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Abstract. We give a common fixed point existence theorem for any sequence of com-
muting k-uniformly Lipschitzian mappings (eventually, for k= 1 for any sequence of com-
muting nonexpansive mappings) defined on a bounded and complete metric space (X,d)
with uniform normal structure. After that we deduce, by using the Kulesza and Lim (1996),
that this result can be generalized to any family of commuting k-uniformly Lipschitzian
mappings.

2000 Mathematics Subject Classification. Primary 47H10.

1. Introduction. In classical theorems concerning the existence of fixed points for
family of mappings, such as the Kakutani theorem [4] and its well-known generaliza-
tion due to Ryll-Nardzewski [13], the mappings of the family are usually assumed to
be linear, or at least to be weakly continuous and affine [11]. In the nonlinear theory,
a stronger geometric structure is required. In particular for a family of nonexpansive
mappings, Khamsi proved in [7] that any family of nonexpansive mappings defined
on a metric space (X,d) with compact and normal convexity structure �, has a com-
mon fixed point. In his proof, Khamsi investigated the concept of 1-local retract. In
this paper, we prove that any sequential family of k-uniformly Lipschitzian mappings
defined on a bounded metric space with a uniform normal convexity structure � with
constant β, which contains all closed ball of (X,d), has a common fixed point provided
that k2β < 1. Recall that any nonexpansive mapping defined on a bounded complete
metric space with uniform normal structure with constant β has a nonempty fixed
point set (Khamsi [6]). For more details on fixed point theory for nonexpansive and
k-uniformly Lipschitzian mappings in metric spaces we refer the reader to [1, 2, 3].

2. Definitions and preliminaries. In this work, (X,d) will be a metric space. We
use B(x,r) to denote the closed ball centered at x ∈X with radius r > 0. For a subset
A of X, we write

rx(A)= sup
y∈A

d(x,y), r(A)= inf
x∈A

rx(A),

δ(A)= sup
x∈A

rx(A), cov(A)=∩B∈�B,
(2.1)

where � is the family of closed balls containing A. A subset A of X is said to be
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admissible if and only if A = cov(A). In other words, A is admissible if it is an inter-
section of a family of closed balls centered in X.

Definition 2.1. Let � be a nonempty family of a subset of X. We say that � defines
a convexity structure on X if and only if it is stable by intersection.

In this work, we always assume that � contains the balls. Also we denote by �(X)
the smallest convexity structure on X.

Definition 2.2. We say that � has the property (R) if and only if any decreas-
ing sequence (Xn)n of nonempty bounded closed subsets of X with Xn ∈ � has a
nonempty intersection.

Definition 2.3. (i) We say that X has uniform normal structure if and only if
r(A)≤ βδ(A) for some 0< β< 1 and for every A∈�.

(ii) We say that � is normal if and only if r(A) < δ(A) for every A∈�.

Let us recall that a self mapping T :X →X is said to be k-uniformly Lipschitzian if
there exists a k > 0 such that

d
(
T ix,T iy

)≤ kd(x,y) (2.2)

for every i ∈ N and every x,y in X. A 1-uniformly Lipschitzian map is called non-
expansive. For such class of mappings we recall the following most important result.

Theorem 2.4 (see [6]). Let (X,d) be a complete bounded metric space. Assume that
X has uniform normal structure. Then any nonexpansive mapping defined on X has a
fixed point.

In [7], Khamsi gave the definition and a characterization of a 1-local retract subset
of a metric space.

Definition 2.5. A subset A is said to be a k-local retract if for any family (Bi)i of
closed balls centered in A such that ∩i∈IB(xi,ri)≠∅, we have A∩i∈I B(xi,kri)≠∅.

It is immediate that uniform normal structure is not hereditary. However, for 1-local
retract subsets we have the following lemma.

Lemma 2.6. Let (X,d) be a metric space. Suppose that �(X) is a uniform normal
convexity structure with constant β < 1. If Y is a 1-local retract subset of X, then �(Y)
is a uniform normal structure with the same constant β.

The proof is based on the next lemma.

Lemma 2.7 (see [7]). Let (X,d) be a metric space and A a nonempty bounded subset
of X. Then

(1) cov(A)=∩x∈XB(x,rx(A)).
(2) rx(A)= rx(covA) for every x in X.
(3) δ(A)= δ(covA).
(4) r(covA)≤ r(A).
(5) If (X,d) has the (n,∞) property and is convex, then δ(A)/2 ≤ r(covA) ≤

((n−1)/n) δ(A).
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Recall that (X,d) is said to have the (n,∞) property if for any family (Bi)i∈I of
closed balls of X such that ∩i∈JBi ≠∅ for any finite subfamily J of I with card(J) less
than n, we have ∩i∈IBi ≠∅.

