

1/1-x
u({xeX:C(b,f)(x)>/\})$CO(W> , forevery A > 0. (2.3)
PROOF. It is not hard to see that
b | f ()]
C(b’f)(X) = Seli%)) X\B(x,€) 5(X,J’)l_°‘ du(y)
lf)] (2.4)
+Se2103 [be(x) ] X\B(x,€) 5(x,y)1‘°‘du(y)
<Iu(IbfD)(x) +Ix(If)(x)M(D)(x), xe€X.
Moreover Holder inequality and Lemmas 2.1 and 2.2 lead to
| M) 0 a0 o)
1/p’ (1-x) 1-(1/p" (1-00))
r’ pip (1-x)-1
< ([ MBI du)) ([, 10000 ap(x))
< ClIpIL I,
(2.5)
Hence if A > 0, then
bl 1/1-«x
H({XEX:M(b)(X)Ia(If\)(X)>A})SC(%) . (2.6)
Also by taking into account Lemma 2.1 we have
b 1/1-«x
u(lx e XL (b eo > A = (1270
(2.7)

1/1-x
SC(Ibll,o}\llfll,o> Caso.

Now to finish the proof of this lemma it is sufficient to combine (2.4), (2.6), and (2.7).
O

LEMMA 2.4. Assume that (X,6,u) is a normal space of homogeneous type such that
u({x})=0,xeX. Let0O<ax<1,1<p<l/x,0<B<1/k,andd, y > 0. Let b € BMO
and f be a measurable function. Then

|b(¥) —ba(x) |

1/p
YL\B(X‘M 5(x, ) v« [ f ) ]dp(y) < C(Map (1£17) (x0)) P lIDllkprs  (2.8)

provided that 6 (x,x9) < fd. Here C is a constant that does not depend on d.
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PROOF. Suppose that p(X) = oo. If u(X) < oo we can proceed in a similar way.
Holder inequality implies that

|b(y)—ba(x)]|
y |b(y)=ba(x)|
—[X\B(x,d) 5(x,y) If ) ldu(y)
, Uy
|b(y) —ba(x)|P
y |b(y)—ba(x)|P"
< (d JX\B(x,d) 5(x,y)1+y du(y)) (2.9)
1/p
lLf)IP
Y —_—
. (d JX\B(x,al> 6(x,y)1+y—po<d11()’)) .

Since u is doubling we can write for every x € X and j € N,

[bos1a(0 ~bsg (0| = s | DO = asg0) ()
‘CWJ sz [EO) D20 | du(y) (2.10)
<Clbllxa-

Hence, it concludes that
|ba(x)—byjq(x)| <Cjllbllsy, jEN, x€X. (2.11)

Then, since (X, 6, u) is normal, it follows

|b(y)-ba(x)|"
Y
d JX\B(xd) O (x,y)1+y H)

Ib(y)—ba(x)|"
Y
<d ZJ1+ld>5xy>27d 5(x,y)1+y du(y)

<cdr Y (2id) b(y) = ba(x)|” du(y)

J21+1d>5(x,y)221d

0 2-, p/
- j+ 212
SCZ 2id (JB(X,Z»f+1d) |b(y) b,; ld(x)| au(y) ( )

+((+ 1)||b||*,1)"'u(B(x,2f“d)))

. ; 3 , P’
= (P2 1201 b0 )
+(<j+1>||b||*,1)”') <Ibll%,,

On the other hand, if 6(x¢,y) < Bd and 6(x,y) < d, then 6(xo,y) = ((1-kB)/k)d
and 6(xp,y) < k(B+1)6(x,y). Hence, by invoking again the normality of (X, d,u) we
can write
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S "
dYJ T,
X\B(x,d) 0(x,y)l+y-r« uy)
"
<car D)
X\B(xo,((1-kB) b)) & (x0,y)" T 7P¢ HY
: fonl?
<ca j I )
EO 2041 (1=kB) k) d> 5 (x0,3) =27 (1-kB) k). & (50, v) T P HY
<cary (@2h) | F ) |7 du()
far) B(x0,27+1 (1-kB) /) d)
oo ) 1
<CY 2w | = (o) [Pdu(»)
;) 1 (B(x0,2741((1 - kB) /k)d))' "™ B<XO,21+1<(1—k/s>/k>d>|f | Y
= CMptx(|f|p)(x0)-
(2.13)
Thus the result is proved. O

The following Whitney type covering lemma will be useful in the sequel.

