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ABSTRACT. We provide theorems extending both Kakutani and Browder fixed points the-
orems for multivalued maps on topological vector spaces, as well as some selection theo-
rems. For this purpose we introduce convex structures more general than those of locally
convex and non-locally convex topological vector spaces or generalized convexity struc-
tures due to Michael, van de Vel, and Horvath.
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1. Introduction. The origin of our fixed point theorem is the following two classical
results due to Fan, Glicksberg, and Kakutani [7, 8, 19] and Browder [3], respectively
(see also [31]).

THEOREM 1.1 (Kakutani fixed point theorem). Let X be a nonempty convex com-
pact subset of a locally convex Hausdorff topological vector space, and let F : X — X be
a u.s.c. multifunction with nonempty convex closed images. Then F has a fixed point.

THEOREM 1.2 (Browder fixed point theorem). Let X be a nonempty convex compact
subset of a Hausdorff topological vector space, and let G : X — X be a multifunction with
nonempty convex images and preimages relatively open in X. Then G has a fixed point.

Similarly, our selection theorem unites the following two results due to Michael [20]
and Browder [3] (see also [31]).

THEOREM 1.3 (Michael selection theorem). Let X be a paracompact Hausdorff
topological space, and let Y be a Banach space. Let T : X — Y be an Ls.c. multifunc-
tion having nonempty closed convex images. Then T has a continuous selection.

THEOREM 1.4 (Browder selection theorem). Let X be a paracompact Hausdorff
topological space, and let Z be any topological vector space. Let T : X — Z be a multi-
function having nonempty convex images and open preimages. Then T has a continu-
ous selection.

The main goal of this paper is to provide a uniform approach to these four results.
In recent years, these theorems have been generalized in numerous ways [1, 2, 4, 12,
17, 23, 24, 28, 29]. Our main theorems contain as immediate corollaries a number of
these results; however, we do not attempt to include all of them.

Our approach is based on Michael’s [20] and Browder’s techniques [3] and the study
of abstract convexity structures on topological spaces originated in works of
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Michael [21], van de Vel [30], Horvath [15], and others (see Section 12). Given a topolog-
ical (or uniform) space Y, van de Vel introduces the class of “convex” sets as a class of
subsets of Y closed under intersections. Horvath defines “convex hulls” of finite sub-
sets of Y. Michael, on the other hand, considers an analogue of convex combination
functions of vector spaces: ky, (do,...,dn, ao,---,dn) = >i—odidi, where (do,...,dy) is
an element of the n-simplex A,,, for certain combinations (ay,...,a,) of elements of
the space. For topological vector spaces, convex combination functions are continu-
ous with respect to dy,...,dy. But for locally convex topological vector spaces, these
functions are continuous with respect to ay,...,a, as well.

We follow Michael’s approach (Definition 1.5) because, as we will see, it is especially
convenient for selection and fixed point problems. For the former, ¥ does not have
to be “convex.” Following Michael, we avoid this situation, while in van de Vel’s and
Horvath’s constructions there is the largest “convex” set. Our construction extends
Michael’s definition in such a way that most of van de Vel’s and Horvath'’s fixed point
and selection results are included.

Assuming that @& is a base of the metric uniformity of a space Y, we state Michael’s
definition in a form equivalent to the original if Y is compact.

DEFINITION 1.5. A sequence of pairs {(M,,k,)} is a Michael’s convex structure if
foralln =0, M, C Y™, k,:ApxM, — Y (M, can be empty) and the following is
satisfied:

(a) if x € My, then ky(1,x) = x,

b) ifxeM,,n>1,i<n,thend;x € M,,_;,andif t; =0 fort € A, then k,, (t,x) =
ky,-1(0it,0;x), where 0; is the operator that omits the ith coordinate,

(c) if xeMy,, n>i>0,and x; = x;.1, then for t € A,

kn(tax) = kn—l(tl,---,ti—l,ti+ti+1,ti+2,---,tn,aix), (1-1)

(d) for each x € M,,, the map k, (-,x) is continuous,
(e) forany U € % thereisa W € 3B such thatforalln >0, t € A, x = (X0,..-,Xn),
¥y = (Y0y.-+,Yn) € My, we have

(xi,yi) €W, 0<iz<n, = (kn(t,x),kn(t,y)) e U. (1.2)

We relax Michael’s conditions in several ways (Section 2). First, we do not assume
that Y is metrizable but only uniform. Second, we allow the convex combination func-
tion to be multivalued. Third, instead of a sequence of maps {k,};_; connected by
conditions (b) and (c), we use a sole multifunction C from a subset of the set A(Y) of
all formal convex combinations of elements of Y into Y, which makes it easier to prove
existence of C. We consider a certain convexity multifunction C satisfying continuity
conditions (D) and (E) similar to conditions (d) and (e) above. Condition (E) allow us to
carry out most of the selection and fixed point constructions (Sections 7 and 10) and
only as the last step do we consider various continuity conditions with respect to t
(condition (D)), which ensures continuity of selections and existence of fixed points of
continuous maps. The conditions of Michael’s definition do not hold for non-locally
convex topological vector spaces and we have to deal with them in order to obtain The-
orems 1.2 and 1.4. To resolve this problem, we introduce a second topology Z on Y.
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As a result, the convexity satisfies the two continuity requirements, but with respect
to two (possibly different) topologies. Consequently, by choosing an appropriate topo-
logical structure on Y, we are able to obtain Theorems 1.1 (for Z =Y) and 1.2 (for Y
discrete) as immediate corollaries of our fixed point result (Theorem 10.2). In the same
manner we derive Theorems 1.3 and 1.4 from our selection theorem (Theorem 7.4).