A metric space (X,d) is said to be convex if for all x,y in X and α ∈ [0,1] there
exists a z ∈X such that

d(z,x)=αd(x,y), d(z,y)= (1−α)d(x,y). (2.3)

Proof of Lemma 2.6. We assume thatA is not a singleton. By (4) of Lemma 2.7, we
have r(covA) ≤ r(A). Since A ∈�(Y), then A = ∩i∈IB(xi,ri)∩Y with xi ∈ Y . Hence
covA⊂∩i∈IB(xi,ri). Let z ∈ cov(A) and define r = rz(A), then z ∈ B =∩x∈AB(x,r)∩
∩i∈IB(xi,ri) is in �(X). Since Y is a 1-local retract of X then B∩Y ≠∅. Letw ∈ B∩Y ,
so w ∈ A=∩i∈IB(xi,ri)∩Y and w ∈∩x∈AB(x,r). We deduce that rw(A)≤ r . Hence
r(A)≤ r = rz(A).

Since z is arbitrary in cov(A) we obtain from (2.1) that r(A) ≤ r(cov(A)). But
cov(A)∈�(X) which is uniform normal, then

r(A)≤ r(cov(A))≤ βδ(cov(A))= βδ(A) (2.4)

from property (4) of Lemma 2.7.

3. Fixed points for k-uniformly Lipschitzian mappings. In the next theorem, we
obtain fixed point theorem for k-uniformly Lipschitzian mapping by utilizing the ex-
istence theorem of nonexpansive mapping [7]. To our knowledge this connection has
not been utilized. Moreover, Theorem 3.1 contains the result of Theorem 2.4.

Theorem 3.1. Let (X,d) be a complete bounded metric space. Assume that X has
a uniform normal structure with constant β < 1. Then any k-uniformly Lipschitzian
mapping T :X →X has a fixed point if k2β < 1.

Proof. First we need the following two lemmas.

Lemma 3.2. Under the same hypothesis as Theorem 3.1, and for T : X → X
k-uniformly Lipschitzian, let

d′(x,y)= sup
i=0,1,...

d
(
T ix,T iy

)
. (3.1)

Then
(1) (X,d′) is a bounded complete metric space.
(2) T is d′-nonexpansive, that is,

d′(Tx,Ty)≤ d′(x,y) ∀x,y ∈X. (3.2)

Lemma 3.3. Under the same hypothesis as Theorem 3.1, and for T : X → X
k-uniformly Lipschitzian, the family of all admissible subsets of (X,d′) is a uniform
normal convexity structure with constant c (c ≤ k2β).
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Proof of Lemma 3.2. (1-1) d′ is a metric on X. Indeed
(1-1-a) For every x,y in X, we have d′(x,y) = 0 is equivalent to d(T ix,T iy) =

0 for every i= 0,1,2, . . . .
Specifically for i = 0, it implies that d(x,y) = 0. Since d is a metric on X, then

x =y .
(1-1-b) For every i= 0,1,2, . . . , and every x,y,z in X, we have

d
(
T ix,T iy

)≤ d(T ix,T iz)+d(T iz,T iy), (3.3)

since d is a metric on X.
By passing to the supremum on i∈N, we obtain that

d′(x,y)≤ d′(x,z)+d′(z,y). (3.4)

(1-1-c) It is immediate that d′(x,y)= d′(y,x) for all x,y in X.
(1-2) Since T is k-uniformly Lipschitzian on X, and by definition of d′, we have the

inequality
d(x,y)≤ d′(x,y)≤ kd(x,y) (3.5)

for all x,y in X. It follows from this inequality that (X,d′) is a bounded complete
metric space since (X,d) is.

