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for the result of Smarzewski (1991). Our theorems also improve recent theorems due to
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1. Introduction. Let E be a real Banach space and letC be a nonempty closed convex
subset of E. Then a mapping T of C into itself is called nonexpansive if ‖Tx−Ty‖ ≤
‖x−y‖ for all x,y ∈ C . A mapping T of C into itself is called λ-firmly nonexpansive
if there exists λ∈ (0,1) such that

‖Tx−Ty‖ ≤ ∥∥(1−λ)(x−y)+λ(Tx−Ty)
∥
∥ ∀x,y ∈ C. (1.1)

It is clear that every λ-firmly nonexpansive mapping is nonexpansive. For a mapping
T of C into itself, we consider the following iteration scheme: x1 ∈ C ,

xn+1 =αnT
[
βnTxn+

(
1−βn

)
xn
]+(1−αn

)
xn ∀n≥ 1, (1.2)

where {αn} and {βn} are real sequences in [0,1]. Such an iteration scheme was intro-
duced by Ishikawa [5]; see also Mann iteration scheme (corresponding to the choice
βn = 0 for all n∈N) [6]. Now let C be a nonempty convex subset of a Banach space E,
and let T , S be mappings of C into itself. Then, for an x1 ∈ C , we consider the iterates
{xn} defined by

xn+1 =αnTyn+
(
1−αn

)
Sxn,

yn = βnTxn+
(
1−βn

)
xn ∀n≥ 1, (1.3)

where αn and βn satisfy 0 < a ≤ αn, βn ≤ b < 1. If S = I, the identity mapping,
the iterates (1.3) are reduced to the above special case due to Ishikawa [5]. In 1991,
Smarzewski [10] proved the following result: let E be a uniformly convex Banach space
and let C = ⋃n

i=1Ci be a union of nonempty bounded closed convex subsets Ci of E
and suppose T : C → C is λ-firmly nonexpansive for some λ ∈ (0,1). Then T has
a fixed point in C . The result above is no longer true if T is merely nonexpansive,
even in one-dimensional space; see [10]. Recently, Sharma and Sahu [9] studied the
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convergence of the Mann and Ishikawa iteration methods to fixed points for the result
of Smarzewski [10].
In this paper, we first show that the iterates {xn} and {yn} defined by (1.3) converge

weakly to the same common fixed point of T and S when E is a uniformly convex
Banach space with Opial’s condition or Fréchet differentiable norm. Next, we show
that the iterates {xn} defined by (1.2) converge weakly to a fixed point of T when E
is a uniformly convex Banach space with Opial’s condition. Finally, we show that if
E is uniform convex and if the ranges of T are contained in a compact subset of C ,
the iterates {xn} defined by (1.2) converge strongly to a fixed point of T . This paper
also improves recent theorems due to Sharma and Sahu [9] using ideas of Takahashi-
Kim [12].

2. Preliminaries. Throughout this paper, we denote by E and E∗ a real Banach
space and the dual space of E, respectively. The value of x∗ ∈ E∗ at x ∈ E is denoted
by 〈x,x∗〉. Let C be a nonempty closed convex subset of E and let T be a mapping
from C into itself. Then we denote by F(T) the set of all fixed points of T , i.e., F(T)=
{x ∈ C : Tx = x}. We also denote by N the set of all natural numbers and by R and R+
the sets of all real numbers and all nonnegative real numbers, respectively. coAmeans
the closure of the convex hull of A. A Banach space E is called uniformly convex if for
each ε > 0 there is a δ > 0 such that for x,y ∈ E with ‖x‖,‖y‖ ≤ 1 and ‖x−y‖ ≥ ε,
‖x+y‖ ≤ 2(1−δ) holds. When {xn} is a sequence in E, then xn → x (resp., xn ⇀ x,
xn

∗⇀ x) denote strong (resp., weak, weak∗) convergence of the sequence {xn} to x.
A Banach space E is said to satisfy Opial’s condition [7] if for any sequence {xn} in E,
xn ⇀ x implies that

limsup
n �→∞

‖xn−x‖< limsup
n �→∞

‖xn−y‖ ∀y ∈ E with y �= x. (2.1)

If I−T is demiclosed at zero [1], i.e., for any sequence {xn} in C , the conditions xn → x
weakly and xn−Txn → 0 strongly imply x−Tx = 0. With each x ∈ E, we associate
the set

