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ABSTRACT. We prove the fact l.gl.dimR[x] = (l.gl.dimR) + 1, where 1.gl.dim means the
left global dimension by using inverse polynomial modules and injective dimensions. The
classical way to prove the factl.gl.dimR[x] = (I.gl.dimR) + 1 is using polynomial modules
and projective dimensions.
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1. Introduction. The classical way to prove the factl.gl.dimR[x] = (l.gl.dimR) +1,
where I. gl. dim means the left global dimension is using the construction M[x] (wWhere
M is any left R-module). In this paper, we give another proof of this fact by using
inverse polynomial module M[x~!] and injective dimensions instead of polynomial
module M[x] and projective dimensions. Northcott [3] and McKerrow [1] showed that
the polynomial module M[x] and the inverse polynomial module M[x~1] are not
isomorphic as left R[x]-modules by showing that if R is a left noetherian ring and
E = 0 is an injective left R-module, then E[x~!] is an injective left R[x]-module while
E[x] is not an injective left R[x]-module. Park in [5] also showed that if P + 0 is
a projective left R-module, then P[x~!] is not a projective left R[x]-module while
P[x] is a projective left R[x]-module. Inverse polynomial modules were developed in
[1, 3, 4, 5], and recently in [2].

DEFINITION 1.1. Let R be a ring and M be a left R-module, then M[x~'] is a left
R[x]-module such that

x(mo+mx 1+ +mux) =myp+mox 4+ ! (1.1)
and such that
rimo+mix '+ +mux™) =rmo+rmix T+ rmxTh, (1.2)

where 7 € R. Similarly, we can define M[[x~1]] as a left R[x]-module.

LEMMA 1.2. If E[[x~']] is an injective left R[x]-module, then E is an injective left
R-module.

PROOF. LetI C R be aleft ideal and let f : I — E be a R-linear map. Then the map
INx 1] = E[x "I(E 2 grix ™t = X2, f(r)x~") is an R[x]-linear map so can be
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extended to a map
R[[x7']] = E[[x']]. (1.3)

Since xR = 0 (for R ¢ R[[x~']]), xg(R) = 0 in E[[x~']]. But this implies g(R) C E
(with E ¢ E[[x~']]). Then the map R — E agreeing with g is an R-linear map and
extends I — E. So E is an injective R-module. O

THEOREM 1.3. Let M be a left R-module, then
injdimg; (M[[x~1]]) = injdimg (M). (1.4)

PROOF. LetR bearing and E be an injective left R-module. Define ¢ : Homg (R[x ], E)
- E[[x7'1]1 by ¢(f) = fF(1) + fFO)x ' + f(x?)x2 + - - -, then Homg (R[x],E) and
E[[x~']] are isomorphic as left left R[x]-modules. Since Hompg (R[x],E) is an injec-
tive left R[x]-module so is E[[x~']]. Suppose injdimg (M) = n and

0—M—E"—EFE' —... —F"—0 (1.5)
is an injective resolution of M. Then
0— M[[x']] = E°[[x]] — E'[[x']] — -+ — E"[[x"']] —0 (1.6)
is an injective resolution of M[[x~1]]. Let
K":ker(E"—»E”l) for0<i<mn. (1.7)

Then K' is not an injective R-module for 0 < i < n. So by the above lemma K[[x~']]
is not an injective R[x]-module. So then we get

injdimg; (M[[x71]]) = n. (1.8)
Suppose injdimg (M) =  and
0—M—E"—E'— ... —F"— ... (1.9)
is an injective resolution of M. Then
0 — M[[x1] — E[[x7 )] — B [x )] — - — E"{[x 1] — -+ (110)

is aninjective resolution of M[[x~1]]. But K’ is not an injective R-module for all i. Thus
K'[[x~!]]is not an injective R[x]-module for all i. Therefore, injdimg,(M[[x~*]]) =
co. Similarly, if

injdimg;,; (M[[x~1]]) =7, then injdimg (M) = n (1.11)
and if
injdimpg) (M[[x7']]) = , then injdimg (M) = . (1.12)

Hence, injdimg,(M[[x~!]]) = injdimg (M). O
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THEOREM 1.4. Let M, M[[X~']] be left R[x]-modules. Then there is a short exact
sequence of R[x]-modules

0—M— M[[x7']] — M[[x"']] — 0. (1.13)
PROOF. Let ¢p: M — [[x~1]] be defined by
PV =y+xy)x T+ (x*y)x 2+ (xPy)x P+, foryeM, (1.14)
then ¢ is an injective R[x]-linear map. Let  : M[[x~1]] — M[[x~1]] be defined by

Y(mo+mix P +mex+--) = (my—xmg) + (Mo —xmy)x!