(2) For every x,y in X, we have

d′(Tx,Ty)= sup
{
d
(
T i+1x,T i+1y

) | i= 0,1,2, . . .
}

≤ sup
{
d
(
T ix,T iy

) | i= 0,1,2, . . .
}

= d′(x,y).
(3.6)

Proof of Lemma 3.3. Let A be an admissible subset for d′, then

A=∩x∈XB′
(
x,r ′x(A)

)⊂ cov(A)=∩x∈XB
(
x,rx(A)

)
. (3.7)

On the other hand, it follows from the definition of d′ that

d(z,y)≤ d′(z,y)≤ kd(z,y) ∀z,y ∈X. (3.8)

Hence
r ′z(A)≤ krz(A) ∀z ∈X. (3.9)

By passing in (3.9) to the infimum on z ∈∩x∈XB′(x,r ′x(A)), we get

inf
z∈∩x∈XB′(x,r ′x(A))

r ′z(A)≤ k inf
z∈∩x∈XB′(x,r ′x(A))

rz(A), (3.10)

which implies that

r ′(A)= { infr ′z(A) | z ∈A=∩x∈XB′(x,r ′x(A))}

≤ k{ infrz(A) | z ∈∩x∈XB′(x,r ′x(A))}

≤ k inf
{
sup
x∈A

d(z,x) | d(z,x)≤ rx(A)
k

}

≤ k inf
{
ksup
x∈A

d(z,x) | d(z,x)≤ rx(A)
}

(3.11)
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since

∩x∈XB
(
x,
rx(A)
k

)
⊂∩x∈XB′

(
x,r ′x(A)

)
. (3.12)

Therefore

r ′(A)≤ k2r
(
cov(A)

)≤ k2βδ
(
cov(A)

)= k2βδ(A)≤ k2βδ′(A). (3.13)

Proof of Theorem 3.1. It follows immediately from Theorem 2.4, property (2)
of Lemma 3.2, and Lemma 3.3.

By Theorem 3.1, we have Fix(T) ≠ ∅ for every k-uniformly Lipschitzian mapping
T defined on a bounded complete metric space (X,d) with uniform normal convexity
structure � with constant β < 1/k2. Moreover, Fix(T) is a k-local retract of X, that is,
for every closed ball B(xi,ri)i∈I , we have

∩i∈IB
(
xi,ri

)
≠∅ implies ∩i∈I B

(
xi,kri

)∩Fix(T)≠∅. (3.14)

Now we are able to show the following.

Theorem 3.4. Let Tn : X → X; n = 0,1,2, . . . be a family of commuting k-uniformly
Lipschitzian mappings. Suppose that X has a uniform normal convexity structure �

with constant β < 1/k2. Then ∩n∈N Fix(Tn)≠∅ and is a k-local retract of X.

Proof of Theorem 3.4. The first part of the theorem follows immediately from
Theorem 3.1. For the second part, let (Bi)i∈I be a family of closed balls centered in
∩n∈N Fix(Tn) such that (Bi)i∈I ≠∅.

We have

Bd
(
xi,ri

)⊂ Bd′(xi,kri)⊂ Bd(xi,kri). (3.15)

Hence

∩i∈IBd′
(
xi,kri

)
≠∅, (3.16)

and since (Tn)n are nonexpansive mappings on (X,d′), it follows from Theorem 3.1
that

∩n∈N Fix
(
Tn
)∩∩i∈IBd′(xi,kri)≠∅, (3.17)

which implies that

∅≠∩n∈N Fix
(
Tn
)∩∩i∈IBd′(xi,kri)

≠∅⊂∩n∈N Fix
(
Tn
)∩∩i∈IBd(xi,kri)≠∅. (3.18)

The problem of whether the conclusion of Theorem 3.4 holds for any commut-
ing family (Ti)i∈I of k-uniformly Lipschitzian mappings (k > 1) was open for sev-
eral years. However, by using the result of Lim and Kulesza [8] in which they show
that weak compactness and weak countably compactness are equivalent, if the metric
space has normal structure, we prove the following.
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Theorem 3.5. Let (X,d) be a bounded complete metric space with a uniform normal
convexity structure (β < 1). Then any commuting family Ti :X →X, i∈ I of k-uniformly
Lipschitzian mappings has a common fixed point provided that k2β < 1.

Proof. Since (X,d′) has uniform normal structure with constant c (c < k2β), then
by the well-known theorem of Khamsi [6], �(Xd′) is countably compact.

Hence by the Lim and Kulesza result, it follows that �(Xd′) is in fact compact. On
the other hand, since each Ti, i∈ I is d′-nonexpansive (Lemma 3.3), it follows that the
result of Theorem 3.4 is a direct consequence of Khamsi’s theorem in which he shows
that any commuting family of nonexpansive mappings defined on a bounded metric
space for which �(Xd′) is compact and normal, has a common fixed point.