LEMMA 2.5 (see [4, Lemma 1] and [13, Lemma 2]). LetQ be a proper open subset of
X and let B be a ball in X such that BNnQ + @ and BN (X \ Q) = &. Then there exists a
sequence (Bj) jen of balls in X satisfying the following three properties:

(i) QNB CuUjenBj CQN(B*)*,
(i) B}‘m(X\Q) + @, jeN, and
(iii) u(QNB) < szlu(Bj) <Cu(Qn(B*)*).
Here if B=B(x,r), with x € X and v > 0, B* denotes the ball B(x,vk(2k+1)).

Next we will prove in the main lemma a good-A inequality.

LEMMA 2.6. LetO0<p <1andl <p <1/x. Assume that (X,d,u) is a normal space
of homogeneous type that is of order p and such that u({x}) =0, x € X. Let b € BMO
and f be a measurable function on X. Then there exists By such that for every > By
andy > 1

u({x ex:c, )00 > BA, 16l (Ia(LFD 0 + (Mpa(1£17) () 7)< yA])
<Cyu({x e X:C(b,f)(x) > A}),

(2.14)

provided that one of the following two conditions holds:
(i) A>0and u(X) = oo,
(ii) A > (Co/puXN bl If I, and u(X) < oo, where Cy is the positive constant
appearing in Lemma 2.3.

PROOF. Let 3, y > 0 and A satisfying the imposed conditions. We define the follow-
ing sets:

Ex(B,y) = {x € X:C(b, f)(x) > By,

1Bl (Ia(1LFD () + (Mpac(1£17) () ''7) < yAl, (2.15)
Wr=1{xeX:C(b,f)(x)>A}.
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Note that we can assume, without loss of generality, that W) + @ and W, # X. Indeed,
suppose firstly that py(X) = co. If W) = X, then (2.14) is clear for every § > 0 and y > 0.
On the other hand, if pu(X) < oo, then Lemma 2.3 implies that u(W,) < u(X) when
A > (Co/u(XNT bl I fIl, and where Cp is the positive constant that appears in
Lemma 2.3. Also if p(X) < o« and W) = &, then (2.14) holds for every 8 > 1 and y > 0.

Let B be a ball in X such that BNnW, # @ and Bn (X \ Wy) # &. Then there exists a
sequence (Bj)“;":] of balls in X satisfying conditions (i), (ii), and (iii) in Lemma 2.5 by
replacing Q by Wj.

Let j € N. Write Bj = B(a,d), with a € X and d > 0. We define B} = B(a,x;d) and
BJ2. = B(a, oxd), where o; < k(2k?(1+k(2k+1))+1) and o» > k(1 +k(cxy +1)).

Assume that B; N Ex(B,y) + @ and choose x; € BjnEx(B,y). We write f = f1 +
fo, where f; = fxB}, and b = by + by, being b; = (b — bBJz)XBJg and bBJZ = l/u(B?)

X f,g b(y)du(y).

We have that C(b, f1)(x) = C(by, f1)(x), for every x € B;. Indeed, let x € B; and
€ > 0. Since o» > k(1 +k(cx; +1)), if B(x,e) n (X\Bl?) + &, then B} C B(x,¢€). Hence
we can write

1
B ixa)

_ #J
" u(B(x,e)) B(x,€)nB?