Jφ(x)= {x∗ ∈ E∗ :
〈
x,x∗

〉= ‖x‖‖x∗‖ and ‖x∗‖ =φ
(‖x‖)} , (2.2)

where φ : R+ → R+ is a continuous and strictly increasing function with φ(0) = 0
and φ(∞) = ∞. Then Jφ : E → 2E∗ is said to be the duality mapping. Suppose that
Jφ is single-valued. Then Jφ is said to be weakly sequentially continuous if for each

{xn} ∈ E with xn ⇀ x, then Jφ(xn) ∗⇀ Jφ(x). For abbreviation, we set J := Jφ. In all
our proofs we assume, without loss of generality, that J is normalized. We know that
if E admits a weakly sequentially continuous duality mapping, then E satisfies Opial’s
condition; see [4]. Let S(E) = {x ∈ E : ‖x‖ = 1}. Then the norm of E is said to be
Gâteaux differentiable (and E is said to be smooth) if

lim
t→0

‖x+ty‖−‖x‖
t

(2.3)

exists for each x and y in S(E). It is also said to be Fréchet differentiable if, for each
x ∈ S(E), the limit (2.3) is attained uniformly in y ∈ S(E). All Hilbert spaces and
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lp (1< p <∞) satisfy Opial’s condition, while Lp with 1< p �= 2<∞ do not. It is well
known that if E is smooth, then the duality mapping J is single-valued and strong-
weak∗ continuous; for more details, see [2] or [11].

3. Convergence theorems. We first begin with the following.

Lemma 3.1 (see [8]). Let E be a uniformly convex Banach space, 0 < b ≤ tn ≤ c < 1
for all n ≥ 1, and a ≥ 0. Suppose that {xn}∞n=1 and {yn}∞n=1 are sequences of E such
that limsupn→∞‖xn‖ ≤ a, limsupn→∞‖yn‖ ≤ a, and limn→∞‖tnxn+(1−tn)yn‖ = a.
Then limn→∞‖xn−yn‖ = 0.
Using Lemma 3.1, we have the following.

Lemma 3.2. Let C = ⋃n
i=1Ci be a union of nonempty closed convex subsets Ci of a

uniformly convex Banach space E and let T ,S : C → C be λ-firmly nonexpansive for
some λ ∈ (0,1) and tT(sTx+(1−s)x)+(1− t)Sx ∈ C for all x ∈ C and s,t ∈ (0,1).
Then F(T)∩F(S) is nonempty if and only if the iterates {xn} defined by (1.3) is bounded,
{xn−Txn} and {xn−Sxn} converge strongly to zero as n→∞.

Proof. Let w be a common fixed point of T and S. Since T and S are λ-firmly
nonexpansive for some λ ∈ (0,1), it is easy to check that ‖xn+1−w‖ ≤ ‖xn−w‖ for
all n ≥ 1. So, {xn} is bounded and limn→∞‖xn−w‖ exists. Put c = limn→∞‖xn−w‖.
Since T is λ-firmly nonexpansive for some λ∈ (0,1), we obtain

‖Tyn−w‖ ≤ ∥∥(1−λ)(yn−w)+λ(Tyn−w)
∥
∥

≤ (1−λ)‖yn−w‖+λ‖Tyn−w‖, (3.1)

and thus ‖Tyn−w‖ ≤ ‖yn−w‖. Taking limsupn→∞ in both sides, we obtain

limsup
n �→∞

‖Tyn−w‖ ≤ limsup
n �→∞

‖yn−w‖ ≤ limsup
n �→∞

‖xn−w‖ = c. (3.2)

Furthermore, since

lim
n→∞

∥
∥αn(Tyn−w)+(1−αn)(Sxn−w)

∥
∥= lim

n→∞‖xn+1−w‖ = c, (3.3)

by Lemma 3.1, we have limn→∞‖Tyn−Sxn‖ = 0. Since
‖xn+1−w‖ ≤αn‖Tyn−w‖+(1−αn)‖xn−w‖

≤αn‖yn−w‖+(1−αn)‖xn−w‖, (3.4)

we have

‖xn+1−w‖−‖xn−w‖
αn

≤ ‖yn−w‖−‖xn−w‖. (3.5)

Since {αn} is assumed to be bounded away from zero, we obtain

c ≤ liminf
n �→∞ ‖yn−w‖. (3.6)

Since ‖yn−w‖ ≤ ‖xn−w‖ for all n≥ 1, we have

c = lim
n→∞‖yn−w‖ = lim

n→∞
∥
∥βn(Txn−w)+(1−βn)(xn−w)

∥
∥. (3.7)
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By Lemma 3.1, we have limn→∞‖Txn−xn‖ = 0. Since
‖xn−Sxn‖ ≤ ‖xn−Txn‖+‖Txn−Tyn‖+‖Tyn−Sxn‖