We also use the fact that the presence of convex combinations reduces the question
of existence of fixed points for a certain class of multifunctions on topological spaces
to the question of existence of fixed points of multifunctions on simplexes (see [2, 24]).
This enables us to use the Brouwer fixed point theorem for A,, or, more generally,
the theorem below that is contained in Corollary 2.3 of Gorniewicz [9] (for a stronger
result, see [26]). A multivalued map F : X — Y is called admissible in the sense of
Gorniewicz if it is closed valued u.s.c. and there exist a topological space Z and two
single-valued continuous maps p: Z — X, q: Z — Y such that p is proper and for any
x € X, (i) p~(x) is acyclic, and (ii) g(p~'(x)) C F(x). Many fixed point theorems in
the existing literature will be shown to be reducible to this theorem.

THEOREM 1.6. Any admissible map in the sense of Gorniewicz and, in particular,
any composition of acyclic multifunctions, F : A,, — Ay has a fixed point.

Another purpose of this paper is to obtain fixed point theorems for topological
spaces without linear or convex structure. To achieve this goal we need to show that
a given topological space can be equipped with a convexity structure; that is, to prove
existence of convex combination functions. As a corollary we obtain a generalization
of the following theorem due to Eilenberg and Montgomery [5].

THEOREM 1.7 (Eilenberg-Montgomery fixed point theorem). Let X be an acyclic
compact ANR, and let F : X — X be an acyclic multifunction. Then F has a fixed point.

2. Convexity on uniform spaces. Throughout the paper, we fix an infinite cardinal
number w and an index set I with |I| = w. We assume that w is large enough in the
sense that w = 2X! for each space X involved. Let A, be the infinite dimensional
simplex spanned by the unit vectors ey, k € I, of [0,1]®. For any nonempty subset
K of I, let Agx denote the convex hull of the set {ex : k € K} in A, (i.e., Ak = {d =
(di)ier EAw 11 ¢ K = d; =0}) and let A,, be any n-simplex in A, spanned by some
unit vectors. We let A(Y) = A, X Y and assume the following.

CONVENTION. If (d,a) €e A(Y),thend; €[0,1], a; €Y, i €I, are the coordinates
ofde[0,1]%, aeYX.
For any A C Y, we define the set of all formal convex combinations of elements of A:

A(A) = {(d,a) EA(Y):d; +0 = a; € A, i € I}. 2.1)

The following are also fixed:

(c1) Y is a uniform space with a minimal (uniform) open base % (i.e., one with the
smallest cardinality), partially ordered by inclusion,

(c2) Z is a topological space on Y (the topology of Z is not necessarily the uniform
topology of Y),

(c3) V1 is a class of multifunctions that will be specified later,
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(c4) o c2Y\{@} is a class of subsets of Y called admissible sets (s may be empty),
(c5) conv:sl — 2Y\{@} is a function, and conv(A) is called the convex hull of A € A,
(c6) € ={Aed:conv(A) Cc A} U {T} is the set of convex subsets of Y,

(€7) Q =UaeqA(A), Q' is a subset of A(Y) containing UaecqyweaA(B(A,W)),

(c8) C:Q’ — Y is a multifunction called convex combination.

DEFINITION 2.1 (main definition). The triple k = (Y, C, Z) is called a convexity as-
sociated with #,conv,¥, Q' (this part will often be suppressed) if the following con-
ditions are satisfied:

(D) foranya e Y?,if A, x{a} Cc Q’, n = 0, then the multifunction C(-,a) : A, — Z

belongs to ¥,
(E) for any U € %, there exists W € % such that

C(A(B(A,W))) c B(conv(A),U) for all admissible A C Y. (2.2)

If Q" = A(Y), then the convexity is called global.

PROPOSITION 2.2. If(Y,C,Z) is a convexity, then the following condition is satisfied:
(y) C(A(A)) cconv(A), the closure of conv(A) in Y, for all admissible A CY.

3. A strong convexity. LetF;: X — Y, i € J,be multifunctions, where J is a directed
set. Then we say that {F; : i € J} converges uniformly on N C X to a multifunction
F:N - Y if, for any U € %, there exists an iy € A such that

Fi(x) CB(F(x),U) Vx€N,ie],i>ip. (3.1

Let Q denote the set of all finite subsets of the index set I. For a fixed d € A, we
define elements of the product uniformity of {d} x Y® as follows: for any W € @&,
m e Q, we let

wm={((d,a),(d,a")) € A(Y)XA(Y): (aj,a}) €W, jem},
B*((d,a),W™) ={(d,a’) e A(Y): (aj,a}) €W, jem}, (3.2)
B*(S,W™) = UsesB* (s,W™),

where (d,a) € A(Y), S C A(Y).
Consider the following conditions on the objects defined in (c1)-(c9) that loosely
correspond to conditions (b)-(e) of Michael’s Definition 1.5:
(B) (permutations) if (d,a),(d’,a’) € Q and X,,_, di = Za;:y d; for any y € Y,
then C(d,a) =C(d’',a’),
(y) (convex hull) C(A(A)) c conv(A), the closure in Y, for all admissible A CY,
(6) (d-continuity) for any a € Y%, if A, x {a} C Q’, n = 0, then the multifunction
C(-,a):Ay, — Z belongs to V' (which is condition (D) of Definition 2.1).
(&) (a-continuity) for any U € %, there exist W € B, m € Q, such that

C(B*((d,a),Ww™)) c B(C(d,a),U) V(d,a) € Q. (3.3)
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DEFINITION 3.1. The triple k = (Y,C, Z) is called a strong convexity if conditions
(B), (y), (6), and (&) are satisfied.