1
- ) JB(X’E) D) du(y) by = be(x) by,

[ modu)
B(x,€)

(b) ~by ) du(y) (2.16)

provided that BJI- N(X\B(x,€)) # .
Then, since B} C B, one has

C(b, f1)(x) = sup

e>0

b(y) —be(x)
JX\B(X,G) S(x,y)l-« fH)du(y) ‘

bl(y)+bBJZ_ —be(x)
=Ssu
e>g J(X\B(x,e))ﬂB} O(x,y)l-«

J bi(y)—(b1)e(x)
X\B(x,e)  O(x,y)l-«

S1 (y)du(y)’ (2.17)

< sup
e>0

fl(y)dll(J’)‘ =C(by, f1)(x).

Moreover from Lemma 2.3 we deduce that for every > 1,

p({x € Bj:C(by, f1)(x) > BA})
f1||p)l/10(

SC<||bl|p,

p 1/p’ (1-x)
= - P
_C(JB; ‘b(y) by d“(y)) (JB} | f()] du(y))
1/1-«

BA
< CAV L (By) (1Dl pr (Mpo(1LF17) (x2))7)

1/p(1-a) (2.18)

because u is doubling.
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Hence, since x; € BinEx(B,y) if y <1, then
u({x €B;:C(b, f1)(x) > BA}) < Cyu(Bj). (2.19)

By virtue of (ii) in Lemma 2.5, B;k N (X\Wy) += @. Choose xo € B;k N (X \W,), that is,
X0 € BJ’.‘ and C(b, f)(xo) < A.
Now our objective is to estimate

u({x € B;:C(b, f2)(x) > BA}). (2.20)

We consider two cases.
Assume firstly that € > od, where & /k—1 > o > (1 +1)k. Since o > (x; + 1)k, for
every x € Bj, B} C B(x,€). Let x € B;. We have

b(y)—be(x) b(y)—be(x)
L\m,e) 50, y)a J2()A() = J\Bm) 50,y S IARD)

(2.21)
=11+12 +I3,
where
P bl [ b
JX\B(Xf) o(x, J’)l TSx e J AH) JX\B(X,E) o(x,y)l-« fOdu(y),
ply) e o) b() - be(xo)
JX\B(xe) 5(x, )« — xS Oau(y) - I\B(XOG) 6(x0,y)1,(x SOdu(y), (2.22)

J b =belxXo0) (1) ay().
B(xo,€) X(),y)

We are going to estimate I;, i=1,2,3.
As mentioned above if 6(x,y) > €, then y ¢ B}. Hence 6(x,y) > € implies that
6(x,y) = ((x; —k)/k)d > 0. Then we can write

5(x1,y) - k(5(x,x1) +6(x,y)) - 2k3
o(x,y) ~ o(x,y) T ok

+k, (2.23)

provided that 6 (x,y) > €.
Therefore it follows

I b(y) —be(x)
X

d
\Bix,e) O(x,y)1-« fO)du(y)

FOauo) - | b(y) ~be(x0)

I | =
1 X\B(x,e) O(x,y)l-«

SJ’X\B(X,E) 6(x,y)lfo( |f()’)|du(y)
SC’b€(XO)7be(X)’ Mdu(y)
X8} §(x1,7)"

< C|be(x0) —be(x) [ Ia(1fD) (x1).
(2.24)

Moreover if v € B(xy,€), then

6(x,y) <k(6(yv,x0) +6(x0,x)) <k(e+kd(1+k(2k+1))) <2™¢, (2.25)
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where m € N is large enough and m is not depending on d and €.
Hence, since (X, 0, ) is normal we have that

| e (x0) —be(x) |
1
H(B(xo,€))
1

< CoB70) ey 1200 ) (220

=<

j ()~ be(x)|du()
B(xq,€)

1
SC(MB(x,zme))
<Clbll«,p -

JB( ame) \b(y)_bZWle(X) |dlvl(y)+ |b2m€(x)—b€(x) |)

