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ABSTRACT. Let B be a ring with 1, C the center of B, and G a finite automorphism group
of B. It is shown that if B is an Azumaya algebra such that B = @ 3> ;¢ Jg where Jg =
{b € B | bx = g(x)b for all x € B}, then there exist orthogonal central idempotents
{fi e Cli=1,2,...,mfor someinteger m} and subgroups H; of G such that B =
(X" Bfi) ® D where Bf; is a central Galois algebra with Galois group Hilpy, = Hj
foreachi=1,2,...,m and D is contained in C.

2000 Mathematics Subject Classification. 16S35, 16W20.

1. Introduction. Let A be an Azumaya algebra, G a finite algebra automorphism
group of A, and J; = {a € A| ax = g(x)a for all x € A} for each g € G. In [6], it
was shown that J,Jn = Jgn for all g,h € G. In [2], let B be a separable algebra over
a commutative ring R and G a finite algebra automorphism group of B. Assume that
B = @3 ;ccJg where J,; are similarly defined as for A. Then, B is a central Galois al-
gebra with Galois group G if and only if for each g € G, J4J,-1 = C, the center of B.
Thus, any Azumaya algebra B with a finite algebra automorphism group G such that
B = @3 c:Jy is a central Galois algebra with Galois group G. By changing the al-
gebra automorphism group G to a ring automorphism group G, the purpose of the
present paper is to generalize the above fact. We will show that if B is an Azumaya
C-algebra with a finite ring automorphism group G such that B = & > ;< J4, then there
exist orthogonal central idempotents {f; € C|i=1,2,...,m for some integer m} and
subgroups H; of G such that B = (&Y', Bf;) ® Bf where Bf; is a central Galois
algebra with Galois group H;lgs, = H; for each i = 1,2,...,m, f =1 - > fi, and
Bf = Cf. Since a Galois algebra B with Galois group G is an Azumaya algebra such
that B = @ > ;e Jg, our result can be applied to Galois algebras. Moreover, if B is
a separable extension of B such that B = ® > jec Jg, then the direct summand Bf
is a commutative Galois algebra with Galois group Glzr = G. An example is given
to demonstrate the results and to illustrate that an Azumaya algebra B such that
B =@ ;e Jg is not necessarily a Galois algebra with Galois group G.

2. Definitions and notations. Throughout, B will represent a ring with 1, C the
center of B, G a ring automorphism group of B of order » for some integer n, and B¢
the set of elements in B fixed under each element in G. We denote J;, = {b € B | bx =
g(x)b for all x € B} and I; = BJ;NC for each g € G.

Let A be a subring of a ring B with the same identity 1. We denote Vz(A) the com-
mutator subring of A in B. We follow the definitions of a Galois extension, a separable
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extension, and an Azumaya algebra as given in [1, 5, 7]. The ring B is called a separable
extension of A if there exist {a;,b; in B, i =1,2,...,m for some integer m} such that
Saib;=1,and > ba;®b; => a;®b;b for all b in B where ® is over A. An Azumaya
algebra is a separable extension of its center. The ring B is called a Galois extension
of B¢ with Galois group G if there exist elements {a;,b; in B, i = 1,2,...,m} for some
integer m such that Zﬁl aig(bi) = 81,4 for each g € G. The algebra B is called a Galois
algebra over R if B is a Galois extension of R which is contained in C, and B is called
a central Galois extension if B is a Galois extension of C.

3. The structure theorem. In this section, we assume that B is an Azumaya C-
algebra with a finite ring automorphism group G such that B = @ > ;< J ;. We will show
a structure theorem for such a B. We begin with some properties of the C-module J,
for g € G similar to those as for a Galois algebra (see [4, Proposition 2]).

LEMMA 3.1. Forall g,h € G,
(1) JgJn =1gJgn = InJgn wherelg =BJ,nC andIn =BJynC.
(2) There is a unique idempotent e, € C such that BJg = Beg and JgJ4-1 = e4C.