As a direct consequence of the definitions above, we obtain the following for a strong
convexity.

LEMMA 3.2. ForanyACY, W e®, m € Q, we have
A(B(A,W)) C B*(A(A),W™). (3.4)

THEOREM 3.3. Conditions (x), (y), and (&) imply condition (E), so any strong con-
vexity is a convexity.

PROOF. Let U € & be fixed, and let U’ € % satisfy 4U’ C U. By (&), there exist
W e 3B, m € Q, such that

C(B*((d,a),Ww™)) cB(C(d,a),U") V(d,a)€Q. (3.5)

If A is an admissible set, then A(A) C Q, so this inclusion holds for all (d,a) € A(A).
Hence

C(B*(A(A),W™)) c B(C(A(A)),2U"). (3.6)

Applying consecutively Lemma 3.2, the above inclusion, and condition (y), we obtain
condition (E). O
4. Convexity of topological vector spaces

DEFINITION 4.1. Let " be the class of all single-valued continuous maps. Then we
say that the convexity is continuous.

Some examples of spaces with continuous convexity are listed in this and the fol-
lowing sections.

DEFINITION 4.2. A continuous convexity k = (Y,C,Y) (here the topological struc-
tures of Y and Z coincide) associated with «, conv, is called regular if it is global and
for any y € Y, we have {y} € o and conv({y}) = {y}.

PROPOSITION 4.3. Let Y be a convex subset of a locally convex topological vector
space. Then (Y,C,Y) with C given by

C(d,a) => diai, (d,a) € A(Y), (4.1)

is a regular (strong) convexity associated with si = 2Y, conv(A) = co(A), A C Y (where
co(A) is the usual convex hull in a vector space).

If the topological vector space is not locally convex Proposition 4.3 fails, which mo-
tivates the next definition.

DEFINITION 4.4. A continuous convexity (Y, C, Z) is called discrete if Y is discrete
(then condition (E) turns into C(A(A)) C conv(A) for all A € A).
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PROPOSITION 4.5. Let Z be a convex subset of a topological vector space. Then
(Y,C,Z) (Y is discrete) with C given by

C(d,a) => diai, (d,a)€A(Y), 4.2)

4

is a discrete global convexity associated with si = 2Y, conv(A) = co(A), ACY.

PrROOF. Condition (E) is trivially satisfied, because the uniform base % of Y consists
of only one element By = {(b,b) : b € Y}. Now we observe that C(-,a) : A, — Z is
continuous as a linear map on a finite-dimensional space, so (D) of Definition 2.1
holds for ¥ the class of all continuous maps. O

5. Constructing a convexity on a topological space. Our goal is to construct a
regular convexity on a given uniform space. Throughout this section we assume that
the index set I is well ordered. Let

&4={{y}:yey}, 51
Q =UyeyA({y}) ={(d,a) € A(Y) :for some y € Y, d; + 0 = a; = y}. (>-1)

LEMMA 5.1. Suppose Y is Hausdorff compact and infinite. Let A’ (Y) be the quotient
space of A(Y) with respect to the following equivalence relation:

(d,a) ~(d',a’) if,foranyy €Y, > di= > d,. (5.2)
ai=y a;:y

Let C:Q — Y be given by C(x) =y for any x € A({y}). Then
(i) A’(Y) is a Hausdorff uniform space and the quotient map p : A(Y) — A'(Y) is
uniformly continuous,
(ii) (a) in Q, equivalence classes are A({y}), y €Y,
b) p(A{y})) =y, y €Y, and
©pQ)=Y.

PROOF. First, A(Y) is normal, so A’(Y) is Hausdorff. Next, for any (d,a) € A(Y),
yevY,letSy,(d,a)= Zal,:y d;. Then the set

R={((d,a),(d,a")) :forany y €Y, S, (d,a) =S, (d’,a’)} (5.3)

determines the equivalence relation ~. To ensure that A’ (Y) has a uniformity, we need
to check that forany W € B, e >0, m € Q, thereare V € %, 6 > 0, n € Q, such that

VOM L R4 VOM C R4 WEM LR, (5.4)

which means that the equivalence relation ~ and the uniformity of A(Y) are weakly
compatible (see [18, page 24]), so (i) holds. We will show that A(Y)xA(Y) CR+W&™+R.
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Consider
R+W&™M 4+ R = {((d,a),(d’,a")) : there is an (r,b) € A(Y) with

((d,a),(r,b)) €R, ((r,b),(d',a’)) € W™ + R}

={((d,a),(d",a")):
3 (r,b) € A(Y) with Sy (d,a) = S, (r,b), Vy €Y,
3@, b)) e A(Y) with S, (d',a’) =S, (r',b'), Vy ey,
and |r;—7{| <¢, (b;,b}) €W, iem}

={((d,a),(d',a’)) : there are (r,b),(r',b") € A(Y) with
(1) |ri—7{| <& (bi,b}) €W, iem,
(2) Sy(d,a) =S, (r,b), Vy ey,
(3) Sy(d',a')=S,(r",b'), VyeY}.