Thus we conclude that
L] <Clbllp Ic(1f]) (x1) < CyA. (2.27)

On the other hand, to estimate I, we will use that (X, d, u) is a space of homogeneous
type which is of order p € (0,1). It is clear that

|b(y) = be(x0) | |f200) | |80x,0)% 1 =5 (x0,3)* " | dua(3)

b(y)—be(x0)

- ‘ Jé(x,y)ze and &(xq,y)<€ O(x,y)l-« S (3)du(y)
-| Lbffi‘g)fzomlu(y)\.
8(x0,¥)=€ and §(x,y) <€ 6()(0,_')/)

L)<
d(x,y)=€ and 6(xq,y)=€

(2.28)

Note that, since o > 2k?(1+k(2k+1)), 8(xo,v)<2kd(x0,x) provided that 5 (xg,y)>
€. Hence, according to [11, Lemma II.3] and Lemma 2.4, since 6 (xo,x1) < (1/2k)€e, we
have,

j |b()=be(x0) | | f>() || 806,00 =8 (x0,3) " |du ()
d(x,y)=€ and d(xq,y) =€

< C(S(x,xo)pj

X\B(x0,€)

|b()=be(x0) || fo(] |5(x0,)* " |du()
< CGPJ [b(y)—Dbe(x0) | | f2(3)] ‘5(Xo,y)a_p_l ‘du(y)
X\B(x,€)

< Clbllsp (Mpe(1£17) (1)) 7 < CyA.
(2.29)

Moreover, 6 (x,y) < € implies that § (x¢,y) < €(k+(1/2)) and this inequality implies
that 6(x1,y) <e(k(k+(1/2))+(1/2)). Then, by taking into account the normality of



A COMMUTATOR THEOREM FOR FRACTIONAL INTEGRALS ... 413
(X,0,u), Holder inequality leads to

b(y) —be(x0)
—_— da
’J&(x,y)zeand&(xo,yke 5(X,y)1 & fZ(y) H)
b(y)— e( 0)

_ — S d
J5(x0,y)zeand5(x,y)<e 5(x0,y)17(x fe()du)

< CG“’IJ [b(y) =be(x0) | |f2(3) |du(y) (2.30)
B(xq,e(k+(1/2)))

1
u(B(xo,€e(k+ (1/2))))1’“ JB(xo,e(k+(1/2))>

< 1Dl (Mpac(1LF17) (1)) < CyA.

<C

[b(y) =Dbe(x0) | | f2(y) |du(y)

Finally, since xo ¢ W), we have
|Ig< <A. (2.31)

By combining (2.21), (2.27), and (2.31) we conclude that

sup
e>do

b) - belx)
»[X\B(Xe) S(x,y)l-« fo(¥)du(y)| < CyA+A. (2.32)

Assume now 0 < € < do. Let x € Bj. Itis not hard to see that if y is in the support
of f> then 8(x,y) = ((ex1 —k)/k)d and 6(xg,y) = ((x1 —k?(2k+1))/k)d. We choose
w > 0 such that w < (1 — k) /k.

We can write

er Mfz(y)du(y):h+]2+]3, (2.33)

\B(x,e) O(x,y)l-¢«

where

J bwa X()) be(x)
X\B(x,€)

6(X y)l o fZ(y)du(y)a

- b)) “bualx) - b(Y) = bua (x0)
_J Wibixe  S0ey)ie D) JX\mXO,a 5(x0,)" Jendu,
:J Lb‘“”i(’i‘))fz<y>alu<y>.

e e (2.34)

We will estimate J;, i =1,2,3.
By proceeding as in the study of I, since k(o + 1) < &2, we obtain

|Jl| SC|bwd(X0)—bE(X)|I(x(|f\)(X1)

1
<CLBxo) Jg(m [b(¥) ~bwa(x0) [ X5z (VAN I(FD (1) 5 35)