PROOF. (1) Since B is an Azumaya C-algebra and BJ, is an ideal of B, BJ4 = Bl
(see [1, Proposition 1.11, page 46]). By hypothesis, B = @ ;¢ Jg, S0 BJn = 3 yec JgJn-
Noting that J,Jn C Jgn and B = & 3 ;e Jgn, we have that BJ, = @ X ;c¢ JgJn- Hence
@degfgjh =BJy, =BI;, = €BzgeGJghIh- Thus, Jgfh = Ihfgh. Similarly, Jg]h = Igjgh.

(2) By (1), JgJn = IgJgn for all g,h € G. By letting h = 1, we have I5J; = JgJ1 =
JgC = Jg, and by letting h = g1, we have JyJ -1 = IsJ1 = I,C = I;. Thus, (I4)? =
IgJgJg-1 = JgJg-1 = 14. Moreover, since B = & dec Jg is an Azumaya C-algebra, J, is
a finitely generated and projective C-module for each g € G. Hence BJ; = B®c Jg4
is a finitely generated and projective ideal of B. This implies that I;(= BJ;nC) is
a finitely generated and projective ideal of C. But (I;)? = I, so I, = Ce, for some
idempotent ey € C (see [4, Lemma 2] and [3, Theorem 76]). Therefore, BJ, = Bl,; = Bey
and JyJ,1 =1, = e4C. Since ey is the identity of Bey, it is unique. O

By Lemma 3.1(2), for each g € G, there is a unique idempotent e; € C such that
BJ4 = Be,. The Boolean algebra generated by the elements {e; | g € G and BJy = Bey}
is denoted by E.

LEMMA 3.2. Let e be a nonzero element in E of the form e = Ilpcyen for some maxi-
mum subset H of G. Then H is a subgroup of G and h(e) = e for each h € H.

PROOF. Forany g,h € H,
Begen = (BJg) (BJn) = B(JgJn) = B(IgJgn) = (Blg) (BJgn) = Begegn. CRY

Hence egep, = egegn. Thus, egep, = egefl = egegnen. Therefore, e = eeyy. Thus, gh € H
by the maximality of H. Since G is finite, that gh € H whenever g,h € H implies
that H is a subgroup of G. Noting that, for a subgroup H, gHg ' = H for all g € H,
we have that

g(Be) = g(B(TlnenJn)) = B(Mlheng (Jn)) = B(MnenJgng—1) = B(lnenJn) = Be  (3.2)

for each g € H. Hence, g(e) = e for each g € H because e is the identity of Be. O
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Next we show that H|p, is an algebra automorphism group.

LEMMA 3.3. Let e be a nonzero element in E of the form e = Ilpcyen for some maxi-
mum subset H of G. Then h restricted to Ce is an identity for each h € H.

PROOF. Forany h € H and b € J,, bc = h(c)b for all c € C, so (c —h(c))b = 0.
Hence (¢ —h(c))Jn = {0}. Therefore B(c —h(c))e, = (c —h(c))Ben = (c—h(c))BJy =
B(c—h(c))Jn = {0}. Thus, (c —h(c))en = 0.But e =IIpepen, so (c —h(c))e = 0. More-
over, h(e) = e for each h € H by Lemma 3.2, so 0 = (c — h(c))e = (c—h(c))h(e) =
ch(e)—h(c)h(e) =ce—h(ce), thatis, h(ce) =ceforall c € C. O

LEMMA 3.4. Let J,(LBf) ={b eBf | bx = h(x)b forall x € Bf} for any f € E and
heG. Ifh(f) = f, then "7 = £ .

PROOF. Itis clear that fJ, C ],(le). Conversely, for any b € J;Bf), b= fband bx =

h(x)b for each x € Bf. Hence for any v € B, by = (fb)y = b(yf) = h(yf)b =
h(y)fb = h(y)b. Therefore, b € J,, and so b = fb € fJ,. Thus, J;le) = fIn. O

Let e and H be given as in Lemma 3.2. We have a structure theorem for the Azumaya
Ce-algebra Be with an algebra automorphism group H|g, = H and for the Azumaya
C-algebra B with a ring automorphism group G, respectively.

THEOREM 3.5. Lete be a nonzero element in E of the form e = Il cyey for some maxi-
mum subset H of G. Then Be is a central Galois algebra with Galois group H |, = H.