(5.5)

Suppose ((d,a),(d’,a’)) € A(Y) X A(Y). Assume for simplicity that m = {0,1,...,M}.
Choose z € Y such that d; # 0 > z + a; and d; + 0 = z = a; for all i € I. To get
(r,b),(¥’,b’) € A(Y) as above, let

vi=v{=0, bi=b;=2z, iem={0,1,...,M}. (5.6)
Then condition (1) is satisfied. Now, let
Ymrivl =i, Viyojor =Ai bmsiv1 =ai, by, =a;, i=0,1,... (5.7)

(it means that we obtain (v,b) and (v’,b’) by “shifting” coordinates of (d,a) and
(d’,a’") M steps to the right). Then conditions (2) and (3) are also satisfied. Therefore
we have

R+W&M™ 4+ R =A(Y)XA(Y). (5.8)

If (d,a) € Q and d; + 0, then a; = y for all i and some y € Y, and p(d,a) = . Then
forany Ve ®, neQ, € >0, we have

B*((d,a),V¥")nQ = {(d',a’) € A(Y) : for some y' € B(y,V),

di+0=a;=y', and |d;-d;| <¢, i e n}

' ' , , (5.9
=Uyegynid,a’) €AY):d;+0=a; =y,
|di—d;| <e&, ien}.
Therefore we have
p(B*((d,a),V¥")nQ) = B(y,V), (5.10)
and we conclude that p(Q) =Y. O

THEOREM 5.2. LetY be a Hausdorff compact ANR and let V' be the set of all u.s.c.
multifunctions with values either singletons or Y. Then there exists a convexity Kk =
(Y,C,Y) associated with 4 = {{y}:y €Y}, conv({y}) ={y} forally €Y.
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PROOF. By Lemma 5.1, A’(Y) is Hausdorff and p(Q) =Y is compact. Hence p(Q)
is closed in A’ (Y'). Then, there exists an open neighborhood Ny c A’(Y) of p(Q) and
a continuous function C : Ny — Y that extends Idy and C is uniformly continuous.
Now if we extend C on the whole A’(Y) by putting C(d,a) =Y for (d,a) ¢ Ny, then C
is uniformly u.s.c. (since Ny is open). It is routine to check that C satisfies conditions

(B)-(6). O

6. Preliminaries from general topology. Presenting necessary definitions we
mostly follow Engelking [6].

DEFINITION 6.1. The weight w(Y) is the cardinality of &. Let @ (Y) be the largest
cardinal number y < w such that the intersection of any family of elements of %
whose cardinality is less then py contains an element of %.

Note thatif B ={Up : B < u}, where p is an infinite ordinal, is ordered by inclusion (in
this case Y is called a p-metrizable space [13]), then @ (Y) = w(Y)", where &' stands
for the least cardinal number larger than «.

DEFINITION 6.2. For a topological space X, the Lindeldf number 1(X) is the least
cardinal number A such that every open cover of X has a subcover whose cardinality is
less than A (“at most” in [6]). Let I’ (X) be the largest cardinal number u < w such that
any open cover of X whose cardinality is less than u has a finite subcover. Let p (X) be
the largest cardinal number k < w such that any open cover of X whose cardinality
is less than k has a locally finite open refinement.

Then X is known [27] as finally A-compact (or A-Lindeldof [13]) and initially u-compact,
respectively.

DEFINITION 6.3. For the uniform space Y, let [,,(Y) be the least cardinal number A
such that for every V € %, the cover {B(x,V) : x € Y} has a subcover whose cardinality
is less than A.

The proof of the following proposition is similar to the one of [6, Theorem 3.1.23].

PROPOSITION 6.4. Suppose B = {U; : i € J} is partially ordered by inclusion and
@(Y) = U(Y). Then any net {y;:i € J} inY has a convergent subnet.

7. The main selection theorems. Since Theorems 1.1, 1.2, 1.3, and 1.4 deal with
two types of multifunctions (u.s.c. and l.s.c.), we shall consider maps T : X — Y and
R : Z — X of either kind between the two spaces (Z = Y) and a fixed point of their
composition ToR:Y - Y.

If a multifunction T : X — Y has admissible images, then its convex hull conv(T) :
X — Y is given by

conv(T)(x) = conv(T(x)), xe€X. (7.1)

Michael proves his selection theorem for his convex structures [21] by considering a
sequence of “almost continuous” selections, while for locally convex topological vector
spaces he constructs [20] a sequence of continuous “almost selections.” The former
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yields sharper selection results, the latter requires an additional restriction on the con-
vexity (some neighborhood of an admissible set is admissible, as in Proposition 12.8),
but allows us to proceed directly to fixed point theorems.

THEOREM 7.1 (almost selection theorem). Let X be a normal topological space, k =
(Y,C,Z) a convexity, Y' a subset of Y. Suppose also that
(i) T:X —Y is admissible-valued Ls.c. and T(x) Y’ = & for any x € X,
(i) p(X) =L, (Y").
Then for any U € B, there exist a € (Y')® and a continuous function f : X — Ay
satisfying the following conditions:
(@) for any x € X, there is an open neighborhood G of x such that f(G) C A, C Ay
for somen > 0,
(b) f(X)x{a}cQ', and
(¢) C(f(x),a) c B(conv(T)(x),U) forall x € X.
If, in addition, Y’ is admissible, then

C(f(x),a) cconv(Y'). (7.2)

If, moreover, (ii') I’ (X) = 1, (Y"), then we have (a') f(X) C Ay, C A for somen = 0.

