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Abstract. A method is used to solve the Fredholm-Volterra integral equation of the first

kind in the space L2(Ω)×C(0,T ),Ω = {(x,y) :
√
x2+y2 ≤ a}, z = 0, and T <∞. The kernel

of the Fredholm integral term considered in the generalized potential form belongs to the
class C([Ω]×[Ω]), while the kernel of Volterra integral term is a positive and continuous
function that belongs to the class C[0,T ]. Also in this work the solution of Fredholm
integral equation of the second and first kind with a potential kernel is discussed. Many
interesting cases are derived and established in the paper.

2000 Mathematics Subject Classification. 45B05, 45D05, 45E10.

1. Introduction. Many problems of mathematical physics, theory of elasticity, and

mixed problems of mechanics of continuous media reduce to an integral equation

with a kernel that has one of the following forms:

Kα,γ
n,m(x,y)= xα

yε+γ−1W
α
n,m(x,y), (1.1)

Wα
n,m(x,y)=

∫∞
0
λαJn(xλ)Jm(yλ)dλ, (1.2)

where Jn(x) is a Bessel function of the first kind of order n. Arutyunyan [5] has

shown that the plane contact problem of the nonlinear theory of plasticity, in its first

approximation, can be reduced to Fredholm integral equation of the first kind with

Carleman kernel

Kα,1/2
±1/2,±1/2(x,y)= |x−y|−α

= √xy
∫∞
0
λαJ±1/2(xλ)J±1/2(yλ)dλ, (ε = 0, 0≤α< 1)

(1.3)

(for the symmetric and skew symmetric cases, respectively).

In [14, 15] Mkhitaryan and Abdou obtained the general formulas, even and odd, of

the potential analytic function, using Krein’s method [13], for the Fredholm integral

equation of the first kind with Carleman kernel [15] and logarithmic kernel [14]

K0,1/2
±1/2,±1/2(x,y)=− ln|x−y| = √xy

∫∞
0
J±1/2(xλ)J±1/2(yλ)dλ, (ε = 0) (1.4)

(for symmetric and skew symmetric, respectively).
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Kovalenko [12] developed the Fredholm integral equation of the first kind for the

mechanics mixed problems of continuous media and obtained an approximate solu-

tion for the Fredholm integral equation of the first kind with an elliptic kernel

K0,1
0,0(x,y)= 2

√xy
π(x+y)

K
(√

2xy
x+y

)
=
∫∞
0
J0(xλ)J0(yλ)dλ, (ε = 0). (1.5)

Abdou in [1] obtained the solution of Fredholm integral equation of the second kind

with potential function kernel,
(
K(x−ξ,y−η)= 1/

√
(x−ξ)2+(y−η)2

)
,

K0,1/2
m,m (x,y)= √xy

∫∞
0
Jm(λx)Jm(λy)dλ, (ε = 0). (1.6)

Also, in [3], the structure resolvent for the Fredholm integral equation of the second

kind with potential function kernel is obtained by Abdou. The potential theorymethod

is used in [4, 2] to obtain the eigenvalues and eigenfunctions for a system of Fredholm

integral equations of the first kind with Carleman kernel in [2] and logarithmic kernel

in [4]. Abel’s theorem is used in [8] to obtain the general solution of the Fredholm in-

tegral equation of the first kind with a kernel in the form of the Gauss hypergeometric

function

K(x,y)= 1
(x2+y2)2n

F
(
n,n+ 1

2
,m

(
2xy

x2+y2

)2
)
. (1.7)

The solution in Mathieu function form is obtained in [4], where the potential the-

ory method is used for contact problems of mechanics of continuous media between

a finite system of stamps with varying width and an elastic half-space in a three-

dimensional formulation, for which the domain of integration Ω is represented as

Ω : (x,y,z)∈Ω :−∞<x, y <∞, z > 0.

In this paper, the solution of Fredholm-Volterra integral equation of the first kind

is obtained in L2(Ω)×C(0,T ), where Ω = {(x,y) :
√
x2+y2 = r ≤ a}, z = 0, and the

time t ∈ [0,T ], T <∞. The problem is investigated from the three-dimensional semi-

symmetric contact problem in the theory of elasticity of frictionless impression of

a rigid surface (G,v) having an elastic material occupying the domain Ω, where the

external forces are neglected. Assume a function f(x,y) ∈ L2(Ω) which describes

the surface of stamp, such that, it is impressed into the elastic layer surface (plane)

by a variable force M(t), whose rigid displacement δ(t)∈ C(0,T ). The integral equa-

tion, in this case, becomes (see [1])