PROOF. By Lemma 3.2, H is a subgroup of G and h(e) = e for any h € H. By
Lemma 3.3, h restricted to Ce is an identity for each h € H. Hence H |, is a Ce-algebra
automorphism group of Be. Since B is an Azumaya C-algebra, Be is an Azumaya
Ce-algebra (see [1, Proposition 1.11, page 46]). By Lemma 3.4, J;lBe) = eJy, for each
he€H,s0Be=®3,ccJqge =03 ecpely ® 2 g¢nely. Since H is a maximum subset
of G such that e = [xcyey, eeyg = 0 for each g ¢ H. This implies that BeJ, = Bee, =
{0}. Therefore, eJ, = {0} for each g ¢ H. Thus, Be = ®genelg = @deHJ;Be).
Moreover, JP(LBQ)J;%) = (eJn)(eJp-1) = eJpJp-1 = eepC = Ce which is the center of Be
by Lemma 3.1. Thus, Be is a central Galois algebra over Ce with Galois group H|g.
(see [2, Theorem 1]). Next, we claim that H|g, = H. Since e # 0, {0} + Be = Beej, =
BeJy, = B],(LBE) for each h € H. Hence J,(lBe) + {0} for each h € H. Now, if h|g. = 1, then
{0} = Ce = JiP? =eJp c CJn = JinJn. But B = 03 ccJg, 80 J1 = Ju. Therefore
h = 1. This implies that h|z, # 1 whenever h # 1 in H. Thus, H|g, = H. O

THEOREM 3.6. Let B be an Azumaya C-algebra with a finite ring automorphism
group G such that B = @ 3 ;e J 4, then there exist orthogonal idempotents {f; € C | i =
1,2,...,m for some integer m} and subgroups H; of G such thatB = (& >/~ Bf;)®Cf
where Bf; is a central Galois algebra with Galois group H;lgy, = H; for each i =
1,2,....mand f =1->1", fi.

PROOF. let {f; € E|i=1,2,...,k} be the set of all distinct nonzero elements in
E of the form f; = ITyep,en for some maximum subset (subgroup) H; of G as given
in Lemma 3.2. Then they are orthogonal. Hence B = (& Z’le Bfi)®Bf where f =1-
2’;1 Jfi such that Bf; is a central Galois algebra with Galois group H;|gs, = H; for each
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i=1,2,...,k by Theorem 3.5. Next, we claim that Bf = Cf. Since {f; | i=1,2,...,k}
is the set of all distinct nonzero elements in E of the form f; = IIpepn,en for some
maximum subset (subgroup) H; of G, g permutes the set {f; |i=1,2,...,k} for each
g € G. Hence g(f) = f for each g € G. Hence, by Lemma 3.4, J;Bf) = fJ4 for each
g € G. Therefore, Bf = @3 ;e Jof = ZQGGJ;B’[) is an Azumaya C f-algebra with a
finite ring automorphism group G|gys. If J ;Bf ) = {0} foreachg # 1in G,thenBf = J fo )
= fJ1 = Cf, and so we are done. If JéBf} + {0} for some g # 1 in G, we can repeat
the above argument to have more direct summands of central Galois algebras. Since
E is finite, we have only finitely many central orthogonal idempotents {f; € E | i =
1,2,...,m for some integer m} such that B = (& >, Bf;) ® Bf where Bf; is a central
Galois algebra with Galois group H;|gs, = H; for each i =1,2,...,m and Bf =Cf. This
completes the proof. O

REMARK 3.7. Theorem 3.6 generalizes the following theorem of Harada (see [2,
Theorem 1]):

Let B be a separable R-algebra with automorphism group G. If B = @ Y ;e Jg and
JgJg-1 =C for each g € G, then B is a central Galois algebra with Galois group G.

REMARK 3.8. Any Galois algebra with Galois group G satisfies the conditions as
given in Theorem 3.6. There are Azumaya C-algebras B such that B = @ 3 ;< J4, but
B is not a Galois algebra with Galois group G (see Example 3.11). However, for a
Galois extension B of B¢ with Galois group G, the condition that B is a Galois algebra
with Galois group G and that B = @ 3 ;. .J, are equivalent as given by the following
proposition.