PROOF. LetU € %. Then condition (E) reads as follows: there exists W € % such that
C(A(B(A,W))) c B(conv(A),U) for all admissible A C Y. (7.3)

Let M = {B(y,W):y € Y'}. By definition of [,,(Y’), M has a subcover M’ with |M’| <
L,(Y).ButT: X — Yisls.c., soN = {T~1(G) : G € M'} consists of open sets. Moreover,
if x € X, then T(x) NG #= @ for some G € M’'. Hence x belongs to T (G), so N
is an open cover of X. By (ii), we have |[N| = [M’'| < [,(Y’) < p(X). Therefore, by
definition of p(X), N has a locally finite open refinement N’. Since |I| = w > 21, we
can assume that N' = {Qy : k € I} (Qx = @ for some k € I). From the definitions of
M, N, N’, it follows that for all k € I, Qx € T~'(Gy), where Gy = B(ax, W) for some
ay € Y’ (here we assign an index to Gy and ay according to this inclusion). Then let
a=(a;)ier € (Y')®.From the fact that X is normal and Michael’s lemma it follows that
there exists a partition of unity subordinate to N, i.e., there are continuous functions
fr: X —10,1], k €I, satisfying

fe(x)=0 foranyx ¢ Qy, kel,

> fi(x) =1 foranyx € X. (7.4)
kel

Now let

Fx)=> fulx)ex, (7.5)

kel

where ey, k € I, are the vertices of A,. Then f: X — A, is a continuous function.
Since N’ is locally finite, for each x € X, there are a neighborhood G of x and a finite
set § c I such that fx|g is nonzero only for k € S. Therefore we have f(G) C Ag, so
(a) is satisfied. Moreover, if (ii") holds, then N’ is finite and so (a’) holds.
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Take x € X. Let
K={kel:T(x)nGy+ @} and Ax={ax:keK}cY'. (7.6)

If k € Iis such that fx(x) = 0 then x € Qx € T~1(Gy), or T(x) NGy #+ &. Hence k € K.
By definition of f, this implies that

Fx) = filx)ex = > fu(x)ex € Ag, (7.7)

kel kek
where ey, k € I, are the unit vectors of [0,1]%®. Next, consider
Axx{a} ={(d,a):d; + 0= a; € Ax} C A(Ag). (7.8)
By definition of K, we have ay € B(T(x),W) for all k € K, or
Ag CB(T(x),W)nY’. (7.9)
From (7.7), (7.8), and (7.9) it follows that
f(x)x{a} € Axx{a} c A(Ak) CA(B(T(x),W)nY’). (7.10)

Since T (x) is admissible, A(B(T(x),W)) C Q’. Hence by (7.10), we have f(X) x {a} C
Q’ and, therefore, C(f(x),a) is well defined. Thus, from (7.10) and (7.3) we have (c).

To finish the proof, we notice that (7.10) implies that f(x) X {a} € A(Y"). Therefore
we have

C(f(x),a) c C(A(Y')) cconv(Y"). (7.11)
0

COROLLARY 7.2 (continuous almost selection theorem). LetX be a normal topolog-
ical space, k = (Y,C,Z) a continuous convexity, Y’ a subset of Y. Suppose also that
(i) T:X —Y is Ls.c. with admissible images and T(x)NY' = @ for any x € X,
(i) p(X) =1, (Y").
Then for any U € B, there exists a continuous V -almost selection for the multifunction
conv(T) : X — Z, i.e., there is a continuous function g : X — Z such that

g(x)eB(conv(T(x)),U) VxeX. (7.12)
If, moreover, Y' is admissible, then we have
g(X) cconv(Y’). (7.13)

DEFINITION 7.3. We say that the convexity k = (Y, C, Z) has a convex uniform base
B if

yveY, UeB, Deb6=B(y,UnDec<%. (7.14)

THEOREM 7.4 (continuous selection theorem). Let X be a normal topological space,

Y be a complete uniform space, k = (Y,C,Z) a continuous convexity with a countable
convex uniform base B, and suppose that the uniform topology of Y is finer than the
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topology of Z. Suppose also that

(i) T:X —Y is Ls.c. with nonempty convex images,

(i) p(X) =L, (Y).
Then the multifunction T : X — Z has a continuous selection, that is, there is a continu-
ous map g : X — Z such that

g(x)eT(x) VxeX(closureinY). (7.15)
PROOF. lLet B = {U;,U>,...}. Without loss of generality, we can assume that
2Ups1 C Uy, n=1,2,.... (7.16)

Then according to Corollary 7.2 (with Y’ = Y), for any nonempty convex-valued Ls.c.
map G: X — Y, for any U € %, there is a continuous g : X — Z with

g(x) €B(G(x),U) VxeX. (7.17)

We inductively construct a sequence of continuous functions g, : X - Z, n=1,2,...,
such that

In(x) €B(T(x),Ups1) VXxeEX, n=1,2,..., (7.18)
In(x) €B(Gn_1(X),Un_1) VXxEX, n=23,.... (7.19)

By (7.17), there is a g; so that (7.18) holds for n = 1. Assume that we have constructed
gi1,---,9gn-1 satisfying these conditions. Then let