≤ (1+βn)‖xn−Txn‖+‖Tyn−Sxn‖, (3.8)

we have xn−Sxn → 0 as n→∞.
Conversely, suppose that {xn} is bounded, {xn −Txn} and {xn − Sxn} converge

strongly to zero asn→∞. Then we can consider a real-valued function g on C given by

g(v)= limsup
n �→∞

‖xn−v‖ for each v ∈ C. (3.9)

By [11], we know that g : C → R is continuous and convex. Further, if ‖vn‖ → ∞,
then g(vn)→∞. So, we have an element v0 ∈ C such that g(v0) = r =minv∈C g(v).
Set M = {v0 ∈ C : r = g(v0)}. Then M is bounded, closed, and convex. Further, M is
invariant under T . In fact, let z ∈M . Then, for some λ∈ (0,1), we have

limsup
n �→∞

‖Txn−Tz‖ ≤ limsup
n �→∞

∥
∥(1−λ)(xn−z)+λ(Txn−Tz)

∥
∥

≤ (1−λ) limsup
n �→∞

‖xn−z‖+λ limsup
n �→∞

‖Txn−Tz‖ (3.10)

and thus

limsup
n �→∞

‖xn−Tz‖ = limsup
n �→∞

‖Txn−Tz‖ ≤ limsup
n �→∞

‖xn−z‖. (3.11)

Hence Tz ∈M . Similarly,M is invariant under S. Since E is uniformly convex and hence
M consists of one point, we have a common fixed point of T and S in M ; see [13].

Remark 3.3. In Lemma 3.2, if F(T)∩F(S)≠∅, then we furthermore see that {yn−
Tyn} and {yn−Syn} converge strongly to zero as n→∞.
We first consider the following weak convergence of λ-firmly nonexpansive map-

pings in a Banach space.

Theorem 3.4. Let E be a uniformly convex Banach space satisfyingOpial’s condition
and let C = ⋃n

i=1Ci be a union of nonempty closed convex subsets Ci of E and let T ,
S : C → C be λ-firmly nonexpansive for some λ∈ (0,1) with a common fixed point and
tT(sTx+ (1− s)x)+ (1− t)Sx ∈ C for all x ∈ C and s,t ∈ (0,1). Then the iterates
{xn} and {yn} defined by (1.3) converge weakly to a common fixed point of T and S.
Further, the two w-limits of {xn} and {yn} coincide.

Proof. Let z be a common fixed point of T and S. Then, as in the proof of Lemma
3.2, we have limn→∞‖xn−z‖ exists. Let z1 and z2 be two weak subsequential limits
of the sequence {xn}. We claim that the conditions xni ⇀ z1 and xnj ⇀ z2 imply
z1 = z2 ∈ F(T)∩F(S). We first show that z1,z2 ∈ F(T). In fact, if Tz1 ≠ z1, then, by
Opial’s condition, we have limsupi→∞‖xni −z1‖ < limsupi→∞‖xni −Tz1‖. Since T is
λ-firmly nonexpansive for some λ∈ (0,1), we obtain

limsup
i �→∞

‖Txni−Tz1‖ ≤ limsup
i �→∞

∥
∥(1−λ)

(
xni−z1

)+λ
(
Txni−Tz1

)∥∥

≤ (1−λ) limsup
i �→∞

‖xni−z1‖+λ limsup
i �→∞

‖Txni−Tz1‖.
(3.12)
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By Lemma 3.2, we have

limsup
i→∞

‖xni−Tz1‖ ≤ limsup
i→∞

‖xni−z1‖. (3.13)

This is a contradiction. Hence we have Tz1 = z1. Similarly, we have z2 ∈ F(T). Next,
we show z1 = z2. If not, by Opial’s condition,

lim
n→∞‖xn−z1‖ = lim

i→∞
∥
∥xni−z1

∥
∥< lim

i→∞
∥
∥xni−z2

∥
∥

= lim
n→∞‖xn−z2‖ = lim

j→∞
∥
∥xnj −z2

∥
∥

< lim
j→∞

∥
∥xnj −z1

∥
∥= lim

n→∞‖xn−z1‖.
(3.14)

This is a contradiction. Hence we have z1 = z2. By using the same method as above,
we have z1 = z2 ∈ F(S). This implies that {xn} converges weakly to a common fixed
point of T and S. As in the proof of Lemma 3.2, we have limn→∞‖yn − z‖ exists.
Let yni ⇀ w1 and ynj ⇀ w2. Then, by using the same method as above, we obtain
w1 = w2 ∈ F(T)∩F(S). Further, since ‖xn−yn‖ = βn‖xn−Txn‖ → 0 as n→∞, we
readily see that two w-limits of {xn} and {yn} coincide.