< CM((b—bwd(xO))XBJZ>(X)Io((|f|)(xl)-
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On the other hand, we have that

S F()du(y)
X\B(x,€)

b(y)—bw

X\B(xg,e) O(x,y)l-«

| (b() = boa(x0)) () (86, 7)1 = 5 (x0,7)* ) dua(v)
d(x,y)=€ and 5(xq,y)=€

b(.y)_bwd(X())

TS v l-a d
+J5(x,y)ze and 8(xg,y)<e  O(x, )1« Sfo(y)du(y)
-| b =bua(X0) (14000

5(x,y)<e and §(xq,y)=€ 5(Xo,y)

(2.36)

Since (X,0,u) is a space of homogeneous type of order p € (0,1), by virtue of
[11, Lemma 2.3], we have

| (B() = b (x0)) fo ) (56,17 = 5(x0, 7)) () |
5(x,y)=€ and 6(xq,y)=¢€

< C6(x,x0)pj

[b(¥) =bwa(xo) || f2(2) 60, )P du(y),
0(x,y)=€ and 5(x0,y)2€

(2.37)

because if y is in the support of f>, then §(x,y) = ((x; —k)/k)d = 2k?(k(2k +1) +
1)d = 2k6(xo,x). Hence, since y € supp f> implies that 6 (x1,y) > wd, by proceeding
as in the proof of Lemma 2.4 we conclude

‘ J (b () = bwa (x0)).f2() (8(x,0) % = 5(x0,) """ ) du(3) ‘
8(x,¥)=€ and 6(xq,y)=€

b(y)—bwalxo)|
<C6(x,x ”J | d
(x,%0) 5(x1,5)>wd 6(x1,y)1+p o [FO]dn)

< Clbllsp (Mpa(1£17) (x1)) "7 < CyA.
(2.38)

Also, since if 6(x,y) <€, then 6 (xo,y) <dk(k(k(2k+1)+1) +0) and since w < «;,
we have

b(y) —bwa(xo)

d
‘ J&(x,y)ze and 5(xq,y) <€ 5(X,y)170( fZ(y) H)

b(y) - wd(Xo)
_ ——— " (y)adu(y)
Jé(x,y)<e and §(xg,y)=€ 5(X0,_’)/) foyduty
< |b() ~bwalxo) || £2(0)] (2.39)
wd<d(xg,y)<k(k(k(2k+1)+1)+0)d

X (80,00 +8(x0, )" )du(y)

b X
[5G = bua = )| | f2() [ du(y).
wd<5(x0,y) <k(k(k(2k+1)+1)+0)d 5(x0,y)

<C
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Now by proceeding as in the proof of Lemma 2.4 we obtain that

‘ J b(y)_bwd(XO)
5(x,y)=€ and §(xg,y) <€ 5(9(,)/)17“
_J b(y)*bwd(XO)

5(x,y)<e and &(xq,y)=€ 6()((),3/)170(

< Clbllsp (Mpa(1£17) (1)) "7 < CyA.

f2()du(y)

So(y)du(y)

In a similar way we can see that

T I |b(y) —bwa(xo
3 | =< 1-«
X\B(xg.wd)  §(x0,Y)

)| | f2() |du(y)

< ClIb v (Mpa(1£17) (x1)) "7 < CyA.
By combining the above estimates we can conclude

J b(y)—be(x)
X\B(x,e) O(x,y)1«

sup fz(y)du(y)‘

O<e<do
< C()\y+la(|f|)(xl)M((b—bwd(xo))xB%)(x)).

From (2.32) and (2.42) follows that for every x € B;

C(bof2)(x) = C(Ay-+ A+ Lu(LF1) (x1)M (b= buaa (x0)) g2 ) ().

