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ON MATRIX TRANSFORMATIONS CONCERNING
THE NAKANO VECTOR-VALUED
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ABSTRACT. We give the matrix characterizations from Nakano vector-valued sequence
space £(X,p) and Fy(X,p) into the sequence spaces Ey, f«, £ (q), bs, and cs, where
p = (pr) and q = (qx) are bounded sequences of positive real numbers such that py > 1
forall k e N and r > 0.
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1. Introduction. Let (X,] - ||) be a Banach space, ¥ > 0 and p = (px) a bounded
sequence of positive real numbers. We write x = (x) with xj in X for all k € N. The
X-valued sequence spaces co(X,p), c(X,p), s (X,p), L (X,p), E.(X,p), F,(X,p), and
£, (X,p) are defined as

co(X,p) = |x :£§n||xk|\”k=0},

c(X,p)={x :%im||xk—a||’”"=0, forsomean},

k=1 (1.1)

= (xx)
= (xx)
lo(X,p) = 1x = (xx) s sup ||xx]|"* < oo},
= (x«)
= (x«)

E,(X,p) =9x

{
{
{
L(X,p) = {x
{

Fr(X,p) = {x =(x1): > k| |xi][Px < oo},

L. (X,p) =) {x = (xx) :Slip”kanl/Vk}_

n=1

When X = K, the scalar field of X, the corresponding spaces are written as co(p),
c(p),¥e(p),L(p), Er(p), F(p),and £, (p), respectively. The spaces co(p), c(p), and
{.(p) are known as the sequence spaces of Maddox. These spaces were first intro-
duced and studied by Simons [7] and Maddox [4, 5]. The space £(p) was first defined
by Nakano [6] and it is known as the Nakano sequence space and the space £(X,p)
is known as the Nakano vector-valued sequence space. When py = 1 forall k e N,
the spaces E,(p) and F,(p) are written as E, and F,, respectively. These two
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sequence spaces were first introduced by Cooke [1]. The space £, (p) was first defined
by Grosse-Erdmann [2] and he has given in [3] characterizations of infinite matrices
mapping between scalar-valued sequence spaces of Maddox. Wu and Liu [10] gave
necessary and sufficient conditions for infinite matrices mapping from cy (X, p) and
L+ (X,p) into ¢o(q) and £« (gq). Suantai [8] has given characterizations of infinite ma-
trices mapping (X, p) into £ and £, (g) when py < 1 for all k € N and he has also
given in [9] characterizations of those infinite matrices mapping from £ (X, p) into the
sequence space E, when py <1 for all k € N.

In this paper, we extend the results of [8, 9] in case py > 1 for all k € N. Moreover,
we also give the matrix characterizations from £(X,p) and F, (X, p) into the sequence
spaces bs and cs.

2. Notations and definitions. Let (X, || - ||) be a Banach space, the space of all se-
quences in X is denoted by W (X), and ®(X) denotes the space of all finite sequences
in X. When X = K, the scalar field of X, the corresponding spaces are written as w
and &.

A sequence space in X is a linear subspace of W(X). Let E be an X-valued sequence
space. For x € E and k € N, xi stands for the kth term of x. For k € N, we denote by
ey the sequence (0,0,...,0,1,0,...) with 1 in the kth position and by e the sequence
(1,1,1,...). For x € X and k € N, let e¥(x) be the sequence (0,0,...,0,x,0,...) with
x in the kth position and let e(x) be the sequence (x,Xx,x,...). We call a sequence
space E normal if (txxy) € E for all x = (xx) € E and t;y € K with |ty| = 1 for all
ty € N. A normed sequence space (E,| - ||) is said to be norm monotone if x = (xy),
v = (k) € E with |[xg|l < ||ykll for all k € N we have || x| < ||v||. For a fixed scalar
sequence i = (i), the sequence space E, is defined as

E,={xeW(X): (uxk) € E}. 2.1)

Let A = (ff") with f7' in X', the topological dual of X. Suppose that E is a space
of X-valued sequences and F a space of scalar-valued sequences. Then A is said to
map E into F, written by A : E — F, if for each x = (xx) € E, Ay (x) = Z,"(":lf,?(xk)
converges for each n € N, and the sequence Ax = (A, (x)) € F. Let (E,F) denote the
set of all infinite matrices mapping from E into F.