∫∫
Ω

P(ξ,η,t)dξdη[
(x−ξ)2+(y−η)2

]1/2 +
∫ t

0
F(τ)P(x,y,τ)dτ

=πθ
[
δ(t)−f(x,y)

]= f(x,y,t),
(
θ =G(1−v)−1

) (1.8)

under the condition ∫∫
Ω
P(x,y,t)dxdy =M(t), 0≤ t ≤ T ≤∞. (1.9)

Here F(t) is a positive continuous function that belongs to the class C(0,T ) and
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represents the characterized resistance of the elastic layer, P(x,y,t) is the unknown

potential normal stress function between the surface of stamp and the elastic layer,

G is the displacement magnitude and v is Poisson’s coefficient.

In this work, the Fredholm integral equations of the first and second kind with

a generalized potential kernel are established and their solutions are discussed, the

kernel is represented in the Weber-Sonin integral formula. Many interesting spectral

relationships are derived from the problem. Finally, a numerical example is considered

for the solution of Fredholm integral equation of the second kind.

2. Basic equations. In this section, a method is used to obtain a finite system of

integral equations in three dimensions, then, by using the method of separation of

variables, we represent the integral equation to a system of Fredholm integral equation

of the second kind in one dimension. Also the kernel of Fredholm integral equation

is represented in the Weber-Sonin integral formula.

So, we divide the interval [0,T ], 0≤ t ≤ T <∞ as 0= t0 < t1 < t2 ···< tN = T , where

t = tk ∈ [0,T ], k= 0,1, . . . ,N ; then by using the quadratic formula [6],uj , j = 0,1, . . . ,k,
in the Volterra integral term of (1.2), we have

∫ tk

0
F(τ)P(x,y,τ)dτ =

k∑
j=0

ujFjPj(x,y)+0
(
h̄p+1), (

hk �→ 0, p > 0
)
, (2.1)

where h̄=max0≤k≤N hK , hj = tj+1−tj , P(x,y,tk)= Pk(x,y), F(tj)= Fj,

uj =


h
2
, j = 0,k,

h, j ≠ 0,k.
(2.2)

The values of uj and p,p � k, depend on the number of derivatives of F(t) (see [6]).

Using (2.1) in (1.2), we have

uKFKPK(x,y)+
∫∫
Ω

PK(ξ,η)dξdη[
(x−ξ)2+(y−η)2

]1/2 +
K−1∑
j=0

ujFjPj(x,y)

=πθ
[
δK−f(x,y)

]= fK(x,y),
(
δK = δ

(
tK
)
, k= 0,1, . . . ,N

)
.

(2.3)

Also condition (1.3) becomes

∫∫
Ω
P(x,y)dxdy =Mk,

(
M
(
tk
)=Mk

)
. (2.4)

The solution of the integral equation (2.3) depends on the kernel and the values of

Fk at the two points t0 and tN , for example, if F(t0)= F0 = 0, the first equation of the

linear integral system of (2.3) represents an integral equation of the first kind, then

for all values of k > 1 we have a linear system of integral equations of the second

kind, while for tN = 0, the formula (2.3), for 0≤ k≤N−1, represents a linear system

of integral equations of the second kind, and the formula (2.4) at k = N , represents

an integral equation of the first kind.
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To separate the variables, we assume

Pk(x,y)= Pkm(r)


cosmθ,

sinmθ,

f(x,y)= fkm(r)


cosmθ,

sinmθ.

(2.5)

Using (2.5) in (2.3) and (2.4), we have

ukFkPkm(r)+
∫ a

0
ρW 1/2

m (r ,ρ)Pkm(ρ)ρdρ+
k−1∑
j=0

ujFjPjm(r)= fkm(r), (2.6)

∫ a

0
ρPkm(ρ)dρ =



Mk

2π
, m= 0,

0, m≥ 1,
(2.7)

where

Wα
m(r ,ρ)=

∫ π

−π
cosmφdφ[

r 2+ρ2−2rρcosφ
]α ,

(
α= 1

2
+2, 2 <

1
2

)
. (2.8)

To write the integral equation (2.8) in the Bessel function form, first we use the

following relations [7, page 81]:

∫ 2π

0

cosmφdφ[
1−2zcosφ+z2

]α = 2π(α)mzm

m!
F
(
α,m+α,m+1,z2),

F
(
γ,γ+ 1

2
−β,β+ 1

2
,z2

)

= (1+z)−2γF
(
γ,β;2β;

4z
1+z2

)
,
(
|z|< 1, Reγ > 0, (γ)m = Γ(m+γ)

Γ(γ)

)
.