G(x) = B(gn-1(x),Upn) N T(x). (7.20)

Then G isl.s.c. By (7.18),for n—1, we have g,,—1 (x) € B(T(x),U,), so G(x) is nonempty,
and it is convex because the base is convex. Therefore by (7.17), there is a continuous
map gy : X — Z with

In(x) €B(G(x),Ups1) VxeEX. (7.21)
Then there is a v € G(x) such that

(gn(x),y) € Ups1. (7.22)

By (7.20), we have G(x) C T(x), so (7.21) implies (7.18). From (7.20), it also follows that
G(x) C B(gn-1(x),Uy). Therefore we have (y,g,n-1(x)) € Uy, and now, from (7.22)
and (7.16), it follows that (g, (x),gn-1(x)) € U,,—1. Hence (7.19) holds. Thus, we have
constructed a sequence {g, :n =1,2,...} satisfying the required conditions.

Now (7.16) implies that this is a Cauchy sequence. Therefore {g,, :n =1,2,...} con-
verges to amap g : X — Z. And from (7.18), it follows that g(x) € T(x) for all x € X.
To finish the proof we observe that g : X — Z is the uniform limit of {g,, } with respect
to the uniformity of Y. Therefore g is continuous, since Y is finer than Z. O
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8. More selection theorems

THEOREM 8.1 (Michael-type selection theorem). Let X be a (Hausdorff) paracom-
pact space, k = (Y,C,Y) a continuous convexity, Y complete with a countable convex
uniform base, T : X — Y Ls.c. with nonempty convex images. Then T has a continuous
selection.

PROOF. In Theorem 7.4, we let Z =Y and notice that p(X) = w > [,,(Y), so condi-
tion (ii) of the theorem holds. O

This theorem implies the following results: (1) the Michael selection Theorem 1.3
for Banach spaces, (2) Theorem 1.3 of Michael [21] for Michael’s convex structures
(with two additional assumptions: (a) for any x € X, any W € B, B(p(x),W) is M-
admissible, (b) for any v € E, any W € B, B(y,W) is M-convex), (3) Theorem 3.3 of
Horvath [15] for H-spaces, (4) part (2) of Theorem 3.5 of van de Vel [30, page 440] (or
part (b) of Theorem 4.3 [29]). (Here (3) and (4) may be looked at as selection theorems
for an l.s.c. map with convex range.)

An example of a pair X, Y that satisfies conditions (ii) of Theorem 7.4 but is not cov-
ered by the Michael selection theorem: X is normal but not necessarily paracompact
and Y is paracompact. Another example: X is countably paracompact, or countably
compact, such as the space W of all countable ordinal numbers, and Y is a separa-
ble Banach space, such as I, or C[0,1]. Nedev [22] proved a Michael-type selection
theorem for X = W and Y a reflexive Banach space.

THEOREM 8.2 (Browder-type selection theorem). Let X be a (Hausdorff) paracom-
pact space, and suppose (Y,C,Z) is a discrete convexity, and T : X — Y has nonempty
admissible images and open fibers. Then conv(T) : X — Z has a continuous selection.

PROOF. In Corollary 7.2 welet Y be discreteand Y’ =Y. Then T: X — Y is l.s.c,, so
condition (i) of the theorem holds. But since p (X) = w > [,,(Y), (ii) also holds. Finally,
we notice that an almost selection with respect to the discrete topology is in fact a
selection. O

This corollary implies the following results: (1) the Browder selection Theorem 1.4
for topological vector spaces, (2) Theorem 3.2 of Horvath [15] for H-spaces, (3) van de
Vel’s version of the Browder selection theorem [30, page 450].

9. Classes of maps with fixed point conditions. Motivated by Ben-El-Mechaiekh
and Deguire [2], Park and Kim [24] define an abstract class UX(Y,X) of maps that
helps reduce the fixed point problem to the one for multifunctions on simplexes.

Examples of UX (Y, X) are, for instance, the classes of all u.s.c. multifunctions with
compact convex values in locally convex topological vector spaces, acyclic maps, and
approachable maps. Taking this one step further, we introduce the following.

DEFINITION 9.1. Let X be a topological space, k = (Y,C,Z) be a convexity and Y’ a
subset of Y (or Z). Then the class %, (Y’, X) is defined as the class of all multifunctions
F:Z >Y' — X such that for any simplex A,, C Ay, any a € (Y')%, and any continuous
function f: X — A, the multifunction
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foFoClapxia} : &n — An (9.1)

has a fixed point.

By Definitions 2.1 and 4.1, C(-,a) : A, — Z, V € B, is continuous when k = (Y,C, Z)
is a continuous convexity. Therefore the Brouwer fixed point theorem implies the
following proposition.

PROPOSITION 9.2. If k = (Y,C,Z) is a continuous global convexity, then ¥,(Y,X)
contains all continuous functions @ : Z — X.

If V" is the set of all acyclic maps, then we say that a convexity associated with ¥ is
acyclic. Then Theorem 1.6 implies the following proposition.

PROPOSITION 9.3. If k = (Y,C,Z) is a global acyclic convexity, then %,(Y,X) con-
tains all admissible in the sense of Gorniewicz (and, therefore, all acyclic) multifunctions
F:Z-X.

PROPOSITION 9.4. If k = (Y,C,Y) is a global acyclic convexity and Y’ is a closed
convex subset of Y, then F,(Y',X) contains all u.s.c. multifunctions F : Y’ — X such
that F(x) is compact and acyclic for all x € Y'.