Suppose that the X-valued sequence space E is endowed with some linear topology
7. Then E is called a K-space if for each k € N, the kth coordinate mapping py : E — X,
defined by px(x) = xx, is continuous on E. If, in addition, (E, T) is a Fréchet (Banach)
space, then E is called an FK- (BK-) space. Now, suppose that E contains ®(X). Then E
is said to have property AB if the set {Zle eX(xy) :m € N} is bounded in E for every
x = (xy) € E.Itis said to have property AKif >;_; e¥(x;) — x in E as n — o for every
x = (xx) € E. It has property AD if ®&(X) is dense in E.

It is known that the Nakano sequence space £(X,p) is an FK-space with property AK
under the paranorm g(x) = (> p_q lIxk|IPx)'/™ where M = max{1,supy pi}. If px > 1
for all k € N, then £(X,p) is a BK-space with the Luxemburg norm defined by

Pk
< 1]». (2.2)

Xk

[|(xx) | =inf{s> 0: i
k=1
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3. Main results. We first give a characterization of an infinite matrix mapping from
{(X,p) into E, when p; > 1 for all k € N. To do this, we need the following lemma.

LEMMA 3.1. Let E be an X -valued BK-space which is normal and norm monotone and
let A = (f{") be an infinite matrix. Then A : E — E, if and only if sup,, Y- | fit (xi)|/n"
< oo forevery x = (xy) € E.

PROOF. If the condition holds true, it follows that

|Zli°=1fl?(xk)\ |fk Xk |
= .1
syp L0 <oy 5 LERL < @D

for every x = (xy) € E, hence A:E — E,.
Conversely, assume that A : E — E,. Since E and E, are BK-spaces, by Zeller’s
theorem, A : E — E, is bounded, so there exists M > 0 such that

sup |2kt A (3.2)

neN nr
[Ixp) =1
Let x = (xx) € E be such that || x|| = 1. For each n € N, we can choose a scalar sequence
(tx) with [tx] = 1 and fJ} (fexk) = |fit (xx)| for all k € N. Since E is normal and norm
monotone, we have (txxy) € E and || (txxk)|l < 1. It follows from (3.2) that

o) oo n
Z LA Xk) \ S S (tex) | <M, (3.3)
k=1 nV
which implies
L n
sup > M <M. (3.4)
neNp_y n
It follows from (3.4) that for every x = (xy) € E,
sup Z 1A Ca) | <M]x]|. (3.5)
neN; nr
This completes the proof. O

THEOREM 3.2. Let p = (px) be a bounded sequence of positive real numbers with
pr>1forallk e Nand 1/px+1/qr =1 for all k € N, and let v > 0. For an infinite
matrix A = (f}), A€ (£(X,p),Ey) if and only if there is mo € N such that

sup > |l n T m ™ < co. (3.6)
k=1

PROOF. Let x = (x}) € £(X,p). By (3.6), there are m( € N and K > 1 such that

Z [l nTaem ™ <K, VneN. (3.7)

Note that for a,b > 0, we have

ab < aPk + bk, (3.8)
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It follows by (3.7) and (3.8) that for n € N,

nT| D fxa) [ =TT D i (mgt - moxy)
k=1 k=1
< 2, (7" mg LA (fmoxell)
“~ N (3.9)
< 2 n g AL e m 3l
k=1 k=1

0
<K+m§ > ||xk||”*, where &= suppy.
k=1 k

Hence supn™"| Y, fit (xx)| < oo, so that Ax € E,.