(2.9)

Hence, (2.8) takes the form

Wα
m(r ,ρ)= 2πΓ(m+α)

mΓ(α)
(rρ)m

(r +ρ)2m+1
F
(
m+α,m+ 1

2
,2m+1,

4rρ
(r +ρ)2

)
, (2.10)

where F(a,b,c;z) is the Gauss hypergeometric function, and Γ(x) is the Gamma

function. Formula (2.10) is symmetric and does not depend on the relation between

ρ and r .
Second, using the relation (see [9])

∫∞
0
Jα(ax)Jα(bx)x−βdx

= 2−βaαbαΓ
(
α+(1−β/2)

)
(a+b)2α−β+1Γ(1+α)Γ

(
(1+β)/2

)F(α+ 1−β
2

,α+ 1
2
,2α+1,

4ab
(a+b)2

)
,

(2.11)

where J(x) is the Bessel function, equation (2.10) takes the form

W 1/2
m (r ,ρ)= 2π

∫∞
0
λ22
1 Jm

(
λ1ρ

)
Jm
(
λ1r

)
dλ1. (2.12)
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Using (2.12) and the following notations:

u= r
a
, v = ρ

a
, Φkm(u)= Pkm(au)√

au
, λ= aλ1, c∗ = a1+222π,

gkm(u)= fkm(au)√
au

= 2πθ√
au

[
δk−fm(au)

]
, Qk= Mk

2πa
, (k=0,1, . . . ,N ; m≥ 0),

(2.13)

the integral equation (2.6) and condition (2.7) become

µkΦkm(u)+
∫ 1

0
K1/2

m (u,v)Φkm(v)dv+
k−1∑
j=0

µjΦjm(u)= gkm(u), (2.14)

∫ 1

0

√
vΦkm(v)dv =


Qk, m= 0,

0, m≥ 1,
(2.15)

where

Kα
m(u,v)= 2πa

√
uv

∫∞
0
λ22Jm(λu)Jm(λv)dλ (2.16)

which represents a Weber-Sonin integral formula.

It is easy to prove the following relation:(
∂2

∂u2
− ∂2

∂v2

)
K1/2

m (u,v)= (h(u)−h(v)
)
K1/2

m (u,v), (2.17)

where

h(x)=
(
m2− 1

4

)
x−2,

(
m≠±1

2

)
. (2.18)

The integral equation (2.14) represents a linear system of Fredholm integral equa-

tion of the first or second kind depending on the values of µk, k∈ [0,N]. The general

solution of (2.14) can be obtained using the recurrence relations for values of k and

the mathematical induction. For this aim, let k= 0 in (2.14) and (2.15), we obtain

µ0Φ0m(u)+
∫ 1

0
K1/2

m (u,v)Φ0m(v)dv = g0m(u) (2.19)

under the condition ∫ 1

0

√
vΦ0m(v)dv =


Q0, m= 0,

0, otherwise.
(2.20)

The kind and solution of (2.19) depend on the values of µ0, for this, we are going

to obtain the solution of (2.19), first when µ0 → 0 and second when µ0 satisfies the

relation

µ0 >
∫ 1

0

∫ 1

0
K1/2

m (u,v)dudv, m= 0,±1
2
,±1, . . . . (2.21)

3. Fredholm integral equation of the first kind. In this section, we obtain the gen-

eral solution of Fredholm integral equation of the first kind when the kernel takes a

Weber-Sonin integral formula and for continuous values of g0m(u). Also many spec-

tral relationships are established here.

When F0 = 0, we have µ0 = 0 and (2.19) becomes∫ 1

0
K1/2

m (u,v)Φ0m(v)dv = g0m(u). (3.1)

Abdou in [2] used the potential theory method (see [10]) to solve a linear system of
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Fredholm integral equation in the form of (3.1) under condition (2.20) where the given

function is represented in the Jacobi polynomials form. Here, we obtain the solution of

(3.1) under condition (2.20) for a given continuous function g0m(u). For this, rewrite

(3.1) and (2.20) as an integral equation of the Wiener-Hopp type [11, 16]. For setting

u= e−ξ , v = e−η, e−ξΦ0m(e−ξ)= Ψm(ξ), and g0m(e−ξ)e−γξ = hm(ξ) in (3.1) and (2.20),

we have ∫∞
0
M(ξ−η)Ψm(η)dη= hm(ξ), 0≤ ξ <∞, (3.2)