PROPOSITION 9.5. Ifk = (Y,C,Y) is a global continuous convexity, then we have

WL(Y,X) CFi(Y,X). 9.2)

10. The main fixed point theorems

THEOREM 10.1 (almost fixed point theorem). Let X be a normal topological space,
k = (Y,C,Z) a global convexity. Suppose also that the following holds:
(i) R e F.(Y,X),
(ii) T:X —Y is admissible-valued l.s.c.,
(iii) I'(X) = [, (Y).
Then the multifunction conv(T)oR :Y — Y has a U-almost fixed point for any U € B,
i.e., thereis a

vy € B(conv(T)oR(y),U). (10.1)

PROOF. By Theorem 7.1, with (ii’), for any U € % there exist a € Y® and a continu-
ous function f : X — A; with J finite such that C(f(x),a) C B(conv(T)(x),U) for all
x € X. Since the convexity is global, we can defineamap ¥:A; - Y by ¥ = Clayxiay-
Since R € %, (Y, X), the multifunction F = foRo¥ : A; — A; has a fixed point, that
is, there exists a d € f(R(¥Y(d))). Therefore, there exist such x € X and y € Y that
vy eY(f(x)) and x € R(y). Hence

y eC(f(x),a) cB(conv(T)(x),U) C B(conv(T)oR(y),U). (10.2)
O

THEOREM 10.2 (fixed point theorem). Let X be a normal topological space, k =
(Y,C,Z) a global convexity. Suppose that the following conditions are satisfied:
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(i) R e F.(Y,X),
(ii) T:X —Y is admissible-valued l.s.c.,
(iii) S:Y — Y is closed-valued u.s.c. and conv(T)oR C S,
iv) @(Y) = I(Y), I'(X) = L, (Y).
Then S has a fixed point.

PROOF. Suppose B = {U; :i € J}. By Theorem 10.1, for any i € J, there is a y; €
B(conv(T) o R(y;),U;). Now we need to show that y* € S(y*) for some y* €Y.
By Proposition 6.4, the net {y; : i € J} has a convergent subnet. Therefore, we can
simply assume that y; — y* € Y. Then for any i € J, there exists a k(i) € J such that
Yk € B(y*,U;) for all k > k(i), or

y* € B(yk,Ui) Vk>k(i). (10.3)
By (iii), vx € B(S(yk),Uy) for all k € J. Therefore
Yk € B(S(yk),Ui) Vk>i. (10.4)

Since y; — ¥* and the multifunction S is u.s.c., then for any i € J, there exists a
Jj(i) € J such that

S(vk) CB(S(y*),U;) Vk>ji). (10.5)
Now using (10.3), (10.4), and (10.5), we obtain

y*eB(S(y*),3U;) Vie]. (10.6)

Hence y* € S(y*) = S(y*), and the proof is completed. O

11. More fixed point theorems. One can obtain Kakutani and Browder type the-
orems for spaces with generalized convexity by repeating arguments that work for
topological vector spaces (see [15, 16, 23, 25, 28]). But then the results apply only to
convex-valued multifunctions. Therefore they are never stronger than the Eilenberg-
Montgomery Theorem 1.7, which deals with acyclic-valued multifunctions. So we ap-
ply a version of the Eilenberg-Montgomery theorem, Theorem 1.6, or use %, (X, X) to
obtain sharper results.

THEOREM 11.1 (Kakutani-type fixed point theorem). Let X be a (Hausdorff) com-
pact topological space, k = (Y,C,Y) a regular convexity, f : X — Y a (single-valued)
continuous map and R € F,(Y,X) u.s.c. Then f oR has a fixed point.

PROOF. In Theorem 10.2, welet T = f, S = foR. Then (i) and (ii) hold because the
convexity is regular: conv({y}) = {y}. Also, since Y is compact, we have I’ (X) > 8o =
1(Y) and @(Y) = 89 = L(Y), so (iv) holds. O

This theorem implies the following results: (1) the Kakutani Theorem 1.1 for lo-
cally convex topological vector spaces, (2) Corollary to Theorem 6 of Horvath [16] for
L.c. spaces, (3) Theorem 6.15 of van de Vel [30, page 498], (4) Theorem 1 of HadZi¢ [12]
for H-spaces (with the assumption that all points are H-convex and that space is
normal).
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THEOREM 11.2 (Browder-type fixed point theorem). Let X be compact, (Y,C,Z) be
a discrete global convexity. Suppose that
(i) R e F.(Y,X),
(ii)) T:X — Y is a multifunction with admissible images and open fibers.
Then the multifunction conv(T) oR has a fixed point.

PROOF. Notice that if Y is a discrete uniform space, then a multifunction T: X - Y
has open fibers if and only if it is 1.s.c. Therefore conditions (i), (ii) of this theorem are
exactly conditions (i), (ii) of Theorem 10.2. Condition (iii) follows from the fact that
S=conv(T)oR:Y — Y is u.s.c. with respect to the discrete topology. Also, since X is
compact and Y is discrete, we have I'(X) =w = |Y| =1,(Y) and (V) =w = |Y|" =
L(Y), so (iv) holds. O

This theorem implies the following results: (1) the Browder fixed point Theorem 1.2,
(2) Theorem 7 of Browder [3], (3) Theorem 4.3 of Horvath [15] and Theorem 3.1 of Ding
and Tarafdar [4] for H-spaces, (4) Browder-type fixed point theorem of van de Vel [30,
Section IV.6.28, page 506].

