
Internat. J. Math. & Math. Sci.
Vol. 24, No. 9 (2000) 589–594

S0161171200004713
© Hindawi Publishing Corp.

DETERMINATION OF CONDUCTIVITY IN A HEAT EQUATION
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Abstract. We consider the problem of determining the conductivity in a heat equation
from overspecified non-smooth data. It is an ill-posed inverse problem. We apply a regular-
ization approach to define and construct a stable approximate solution. We also conduct
numerical simulation to demonstrate the accuracy of our approximation.
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1. Introduction. The problem of determining the conductivity a(t) in

ut(x,t)= a(t)uxx(x,t), 0<x < 1, 0< t < T (1.1)

from overspecified smooth data has been studied by many people. For example, Jones
in [4] proved existence and uniqueness of the solution of the inverse problem. Douglas
and Jones provided in [3] numerical approach for determining the unknown coef-
ficient. Around the same time, Cannon in [1] gave a different approach to the same
problem. Later, in [2], Cannon considered (1.1) in which the conductivity was assumed
to be an unknown constant and the heat flow rate was measured only for a single time.
For practical reasons, it is more interesting to consider the problem of determining

the unknown conductivity coefficient from non-smooth data. In such case, the prob-
lem is ill posed, as we will demonstrate later. New way of determining the unknown
coefficient is needed.
In this paper, we consider the problem of determininga(t) in the following parabolic

problem:

ut(x,t)= a(t)uxx(x,t), 0<x, 0< t < T ;

u(x,0)= 0, 0<x;

u(0, t)= f(t), 0< t < T, f (0)= 0;

−ux(0, t)= g0, 0< t < T,

(1.2)

where u(x,t) and a(t) are unknown and to be determined from known non-smooth
data f(t), g0 (g0 is a positive constant).
Let us first exam the ill-posedness of the problem.
For smooth function f(t), if u(x,t) is a classical solution of (1.2), then it can be

shown that

u(x,t)= g0√
π

∫ t

0

a(τ)√
θ(t)−θ(τ)e

−x2/(4(θ(t)−θ(τ))) dτ, (1.3)
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θ(t)=
∫ t

0
a(τ)dτ. (1.4)

Letting x approach zero, we obtain from (1.3) that

f(t)= g0√
π

∫ t

0

a(τ)√
θ(t)−θ(τ) dτ, (1.5)

which gives immediately

θ(t)= π
4g2

0
f 2(t), (1.6)

a(t)= π
2g2

0
f(t)f ′(t). (1.7)

The above computations are possible only under the assumption that the boundary
term f(t) is smooth.
In practice, unfortunately, the known data f(t) (like boundary temperature) is ob-

tained experimentally. It is generally not a smooth function in time. Then it is not
possible to solve a in (1.4) in the classical sense.
Even if the data is obtained in such a way that the classical solution of (1.4) exists,

this solution may not depend on the data continuously. To see this, we consider the
following example.

Example 1.1. Let g0 =
√
π/2 and

fT (t)=



t 0≤ t ≤ 1

2
,(

2t−t2− 1
2

)1/2 1
2
< t ≤ 1.

(1.8)

It is easy then to obtain the exact solution of (1.4) as

aT (t)=



t 0≤ t ≤ 1

2
,

1−t 1
2
< t ≤ 1.

(1.9)

Now take an approximate data function fδ = fT +(π/4)1/4δsin(t/δ3). While one has

∥∥fδ−fT∥∥L4 ≤ δ4, (1.10)

the difference between the solutions

∥∥aδ(t)−aT (t)
∥∥
C ≥

π
4δ

, (1.11)

which shows that the problem of determining a(t) in C from boundary data in L4 is
ill posed.
In this paper, we will apply a regularization method (cf. [5, 6, 7]) to define and

construct a stable solution of (1.4), which is sometimes referred as a mapping:

A[a]=
∫ t

0
a(τ)dτ = θ(t), (1.12)
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where θ is given in (1.6). We will also conduct numerical computations to verify the
accuracy of our approximate approach.

2. Regularizing operator. Define the following functional:

Mα[a,θ]=
∫ T

0

[∫ t

0
a(τ)dτ−θ(t)

]2
dt+α

∫ T

0

[
a2(τ)+a′(τ)2]dτ. (2.1)

Theorem 2.1. For every θ(t) in L2[0,T ] and every positive number α, there exists
a unique function aα(t)∈ C[0,T ] that minimizes the functional (2.1).