For necessity, assume that A€ (£(X, p), E,). For each k € N, we have sup,, n™"| f{* (x)|
< oo for all x € X since e®¥) (x) € £(X, p). It follows by the uniform bounded principle
that for each k € N there is Cy > 1 such that

supn || [ < Cr. (3.10)
n

Suppose that (3.6) is not true. Then
sup > |[fr]|"nrdm % = 0, Vm eN. (3.11)
nok=1

For n € N, we have by (3.10) that for k,m € N,

M=

(o)
S a7l ramen = S Onmen S e
Jj=1 Jj>k

1

J

' (3.12)
<> C?jm’qf +> Hfj"qun’me’qf.
j=1 >k
This together with (3.11) give
sup ' || £ nraim i = w0, vEmen. (3.13)
n j>k
By (3.13) we can choose 0 = kg <k; <ky < ---,m; <mp <---, m; >4 and a
subsequence (1n;) of positive integers such that for all i > 1,
S|l e s 2, (3.14)

ki_1<j<k;

For each i € N, we can choose x; € X with ||x;|| = 1, for k;_1 < j < k; such that

> ) ‘an{mjm;q" > 21, (3.15)
ki_1<j=<k;
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For each i € N, let F; : (0,0) — (0,) be defined by

aj

M) = 3 )| e M, (3.16)

ki*l <jSki

Then F; is continuous and non-increasing such that F(M) — 0 as M — oo. Thus there
exists M; > 0 such that M; > m; and

) ai -rg; —q: .
FM) = 3 [ )| vy =2 (3.17)
ki_1<j<kj

_ir a1 -rajip; ; q;-1 .
=), yi=4TM T P f ) [T K for ki < j <k (3.18)
Thus
‘P‘j(q‘,'*l)

< - g P @=1) —ra; |
>yl =3 a7 T T £ ()
j=1 i=1k;_

1<j<k;i

Y4 S M ) [

. (3.19)
— 4—1' 21

2

=1
:i;? =1

Thus ¥ = (¥;) € £(X,p). Since £(X, p) is a BK-space which is normal and norm mono-
tone under the Luxemburg norm, by Lemma 3.1, we obtain that

0 n
sup > M < co. (3.20)
n o n
But we have
= 1)) = () ()
sup > ‘ J VJ ‘ ZSHPZMZSHP D ‘ i ’
n o5 n i o M i <gek; TH
=sup > 4’1'Mi7(qu)n;7(qj/pj“) ‘f;li (x) ‘qj
bk <jskg
=sup > gripg] Ty T ’fjni (x5) }q‘i 62D
boki1<jskg
= sup Z (‘fj"i (x;) ‘q‘in;TqJM;qj)4’iMi
bk <jskg

> sup?2! = 0, because M; > 4%
i

This is contradictory with (3.20). Therefore (3.6) is satisfied. O
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THEOREM 3.3. Let p = (px) be a bounded sequence of positive real numbers such
that py > 1 forallk e N, 1/px+1/qx =1 forallk € N, v > 0 and s > 0. Then for an
infinite matrix A = (f"), A € (F-(X,p),E;) if and only if there is mo € N such that

sup > (k‘”’k/"’k||f,?||q"n‘s‘4kmaqk) < 0. (3.22)
k=1

PROOF. Since F, (X,p) = €(X,p)<kr/nk), it is easy to see that
A€ (Fr(X,p),Es) = (k7"Pk i), € (£(X,p)Es). (3.23)

By Theorem 3.2, we have (k*”"’kf,f)n,,< € ({(X,p)E;) if and only if there is my € N
such that

sup Z (kfqu/m(||f]ZL||an—sqkmaqk) < oo, (3.24)
k=1

Thus the theorem is proved. O

Since Ey = ¥, the following two results are obtained directly from Theorems 3.2
and 3.3, respectively.