Theorem 3.5. Let E be a uniformly convex Banach space with a Fréchet differen-
tiable norm. Let C =⋃n

i=1Ci be a union of nonempty closed convex subsets Ci of E and
let T ,S : C → C be λ-firmly nonexpansive for some λ∈ (0,1) with a common fixed point,
and let I−T , I−S be demiclosed at zero and tT(sTx+ (1− s)x)+ (1− t)Sx ∈ C for
all x ∈ C and s,t ∈ (0,1). Then the iterates {xn} and {yn} defined by (1.3) converge
weakly to a common fixed point of T and S. Further, the two w-limits of {xn} and {yn}
coincide.

Proof. Since F(T)∩ F(S) is nonempty, it follows from Lemma 3.2 that {xn} is
bounded, {xn−Txn} and {xn−Sxn} converge strongly to zero as n→∞. There exists
a subsequence {xni} of {xn} and a point z ∈ C such that xni ⇀ z. Since I−T and I−S
are demiclosed at zero, we obtain z ∈ F(T)∩F(S). For y,z ∈ F(T)∩F(S), as in the
proof of Lemma 2 [12], we have limn→∞〈xn,J(y−z)〉 exists. To prove Theorem 3.5,
assume xni ⇀ z1 and xnj ⇀ z2. Then, for y,z ∈ F(T)∩F(S), we have

〈
z1,J(y−z)

〉= lim
i→∞

〈
xni ,J(y−z)

〉= lim
n→∞

〈
xn,J(y−z)

〉

= lim
j→∞

〈
xnj ,J(y−z)

〉= 〈z2,J(y−z)
〉
.

(3.15)

Setting y = z1 and z = z2, we obtain 〈z1−z2,J(z1−z2)〉 = 0 and hence z1 = z2. This
implies that {xn} converges weakly to a common fixed point of T and S. By using the
same method as above, {yn} converges weakly to a common fixed point of T and S.
Further, since xn−yn → 0 as n→∞, the remaining part of the proof is trivial.

Theorem 3.6. Let E be a uniformly convex Banach space satisfying Opial’s condi-
tion, and let C =⋃n

i=1Ci be a union of nonempty bounded closed convex subsets Ci of
E and let T : C → C be λ-firmly nonexpansive for some λ ∈ (0,1) and tT(sTx+ (1−
s)x)+(1−t)x ∈ C for all x ∈ C and s,t ∈ (0,1). Then for any initial data x1 in C , the
iterates {xn} defined by (1.2), where {αn} and {βn} are chosen so that αn ∈ [a,b] and
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βn ∈ [0,b] or αn ∈ [a,1] and βn ∈ [a,b] for some a,b with 0 < a ≤ b < 1, converge
weakly to a fixed point of T .

Proof. The existence of a fixed point follows from Smarzewski [10]. Let w be a
fixed point of T . Then, as in the proof of Lemma 3.2, we have limn→∞‖xn−w‖ exists.
Put c = limn→∞‖xn −w‖. Since T is λ-firmly nonexpansive for some λ ∈ (0,1), we
obtain

∥
∥Tyn−w

∥
∥≤ ∥∥(1−λ)(yn−w)+λ(Tyn−w)

∥
∥

≤ (1−λ)‖yn−w‖+λ‖Tyn−w‖ (3.16)

and thus ‖Tyn−w‖ ≤ ‖yn−w‖. Taking limsupn→∞ in both sides, we obtain

limsup
n �→∞

‖Tyn−w‖ ≤ limsup
n �→∞

‖xn−w‖ = c. (3.17)

Further, we have

lim
n→∞

∥
∥αn(Tyn−w)+(1−αn)(xn−w)

∥
∥= lim

n→∞‖xn+1−w‖ = c. (3.18)

If 0< a≤αn ≤ b < 1 and 0≤ βn ≤ b < 1, by Lemma 3.1, we have limn→∞‖Tyn−xn‖ =
0. Since

‖Txn−xn‖ ≤ ‖Txn−Tyn‖+‖Tyn−xn‖
≤ ‖xn−yn‖+‖Tyn−xn‖
≤ βn‖Txn−xn‖+‖Tyn−xn‖,

(3.19)

we obtain

(1−b)‖Txn−xn‖ ≤ (1−βn)‖Txn−xn‖ ≤ ‖Tyn−xn‖. (3.20)