Proof. Considering the first variation of the functional (2.1), we can see the mini-
mizer of the functional is the solution of the following Euler integrodifferential
equation:

α
(
a′′ −a)=

∫ T

τ

∫ t

0
a(ξ)dξdt−

∫ T

τ
θ(t)dt, (2.2)

subject to the boundary conditions a(0)= 0, a(T)= 0. It is trivial to show that there
exists a unique solution of (2.2). We omit the details.

Based on Theorem 2.1, we now define an operator R(θ,α) from the set of pairs:
(θ,α), where θ ∈ L2, α> 0, to the space C[0,T ] so that the element aα = R(θ,α)min-
imizes the functionalMα. In what follows, we need to show that, for an appropriate α,
aα is a stable approximate solution of (1.4), namely, R(θ,α) is a regularizing operator.

Theorem 2.2. Let aT denote a solution of (1.4) with right-hand member θT and
aα = R(θδ,α), where δmeasures the error between θT and θδ. For any positive number
ε, there exists a number δ(ε) > 0, such that the inequality

∥∥θδ−θT∥∥L2 ≤ δ≤ δ(ε) (2.3)

implies the inequality

∥∥aα−aT
∥∥
C ≤ ε, (2.4)

where α=α(δ)= δλ, 0< λ≤ 2.

Proof. Since a= aα is the minimizer of functional Mα[a,θδ], we have

Mα[aα,θδ
]≤Mα[aT ,θδ

]
. (2.5)

Therefore,

α
∫ T

0

(
a2
α(τ)+

(
a′α(τ)

)2)dτ ≤
∫ T

0

(∫ t

0
aT (τ)dτ−θδ(t)

)2
dt

+α
∫ T

0

(
a2
T (τ)+

(
a′T (τ)

)2)dτ

≤ δ2+α
∫ T

0

(
a2
T (τ)+

(
a′T (τ)

)2)dτ ≤ δ2d,

(2.6)
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where d= 1+∫ T0 (a2
T (τ)+(a′T (τ))2)dτ . Thus,

∫ T

0

(
a2
α(τ)+

(
a′α(τ)

)2)dτ ≤ d,
∫ T

0

(
a2
T (τ)+

(
a′T (τ)

)2)dτ ≤ d. (2.7)

Consequently, the elements aα,aT belong to the following compact subset of space
C[0,T ]:

F =
{
a(τ) :

∫ T

0

(
a2(τ)+(a′(τ))2)dτ ≤ d

}
. (2.8)

Since the mapping A : F →AF (A is defined in (1.12)) is continuous and one-to-one, the
inverse mapping A−1 : AF → F is also continuous. It means that, for arbitrary ε > 0,
there exists a number γ(ε) > 0 such that the inequality

∥∥θα−θT∥∥L2 ≤ γ(ε), θα =A
(
aα
)
, θT =A

(
aT
)∈AF (2.9)

implies the inequality

∥∥aα−aT
∥∥
C[0,T ] ≤ ε. (2.10)

On the other hand, for θδ,θα, we have

∥∥θα−θδ∥∥2L2 =
∫ T

0

(∫ t

0
aα(τ)dτ−θδ(t)

)2
dt

≤Mα[aα,θδ
]≤Mα[aT ,θδ

]≤ δλd.
(2.11)

Obviously,

∥∥θα−θT∥∥L2 ≤
∥∥θα−θδ∥∥L2+

∥∥θδ−θT∥∥L2 , (2.12)

which implies that

∥∥θα−θT∥∥L2 ≤ δλ/2
√
d+δ≤ δλ/2

(
1+

√
d
)
. (2.13)

To end the proof of the theorem, let

δ(ε)=
(

γ(ε)
1+√d

)2/λ
. (2.14)

Theorem 2.2 shows that aα can be taken as an approximate solution of (1.4) with
approximate right-hand member θ = θδ.
Next, we need to show that θ depends on f ,g0 continuously.