COROLLARY 3.4. Let p = (px) be a bounded sequence of positive real numbers with
pr>1forallk e N andlet 1/px+1/qx =1 for all k € N. Then for an infinite matrix
A= (", Ae ({(X,p),¥s) if and only if there is my € N such that

sup > |If2[%me™ < co. (3.25)
nok=1

COROLLARY 3.5. Let p = (px) be a bounded sequence of positive real numbers with
pr>1forallk e N andlet1/pyx+1/qrx =1 for all k € N. Then for an infinite matrix
A=(f1), A (F(X,p),¥s) if and only if there is mo € N such that

sup Y. (k79w/Pk|| £ % my ™) < oo, (3.26)
k=1

THEOREM 3.6. Let p = (px) and q = (qx) be bounded sequences of positive real
numbers with py > 1 for all k e N and let 1/py +1/ty =1 for all k € N. Then for an
infinite matrix A = (f{), A € (€(X,p),L..(q)) if and only if for each v € N, there is
m, € N such that

sup > wir/an|| ][k gm " < oo, (3.27)
nk k-1

PROOF. Since ¥, (q) = mi":lﬂmwuqk), it follows that
A€ (LX), L (@) = A€ (L(X,p), loria), VT EN. (3.28)
It is easy to show that for r € N,

A€ (LX,p) b iiay)) = (P fR), € (0(X,p), Le). (3.29)
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We obtain by Corollary 3.4 that for » € N, (r1/4n '), € (£(X,p),¥) if and only if
there is m, € N such that

sup > rik/an|| fr[km, % < oo, (3.30)
n k=1

Thus the theorem is proved. O

THEOREM 3.7. Let p = (px) and q = (qx) be bounded sequences of positive real
numbers with py > 1 for allk € N and let 1/py + 1/tx =1 for all k € N. For an infinite
matrix A = (f}), A € (F-(X,p),£.(q)) if and only if for each i € N, there is m; € N
such that

sup > itk/an =Tt/ p|| 1] < oo (3.31)
n k=1

PROOF. Since F, (X,p) = (X, P) rirky, it implies that
Ae (Fr(X,p), L () = (kir/pkflzl)n,k € (PX,p), Lo (). (3.32)

It follows from Theorem 3.6 that A € (F,(X,p),¥(q)) if and only if for each i € N,
there is m; € N such that

sup Z itk/an*Vtk/l’k||fl:l||tkm;tk < oo, (3.33)
n k=1 0
THEOREM 3.8. Let p = (px) be bounded sequence of positive real numbers with

pr>1forallm e N andlet 1/px+1/qx =1 for all k € N. Then for an infinite matrix
A=(fh, Ae ((X,p),bs) if and only if there is my € N such that

ak
my ™ < oo, (3.34)

> i
i=1

sup >
n k=1
PROOF. For an infinite matrix A = (f}'), we can easily show that

Ac (L(X,p),bs) = (Zf,;’) € (U(X,p), ). (3.35)
i=1

n,k

This implies by Corollary 3.4 that A € (£(X,p),bs) if and only if there is my € N
such that

dk
my ™ < oo, (3.36)

O

S
i=1

o0
sup z
nok=1

THEOREM 3.9. Let p = (px) be a bounded sequence of positive real numbers with
pr>1forallk e N andlet 1/px+1/qx =1 for all k € N. Then for an infinite matrix
A=(fiH,Ae (U(X,p),cs) if and only if

(1) there is mg € N such that sup, > p_; || 1, fill%my® < co and
(2) foreachkeNandx € X, X.;_; fi*(x) converges.
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PROOF. The necessity is obtained by Theorem 3.8 and by the fact that e® (x) €
{(X,p) for every k € N and x € X.

Now, suppose that (1) and (2) hold. By Theorem 3.8, wehave A: £(X,p) — bs.Letx =
(xx) € €(X,p). Since £(X,p) has the AK property, we have x = lim,,_. > r_; e® (xy).
By Zeller’s theorem, A: (X, p) — bs is continuous. It implies that

n
Ax = lim > Ae™ (xy). (3.37)
k=1

By (2), Ae'® (xy) € cs for all k € N. Since cs is a closed subspace of bs, it implies that
Ax € cs, thatis, A: €(X,p) — cs. O
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