+on, (1.15)
then y is a surjective R[x]-linear map. Let y be an element of M, then

(Wod)V) =w(y+(xy)x '+ (x*y)x2+--+)

(1.16)
=(xy—-xy)+(x2y-x*y)x '+ (x3y-x3y)x 2+ =0
Therefore, image (¢) C ker(y). Let mg + mix~! + myx~2 + - -+ be an element of
ker(y), then
pmo+mix P +mox+--)
1 ) (1.17)
= (mp—xmp) + (M2 —xmy)x 1+ (M3 —xmy)x “+--- =
Therefore, m;,; = xm;, foralli=0,1,2,.... Then, for my € M,
P (mo) =mo+ (xmo)x '+ (x*mo)x 2+ - -
. (1.18)
=mo+mix L +mox%+---, since m;,; =xm;.

So, mg+mix~1+- - €image (¢). Thus, ker(y) C image (¢). Therefore, image (¢p) =
ker(y).Hence, 0 = M — M[[x~1]] = M[[x~']] — O is a short exact sequence of R[x]-
modules. O

COROLLARY 1.5. l.gl.dimR <l.gl.dimR[x] <l.gl.dimR +1.

PROOF. The first inequality follows from Theorem 1.3. The second follows from
Theorems 1.4 and 1.3. O

2. Main theorem

THEOREM 2.1. l.gl.dimR[x] = (l.gl.dimR) +1.

PROOF. From Corollary 1.5 we see that we only need argue that if M =+ 0 is a left R-
module and if injdimM = n < oo, then there is a left R[x]-module N with injdimN =
n+ 1. In fact we show that M itself can be made into such an R[x]-module. Let M = 0
be a left R-module and let injdimM = n < o, and make M into an R[x]-module with
xM = 0. By induction on n. Consider the short exact sequence of R[x]-modules

0—M— M[[x7']] — M[[x"']] — 0. (2.1)
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From this short exact sequence we see that injdimg, M < n + 1, since
inj dimR[x]M[[xfl]] = injdimy M = n. So we only need to prove that for any n, if
injdimg M = n, then injdimg, M > n.If n = 0, then M is an injective left R-module.
But any injective R[x]-module is x-divisible. Also xM = 0. So M is not x-divisible.
Hence, M is not an injective R[x]-module. Now suppose n = 1. Then we have an exact
sequence

E
0—M—EFE— ——0 2.2
M (2.2)

with E and E/M injective left R-modules. Since M is a submodule of E[[x~']] which is
an injective left R[x]-module as left R[x]-module, we have the short exact sequence
of R[x]-modules

0—»M—»E[[x’1]]—»M—»O. (2.3)
M

Now we want to argue E[[x~1]]/M is not an injective left R[x]-module. Suppose
E[[x~1]11/M is an injective left R[x]-module. Let I = (x) C R[x]. Consider the sub-
module of all zin E[[x~1]]/M such that xz = 0. Then this submodule of E[[x~1]]/M is
isomorphicto E/M®Mx~! asan R[x]/(x) = R module, i.e., is isomorphic to E/M & M.
So if E[[x~1]]/M were an injective left R[x]-module, then E/M & M, and so M, would
be an injective left R-module. Therefore by this contradiction we see that E[[x~1]]/M
is not an injective left R[x]-module. Now we suppose injdimM = n > 1 and make the
induction hypothesis. Let

0—M—E—C—O0 (2.4)

be an exact sequence of left R-modules with E an injective left R-module. Then
injdimC = n — 1. Make this into an exact sequence of left R[x]-modules with xM =
0, xE = 0, and xC = 0. Then by the induction hypothesis injdimgE = 1,
injdimg[,;C = (n—1) +1 = n. Then since n > 1 we get that injdimg;, M = n + 1.
This implies 1.gl.dimR[x] = (l.gl.dimR) + 1. O
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