Theorem 2.3. Suppose that ‖fδ−fT‖L4[0,T ] ≤ δ, |gδ−g0| ≤ δ, then
∥∥θδ−θT∥∥L2 ≤Dδ, (2.15)

where

D = 4π
g3
0

∥∥fT∥∥L4
(
8
(
g4
0+
∥∥fT∥∥4L4

))1/4
. (2.16)
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Proof. From (1.6) and Cauchy inequality,

∥∥θδ−θT∥∥2L2 =
(

π
4g2

0g
2
δ

)2∫ T

0

(
g2
0f

2
δ (t)−gdt2f 2

T (t)
)2dt

=
(

π
4g2

0g
2
δ

)2∫ T

0

(
g0fδ(t)−gδfT (t)

)2(g0fδ(t)+gδfT (t)
)2dt

≤
(
π
g4
0

)2(∫ T

0

(
g0fδ(t)−gδfT (t)

)4dt
)1/2

·
(∫ T

0

(
g0fδ(t)+gδfT (t)

)4dt
)1/2

,

(2.17)

where g0 ≤ 2gδ. The result in this theorem follows from the following estimates:

∫ T

0

(
g0fδ(t)+gδf

(t)
T

)4
dt ≤ 8

(
g4
0

∥∥fδ∥∥4L4+g4
δ
∥∥fT∥∥4L4

)

≤ 82g4
0

(∥∥fδ−fT∥∥4L4+3
∥∥fT∥∥4L4

) (
gδ < 2g0

)

≤ 82g4
0

(
δ4+3∥∥fT∥∥4L4

)

≤ 824g4
0

∥∥fT∥∥4L4
(
δ <

∥∥fT∥∥4L4
)
,

(2.18)

∫ T

0

(
g0fδ(t)−gδf

(t)
T

)4
dt =

∫ T

0

(
g0
(
fδ(t)−fT (t)

)+(g0−gdt
)
f (t)
T

)4
dt

≤ 8
(
g4
0

∥∥fδ−fT∥∥4L4+
∣∣g0−gδ

∣∣4∥∥fT∥∥4L4
)

≤ 8
(
g4
0+‖fT‖4L4

)
δ4.

(2.19)

Combing Theorems 2.2 and 2.3, we have the following stability result.

Theorem 2.4. Given ε > 0, there exists δ > 0, α = α(δ), such that, for the approx-
imate solution aα corresponding to fδ, gδ and the exact solution aT corresponding to
fT , g0, inequalities

∥∥fδ−fT∥∥L4[0,T ] ≤ δ,
∣∣gδ−g0

∣∣≤ δ, (2.20)

imply

∥∥aα−aT
∥∥
C ≤ ε. (2.21)

Therefore, aα can be taken as a stable approximate solution of (1.2).

3. A numerical example. To demonstrate the applicability of our approximation
approach, we consider the example in Section 2. Replacing the Euler integral equa-
tion (2.2) by its finite difference approximation on a uniform grid with step h =
T/(n+1), T = 1, we obtain the following system of linear equations:

α
[aj+1−2aj+aj−1

h2
−aj

]
= h2

n∑
i=j

i∑
k=1

ak−h
∑

i= jnθi, j = 1, . . . ,n, (3.1)

with a0 = an+1 = 0, aj = a(τj), θi = θ(ti).
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Take the regularization parameter α in the form of

α=α(δ)= (Dδ)λ, (3.2)

where 0 < λ ≤ 2, D is given by (2.16). With (θδ)i = θδ(ti) = (π/g2
δ)fδ(ti)2, gδ = g0+

δ, we want to recover aT from (3.1). The numerical comparison between the exact
solution aT and the approximate solution are given in the following table (n+ 79,
δ= 10−8, λ= 1.84):

t 0.025 0.05 0.075 0.1 0.125 0.15 0.175

aT (t) 0.025 0.05 0.075 0.1 0.125 0.15 0.175

aα(t) 0.025005 0.050030 0.074908 0.0100105 0.125084 0.149973 0.175053

t 0.2 0.225 0.25 0.275 0.3 0.325 0.35

aT (t) 0.2 0.225 0.25 0.2750 0.3 0.325 0.35

aα(t) 0.199973 0.225043 0.250111 0.275142 0.300033 0.325053 0.350123

t 0.375 0.4 0.425 0.45 0.475 0.5

aT (t) 0.375 0.4 0.425 0.45 0.475 0.5

aα(t) 0.374837 0.400034 0.425039 0.449937 0.45057 0.493663

One can see that, unlike the discussion in Section 2, our approximate solutionaα and
the exact solution aT match very well. This shows that the regularization approach
discussed in this work is an effective way of determining the unknown conduction
coefficient a(t) in the heat equation (1.2).
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