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A REMARK ON GWINNER’S EXISTENCE THEOREM
ON VARIATIONAL INEQUALITY PROBLEM
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Abstract. Gwinner (1981) proved an existence theorem for a variational inequality prob-
lem involving an upper semicontinuous multifunction with compact convex values. The
aim of this paper is to solve this problem for a multifunction with open inverse values.
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1. Introduction. In 1981, Gwinner [1] proved an existence theorem for a variational
inequality problem, which is an infinite dimensional version of Walras excess demand
theorem (see also Zeidler [5]).

Theorem 1.1. Let P and Q be nonempty compact convex subsets of locally convex
Hausdorff topological vector spaces X and Y , respectively. Let f : P×Q→R be contin-
uous. Let S : P →Q be a multifunction. Suppose that

(i) for each y ∈Q,{x ∈ P : f(x,y) < t} is convex for all t ∈R,
(ii) S is an upper semicontinuous multifunction with nonempty compact convex

values. Then there exist x0 ∈ P and y0 ∈ S(x0) such that f(x0,y0) ≤ f(x,y0)
for all x ∈ P.

In this paper, our aim is to obtain the above variational inequality for amultifunction
with open inverse values. We follow the method of Tarafdar and Yuan [4].

2. Preliminaries. In N ∈ N, let 〈N〉 be the set of all nonempty subsets of
{0,1,2, . . . ,N}, ∆N = co{e0,e1, . . . ,eN} be the standard simplex of dimension N, where
{e0,e1, . . . ,eN} is the canonical basis of RN+1, and for J ∈ 〈N〉, let ∆J = co{ej : j ∈ J}.
Horvath [2] proved the following result.

Lemma 2.1. Let X be a topological space and F : 〈N〉 → X. For each J ∈ 〈N〉, let
F(J) be a nonempty contractible subset of X and for all J, J′ ∈ 〈N〉 such that J ⊆ J′,
suppose that F(J) ⊆ F(J′). Then there exists a continuous function f : ∆N → X such
that f(∆J)⊂ F(J) for all J ∈ 〈N〉.
Also, we need the following fixed point theorem due to Lassonde [4].

Lemma 2.2. Let F :∆N →∆N be a multifunction such that F = Fn◦Fn−1◦···◦F1◦F0,
∆N

F0�������������������������������������������������������→ X1
F1�������������������������������������������������������→ X2

F2�������������������������������������������������������→ ··· Fn�������������������������������������������������������������→ Xn+1 = ∆N, where each Fi is either a single-valued
continuous function (in which case Xi+1 is assumed to be a Hausdorff topological space)
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or an upper semicontinuous multifunction with Fi(x), a nonempty compact convex
subset of Xi+1 (in which case Xi+1 is a convex subset of a Hausdorff topological vector
space). Then F has a fixed point.

3. Main theorem

Theorem 3.1. Let P as in Theorem 1.1 and Q be an arbitrary subset of a locally
convex Hausdorff topological vector space Y . Let f : P×Q→R be continuous and satisfy
condition (i) of Theorem 1.1. Let S : P →Q be a multifunction such that

(i) S−1(X) is open for all x ∈Q;
(ii) for each open set F ⊂ P, the set

⋂
y∈F S(y) is empty or contractible;

(iii) S(P) is compact and contractible. Then the conclusion of Theorem 1.1 holds.

Proof. Since P is compact, there exists a finite subset {x0,x1,x2, . . . ,xN} of S(P)
such that P =⋃Ni=0S−1(xi). Define F : 〈N〉 → S(P) by

F(J)=



⋂{
S(y) :y ∈⋂j∈J S−1

(
xj
)}

if
⋂
j∈J S−1(xj)≠∅,

S(P) otherwise.
(3.3.1)

It is clear that ify ∈⋂j∈J S−1(xj), then xj ∈ S(y) for all j ∈ J. Thus, F(J) is nonempty
and contractible. Further, F(J) ⊆ F(J′) whenever J ⊆ J′. By Lemma 2.1, there exists
a continuous function f : ∆N → S(K) such that f(∆J) ⊂ F(J) for all J ∈ 〈N〉. Let
{gi : i∈ {0,1,2, . . . ,N}} be a continuous partition of unity subordinated to the covering
{S−1(xi) : i ∈ {0,1, . . . ,N}}, that is, for each i, gi : P → [0,1] is continuous, {y ∈ P :
gi(y) ≠ ∅} ⊂ S−1(xi), and

∑N
i=0gi(y) = 1 for all y ∈ P. Now, define g : P → ∆N by

g(y)= (g0(y),g1(y), . . . ,gN(y)) for all y ∈ P. Then g is continuous. Further, g(y)∈
∆J(y) for all y ∈ P, where J(y) = {i : gi(y) ≠ 0}. Therefore, f ◦g(y) ∈ f(∆J(y)) ⊂
FJ(y) ⊂ S(y).
Consider T : S(P)→ P defined by T(y) = {z ∈ P : f(z,y) ≤ f(w,y) for all w ∈ p}.

For each y ∈ S(P), T(y) is nonempty since f assumes its minimum on the compact
set P . Also, it is closed and hence compact. Further, T(y) is convex. Indeed, let
z1 and z2 ∈ P be such that f(zi,y) ≤ f(w,y) for all w ∈ P and i = 1,2. By the as-
sumption on f , f

(
λz1+(1−λ)z2,y

) ≤ f(w,y) for all w ∈ P. Since f is continuous,
the graph of T , Gr(T)= {(y,z) :y ∈ S(P), z ∈ T(y)} is a closed subset of the compact
set S(P)×P. Then it follows that T is upper semicontinuous.
ConsiderG := g◦T ◦f :∆N →∆N. Now, by Lemma 2.2, there exists z0 ∈∆N such that

z0 ∈G(z0). Let y0 = f(z0). Then y0 ∈ f ◦g◦T ◦f(z0), that is, there exists x0 ∈ T(y0)
so that y0 ∈ f ◦g(x0)∈ S(x0). This completes the proof.
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