Therefore ‖xn−Txn‖→ 0 as n→∞. On the other hand, we have, for all n≥ 1,
‖xn+1−w‖ ≤αn‖Tyn−w‖+(1−αn)‖xn−w‖

≤αn‖yn−w‖+(1−αn)‖xn−w‖ (3.21)

and hence

‖xn+1−w‖−‖xn−w‖
αn

≤ ‖yn−w‖−‖xn−w‖. (3.22)

If 0< a≤αn ≤ 1 and 0< a≤ βn ≤ b < 1, we obtain

c ≤ liminf
n �→∞ ‖yn−w‖. (3.23)

Since ‖yn−w‖ ≤ ‖xn−w‖ for all n≥ 1, we obtain
c = lim

n→∞‖yn−w‖ = lim
n→∞

∥
∥βn(Txn−w)+(1−βn)(xn−w)

∥
∥. (3.24)

By Lemma 3.1, we have limn→∞‖Txn−xn‖ = 0. As in the proof of Theorem 3.4, the
result follows.

Corollary 3.7. Let E be a uniformly convex Banach space possessing a weakly
sequentially continuous duality mapping and let C = ⋃n

i=1Ci be a union of nonempty
bounded closed convex subsets Ci of E and let T : C → C be a λ-firmly nonexpansive for
some λ∈ (0,1) and let I−T be demiclosed at zero and tTx+(1−t)x ∈ C for all x ∈ C
and t ∈ (0,1). Let {αn} be a real sequence satisfying 0< a≤αn ≤ b < 1 for all n∈N.
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Pick x1 ∈ C and define xn+1 =αnTxn+(1−αn)xn for all n∈N . Then {xn} converges
weakly to a fixed point of T .

Corollary 3.8. Let E be a uniformly convex Banach space possessing a weakly
sequentially continuous duality mapping and let C = ⋃n

i=1Ci be a union of nonempty
bounded closed convex subsets Ci of E and let T : C → C be λ-firmly nonexpansive for
some λ∈ (0,1) and let I−T be demiclosed at zero and tT(sTx+(1−s)x)+(1−t)x ∈
C for all x ∈ C and s,t ∈ (0,1). Let {αn} and {βn} be two sequence real sequence
satisfying 0< a≤αn ≤ b < 1 and 0< c ≤ βn ≤ d < 1 for all n∈N . Pick x1 ∈ C and the
iterates {xn} defined by (1.2). Then {xn} converges weakly to a fixed point of T .

Next, we consider a strong convergence of λ-firmly nonexpansive mapping in a
Banach space.

Theorem 3.9. Let E be a uniformly convex Banach space and let C =⋃n
i=1Ci be a

union of nonempty bounded closed convex subsets Ci of E with Ci ⊆ Ci+1. Suppose that
T : C → C is λ-firmly nonexpansive for some λ∈ (0,1) such that T(C) is contained in a
compact subset of C . Then for any initial data x1 in C , the iterates {xn} defined by (1.2),
where {αn} and {βn} are chosen so that αn ∈ [a,b] and βn ∈ [0,b] or αn ∈ [a,1] and
βn ∈ [a,b] for some a,b with 0< a≤ b < 1, converge strongly to a fixed point of T .

Proof. Note that {xn} is well defined. The existence of a fixed point follows from
Smarzewski [10]. By Mazur’s theorem [3], co({x1}∪T(C)) is a compact subset of C
containing {xn}. There exist a subsequence {xm} of the sequence {xn} and a point
z ∈ C such thatxm → z. As in the proof of Theorem 3.6, {xn−Txn} converges strongly
to zero as n→∞. Since T is λ-firmly nonexpansive for some λ∈ (0,1), we obtain

‖z−Tz‖ ≤ ‖z−xm‖+‖xm−Txm‖+‖Txm−Tz‖
≤ 2‖z−xm‖+‖xm−Txm‖ �→ 0 as m �→∞.

(3.25)

Hence Tz = z. As in the proof of Lemma 3.2, we have limn→∞‖xn−z‖ exists. Hence
we have limn→∞‖xn−z‖ = 0.

Remark 3.10. In Theorem 3.9, if T ,S : C → C are λ-firmly nonexpansive for some
λ∈ (0,1) such that T(C) and S(C) are contained in a compact subset of C and F(T)∩
F(S) ≠∅, then the iterates {xn} and {yn} defined by (1.3) converge strongly to the
same common fixed point of T and S.
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