We remark that the result of Theorem 3.5 was deduced from Lim and Kulesza theo-
rem and the uniform convexity of (X,d′) (Lemma 3.3); but the problem of whether the
compactness and normality of (X,d) imply the compactness and normality of (X,d′)
is still open.

4. Applications. It was proved by Nachbin [10] and Kelley [5] that all Banach spaces
which have the (2,∞) property are those of form C(E), where E is a compact Stonian,
for example l∞ and L∞. Then by Theorem 3.5 and property (5) of Lemma 2.7, we have
the following.

Corollary 4.1. The unit balls of l∞, L∞, and C(E), where E is a compact Stonian
have the common fixed point property for every commuting family Ti :X →X, i∈ I of
k-uniformly Lipschitzian mappings provided that k <

√
2.

Lindenstrauss [9] has proved that l1 has a (3,∞) property.
Corollary 4.2. The unit ball of l1 has the common fixed point property for every

commuting family Ti :X →X, i∈ I of k-uniformly Lipschitzian mappings provided that
k <

√
3/2.

Also, we deduce from Theorem 3.5 and property (5) of Lemma 2.7, the following
corollary.

Corollary 4.3. If (X,d) is a Banach space with the (n,∞) property, and if k <√
n/(n−1), then its unit ball has the common fixed point property for every commuting

family Ti :X →X, i∈ I of k-uniformly Lipschitzian mappings.

More recently, Prus [12] has proved that all Banach spaces Lp (1 < p < +∞) have
uniform normal structure with constant β= (min(21/p,21/q))−1, where q = p(p−1)−1

is the conjugate of p.
Hence, we have the following.

Corollary 4.4. The unit balls of Lp have the common fixed point property for every
commuting family Ti :X →X, i∈ I of k-uniformly Lipschitzian mappings provided that
k <

√
min(21/p,21/q).

Now we recall the definition of the most geometrical characterization of l∞, L∞, and
C(E), where E is a compact Stonian.
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Definition 4.5. A metric space (X,d) is said to be hyperconvex if and only if any
family {B(xi,ri), i∈ I} of closed balls of (X,d) such that

d
(
xi,xj

)≤ ri+rj (4.1)

for every i,j ∈ I, has a nonempty intersection.

Remarks. (1) Every hyperconvexmetric space is complete, and ifA is an admissible
subset of (X,d), then also (A,d) is a hyperconvex metric space (see [2]).

(2) Every hyperconvex space is convex. Indeed:
For all x,y in X and for any α∈ [0,1], let u,v in X. We have

α
[
d(x,u)+d(x,v)]+(1−α)[d(y,u)+d(y,v)]≥ d(u,v). (4.2)

The hyperconvexity of (X,d) implies that

∩u∈XB
(
u,αd(x,u)+(1−α)d(y,u))≠∅. (4.3)

Hence, for every x,y in X and for every α∈ [0,1], there exists a z ∈X such that

z ∈∩u∈XB
(
u,αd(x,u)+(1−α)d(y,u)); (4.4)

that is,
d(u,z)≤αd(x,u)+(1−α)d(y,u) ∀u∈X. (4.5)

Therefore
d(x,z)= (1−α)d(x,y), d(y,z)=αd(x,y). (4.6)

Also by Theorem 3.5 and property (5) of Lemma 2.7, we obtain the following
theorem.

Theorem 4.6. Let (X,d) be a bounded hyperconvex metric space. Then any family
of commuting k-uniformly Lipschitzian mappings defined on X has a common fixed
point if k <

√
2.

Proof. (X,d) is a bounded hyperconvex metric space. Then from the above re-
marks, it is complete. Let us prove that (X,d) has the (2,∞) property. Indeed:

Let {B(xi,ri),i∈ I} be a family of closed balls of (X,d), such that

B
(
xi,ri

)∩B(xj,rj)≠∅ ∀i,j ∈ I (i≠ j). (4.7)

Then we have
d
(
xi,xj

)≤ d(xi,x)+d(xj,x)≤ ri+rj, (4.8)

where x ∈ B(xi,ri)∩B(xj,rj).
The hyperconvexity of (X,d) implies that ∩i∈IB(xi,ri) ≠∅. Then (X,d) is a convex

metric space with the (2,∞) property. Therefore, by property (5) of Lemma 2.7, �(X)
is a uniform convexity structure with constant β= 1/2. Hence, Theorem 3.5 completes
the proof.
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