We can generalize the definition of convexity by considering a system of “approxi-
mative” convexity multifunctions converging to C. As a result we can obtain the results
of this paper for such spaces as AES [2], ANES [10], the “comb space,” and admissible
in the sense of Klee subsets of topological vector spaces [11].

12. Appendix: other definitions of generalized convexity. In this section, we pro-
vide (without proof) comparison of our definition of convexity with those due to
Horvath, van de Vel, and Michael.

12.1. H-spaces. The following notion, originating from the work of Horvath [14,
15], is a generalization of the convex hull in a topological vector space.

DEFINITION 12.1. A pair (Z,{T4}) will be called an H-space, if Z is a topological
space and {I'4} is a family of contractible subsets of Z indexed by all finite subsets of
Z so that

I'y cIzy whenever A C B. (12.1)

((Z,{T4}) is called a c-space [15].) A set A C Z is called H-convexif Iy C A for any finite
D cC A, and the H-convex hull of a set A CY is given by

conv*(A) = U{lp:D C A, D is finite}. (12.2)

PROPOSITION 12.2. Let (Z,{I4}) be an H-space. Then there is a global discrete con-
vexity (Y,C,Z) associated with some C : A(Y) — Y, ol = 2Y\{@}, and conv given by:
conv(A) = conv*(A), A € d.

The next definition provides an analogue of local convexity.

DEFINITION 12.3. (1) (Horvath[15].) We say that an H-space (Y,{I'4}) is an Lc. space
if there is a uniform base % such as for any U € %,

B(A,U) is an H-convex set whenever A C Y is H-convex. (12.3)
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A metric space (Y,d) is called a metric lLc. space if it is a c-space and Ve >0, {y €Y :
d(y,E) < €} is an H-convex set if E is an H-convex set, and open balls are H-convex.

(2) (Hadzic¢ [12].) We say that an H-space (Y, {I'4}) is of generalized Zima type if there
is a uniform base % such that for every U € %, there exists a V € % such that for every
finite subset D of Y and every H-convex subset A of Y the following holds:

ANB(z,V)+ @ forevery ze D = AnB(u,U) + @ for every u € Ip. (12.4)

PROPOSITION 12.4. Suppose that

(1) (Y,{I4}) is an Lc. space, or

(2) (Y,{I'4}) is an H-space of generalized Zima type with H-convex points.
Then there is a regular convexity (Y,C,Y) associated with 6 = {H-convex sets}.

12.2. van de Vel’s uniform convex structures

DEFINITION 12.5 [30, pages 3 and 304]. A pair (Y,%), where % is a family of sub-
sets of Y, called convex sets, is called a uniform convex structure if
(1) the empty set & and the universal set Y are in 6,
(2) 6 is stable for intersections, that is, if & C ¢ is nonempty, then N9 is in 6,
(3) @ is stable for nested unions, that is, if @ C € is nonempty and totally ordered
by inclusion, then U% is in €,
(4) there is a uniform base % such that for each U € 3, there is a V € % such that

for any A € 6, conv (B(A,V)) C B(A,U), (12.5)
where the convex hull conv is defined as:

conv(A)=(){De€%:AcD}, AcCY. (12.6)

PROPOSITION 12.6. If (Y,%) is a uniform convex structure such that all elements of
% are AR’s, then there is a global continuous convexity (Y,C,Y) associated with 6.

van de Vel says that his convex structure satisfies the S;-axiomif two disjoint convex
sets can be separated by two convex sets complement to each other. He calls convex
hulls of finite sets polytopes. The statement below follows from Proposition 12.6 and
van de Vel’s selection theorem [30, Theorem 3.17, page 446].

PROPOSITION 12.7. Let (Y,€) be a metrizable van de Vel uniform convex structure
satisfying the S4-axiom with compact polytopes such that € contains only connected
sets. Then there is a global continuous convexity (Y,C,Y) associated with 6.

12.3. Michael convex structures

PROPOSITION 12.8. Let {(My,ky,)} be a Michael’s convex structure. Let

A={ACY:BAW)"™ cM, Vn=0, We%R},
(12.7)
conv(A) = {ky(t,x):x €A™ te A, n=0}, Acd,

(notice that s can be empty even if M,, are not). Then (Y, C,Y) is a continuous convexity
ifC:Q —Y,where Q' = UpcaweaA(B(A,W)) (cf., (c8)), is defined as follows: for any
(d,a) €Q/,
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C(d,a) = kn(t,x), (12.8)

where

t=(diy,-..,diy) and  x=(aiy,...,ai,),
. . . . (12.9)
lik:k=0,....,n}={iel:d; 0}, ip<---<iy,

(we assume that the index set I is totally ordered).

Let us consider an example of a Michael convex structure: Y = My = {0,1} CR, M, =
forn=1, ko(t,x) =xforallxeY, t €[0,1]. Let E=Y = {0,1}, Qo(t,x) = x for
allx €Y, t € [0,1]. Then it is obvious that Q; does not exist. More generally, we can
equip an m-sphere S, m > 0, with a non-trivial Michael convex structure by using
its local Euclidean structure. These examples show that Michael convex structures are
not generalized by convex structures due to Park and Kim [24] and Pasicki [25].
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