415

(2.40)

(2.41)

(2.42)

(2.43)

Hence if B is large enough, then according to Lemma 2.2 and since u is doubling

u({x €B;:C(b, f2)(x) > BA})
< u({x € By Ll 1F1) o) M( (B = Buoa (x0)) x5 ) () > A
< czrurauf\)(xl)L2 |B(Y) = buwa(xo) [dp(y)
< CA M (1f1) (1) ||bj||*,,,ru(Bj) < Cyu(B)).

Thus we obtain that for 8 = B¢ and y < 1, where B is large enough,

U(B;jNEA(B,Y)) < Cyu(Bj).

Hence

e

H(BNEA(B,Y)) <Cy > u(Bj) <Cyu(Wa), B=Po, y<1.

1

J

Arbitrariness of B allows to conclude that

U(EA(B,y)) < Cyu(Wa), B=pBo, ¥y <1,

and the proof is finished.

(2.44)

(2.45)

(2.46)

(2.47)



416 JORGE J. BETANCOR

PROOF OF THEOREM 1.1. To prove Theorem 1.1 we proceed as in the proof of
[6, Theorem III]. We start proving that the operator C(b, f) is bounded from L? (X, u)
into L1(X,u),when 1 <p <1l/xand 1/gq=1/p— . Assume that b € L® (X, u).

Letl<p)y <p<1l/xand 1/q = 1/p — «. Assume firstly that u(X) = co. According

to Lemma 2.6, f € L? (X, u) we have
[REENEDRMES
= Bl [ AT (i € X O, ) () > BAD A

<cpa (yJ: A ly(x € X:C(b, £)(x) > A})dA

# [ AT ({x € X1l (Ta(FD GO+ (Mol 1F17) 000 ™) > yA})n )
—cpr(y [ (Ct. ) duix)
sy bl [ (DGO + (M (£ 00) ) i),

(2.48)

provided that 8 > Sy and 0 < y < 1, where B is given in Lemma 2.6.
Hence by (2.4) and Lemma 2.1 and by taking y so small we can conclude that

1CB, H)llg < ClBIp (Ma(1F D) llg + 1My, o (LF1P) 11750 )- (2.49)
According to Lemmas 2.1 and 2.2 it follows
IC(b, f)llg < Clibllyp I1f1lp. (2.50)

Suppose now that u(X) < o. Since C(b,f) = C(b —a, f), for every a € C, we can
assume, without loss of generality, that [, bdu = 0. Then Lemma 2.6 leads, for every

feLr(X,u),to
JX (Cb, F)(x)) dp(x)

- qujo A p(fx € X1 C(b, f)(x) > BA})A

0

b1, L llp (Co/p (X))~
scw( [ Ny [ (€ 00) du ()
(2.51)
y 1 [ (1170 + 001717 00) ") )

< Cﬁq(nbn?, LI +ij (C(b, f)(x)) du(x)

+y Bl L (Ta(1£1) 60+ My (117 6007 da(x) ),

when B > o and 0 < y < 1, Bp being as in Lemma 2.6.
Thus we deduce from Lemmas 2.1 and 2.2 that

IC D, g < Clbllsp L - (2.52)
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Now we note that

b(y)f(y)
X\B(x,e) 0(x,y)1«

[b,Ia](f)(x) = lim (b(X) &du(y) - du()f))

€~0+ X\B(x,e) 0(x,y)1-«

f)
X\B(x,e) O(x, )1«

[ P9 ho)
‘[X\B(X,e) S(x,y)l-« f(y)du(y))

= Elir(g ((b(x)—be(X)) au(y)

Y b(y) —be(x)
B ell%}f .[X\B(x,e) 5(X,y)1’°‘ f('y)d“(y)’
(2.53)
for every f € LP(X,u), and a.e. x € X.
Then
I[b, 1a]ll, < [IC (B, Nl (2.54)

for each f € LP (X, ).
To finish the proof it is sufficient to take into account [3, Lemma 2.5] and Fatou’s
lemma. O
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