PROPOSITION 3.9. For a Galois extension B of B¢ with Galois group G, B is a Galois
algebra with Galois group G if and only if B=© 3 ;e Jg-

PROOF. Since B is a Galois extension of B¢ with Galois group G, Vz(B®) =& 3 ;¢ J4
(see [4, Proposition1]). Hence B = & dec Jg if and only if Vz(B%) = B, that is,
B¢ cC. O

As an application of Theorem 3.6, we obtain a structure theorem for a separable
extension B of B¢ such that B= @3 ¢ Jy.

THEOREM 3.10. Let B be a separable extension of B¢ such that B = 3 ,c¢ J4, then
there exist orthogonal idempotents {f;i € C | i = 1,2,...,m for some integer m} and
subgroups H; of G such thatB = (& >.[%, Bf;) ® Bf where Bf; is a central Galois algebra
with Galois group H;|gy, = H; for eachi=1,2,...,m, f = 1->™", fi,andBf =Cf isa
commutative Galois algebra with Galois group Glgr = G if f # 0.

PROOF. Forany a € B and b = X ;ccby € B where by € ]y, bga = g(a)by = ab,
for each g € G, so ba = > cgbga = ad jecby = ab for any b € B. Thus, a € C for
any a € BC. Therefore, B¢ C C. Noting that B is a separable algebra over B¢, we have
that B is an Azumaya C-algebra. But B = GBXgeG Jg, s0, by Theorem 3.6, there exist
orthogonal idempotents {f; € C | i = 1,2,...,m for some integer m} and subgroups
H; of G such that B = (&3 ", Bfi) ® Bf where Bf; is a central Galois algebra with
Galois group H;lgy, = H; for eachi=1,2,...,m,Bf =Cf,and f =1 - >, fi- Thus,
it suffices to show that Bf (= Cf) is a commutative Galois algebra with Galois group
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Glpr = Gincase f # 0.In fact, since B¢ is contained in C and B is separable over B¢, C
is separable over B¢ (see [1, Theorem 3.8, page 55]), and so Cf is separable over B¢ f
(see [1, Proposition 1.11, page 46]). Moreover, since f € C%, B¢ f c (BSf)¢ c (Cf)C.
Hence C f is separable over (Cf)¢ (see [1, Proposition 1.11, page 46]). Furthermore, by

Lemma 3.4, Jf,cf) = ];,Bf) = fJ4 for each g € G so J;Cf) cCnJyg=1{0} foreachg # 1
(Cf)

in G. This implies that glcy # identity whenever g # 1 in G (for J; = Cf). Thus,
Glgs = G and Bf (= Cf) is a commutative Galois algebra with Galois group Glgf = G
(see [2, Proposition 2]). This completes the proof. O

We conclude the present paper with an example to demonstrate the results in
Theorem 3.6 and illustrate that an Azumaya C-algebra B such that B = @dec Jg»
but not necessarily a Galois algebra with Galois group G.

EXAMPLE 3.11. Let R[i,j,k] be the real quaternion algebra over the field of real
numbers R, Z the integerring, D = (Z++/—1Z) ®7(Z++/—12),B = R[i,j,k]®D,and G =
{1,9i,9;,9x} where gi(a,di ® d>) = (iai !, d1 ®d>), gj(a,di ®dz) = (jaj ', di ®d2),
and gy (a,d, ®d;) = (kak™',d; ®d>), for all (a,d; ®d) in B, where d is the conjugate
of the complex number d. Then,

(1) The center of Bis C = Ra& D.

(2) B is an Azumaya C-algebra.

(3)Ji=C=ReD, Js =R(,0), Jg; = R(j,0), Jg, = R(k,0). Hence B = &> gec -

(4) By (3), JgJ4-1 = C(1,0) for each g # 1 in G. Hence, f1 = (1,0) is the only nonzero
element in E of the form f; = Iep, en for some maximum subset H; of G (here
Hi=G)and f=1-f1=(0,1®1).

(5)B = (e>™",Bf;)®Cf where m = 1, Bf; is a central Galois algebra with Galois
group H;|ps, = H; for eachi=1,2,...,m.

(6) B =Ra (Z®Z) =Ra7Z.

(7) Since D is not separable over Z, B is not separable over B¢ (= R Z). Hence B is
not a Galois algebra with Galois group G.
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