∫∞
0
e−n/2Ψm(η)dη=


Q0, m= 0,

0, otherwise,
(3.3)

where

M(ξ−η)= e−γ(ξ−η)Kγ
m
(
e−ξ,e−η

)
. (3.4)

Popov [16] stated that, in order to obtain the solution of (3.2) under condition (3.3),

it suffices to obtain the most simple equation∫∞
0
M(ξ−η)ψzm(η)dη= eizξ, ξ, Imz ≥ 0. (3.5)

Now, making use of the formulae

Ψm(ξ)= 1
2π

∫∞
−∞

G(−z)ψzm(ξ)dz, G(z)=
∫∞
0
hm(ξ)eiξz dξ. (3.6)

The solution of (3.5) (see [5, 16]) is given by

ψzm(u)= 1
u
ψzm

(
2n

1
u

)
=ψ−

m(−z)
Γ(3/4)

{(
1−u2)−1/4+(m+1+iz)

∫ 1

u

t−m−2−iz(
t2−u2

)1/4 dt
}
, (3.7)

where

ψ−
m(−z)=√2Γ

(
1
2

(
m+ 5

4
−iz

))(
Γ
(
m+ 1

2
−iz

))−1
. (3.8)

After obtaining the solution of (3.7), we can derive the general solution of (3.2). It is

easy to see that the function
√
uψzm(u) is a solution of (3.1) when g0m(u)=u−1−iz.

Therefore, the general solution of the integral equation

∫ 1

0
K1/2

m (u,v)q1/2
m (v,1)dv = 1, 0≤u< 1, (3.9)

is given by

q1/2
m (u,1)=√u[ψzm(u)

]
z=i. (3.10)

By using the principle of Krein [13], with the aid of (3.10), the general solution of

(3.1) takes the form

Ψ0m(u) =
√
2um+1/2

Γ
(
w3/4

)
Γ
(
w1/4

)
{

x(1)(
1−u2

)1/4
∫ 1

u

X1(v)dv(
v2−u2

)1/4
}
, (3.11)

X(u)= u−2m−1/2

c∗
d
du

∫ u

0

sm+1/2g0m(s)ds(
u2−s2

)1/4 ,
(
c∗ = 2πa

)
. (3.12)
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Now, we can obtain many interesting cases, for example, replacing g0m(u) in (3.12)

by a Jacobi polynomial, that is, letg0m(u)= P(m,1/4)
m (1−2u2), then (3.1) is transformed

to ∫ 1

0

u1+mK1/2
m (u,v)P(m,1/4)

m
(
1−2u2

)
du(

1−u2
)1/4 =λmvmP(m,1/4)

m
(
1−2v2),

λm=23/2Γ
(
m+3

4

)
Γ
(
2m+3

4

)[
m!Γ(1+2m)

]−1.
(3.13)

In terms of Gauss hypergeometric function of formula (8) of [14, page 715], we

obtain the following important property:

Kα
m
(
u−1,v−1

)= (uv)αKα
m(u,v). (3.14)

Substituting u= x−1, v =y−1 in (3.13), and making use of property (3.14), we obtain

spectral relations of the semi-infinite interval

∫∞
1

K1/2
m (x,y)P(m,1/4)

m
(
1−2y−2)dy

yz
(
y2−1

)1/4

= λmP(m,1/4)
m

(
1−2x−2

)
x3/2+m ,

(
z = 5

4
+m, 1≤ x <∞

)
.

(3.15)

4. Fredholm integral equation of the second kind. In this section, the general

solution of Fredholm integral equation of the second kind is obtained. Also the math-

ematical induction is used to obtain the general solution of (2.14) under condition

(2.15).

Now, we need to obtain the solution of Fredholm integral equation of the second

kind (2.19) under condition (2.20), where its solution depends on the kernel (2.16)

and the surface fm(r). When the initial and the tangent points of the surface are in

contact with the origin 0, we can expand fm(u) in Macklorian expansion near u= 0

fm(u)� f ′′m(0)
2!

u2+ f ′′′m (0)3

3!
u3+···+ f (n)

m (0)
n!

un+··· . (4.1)

Equation (4.1) gives the degree of displacement of the surface for any degree. For

example, if the displacement is very small and f ′′m(0)/2!=A2 ≠ 0, we obtain fm(u)=
A2u2.

In general,

fm(u)=A2mu2m, A2m =
f (2m)
(0)

(2m)!
, (m≥ 0), (4.2)

where m is the order harmonic of the contact problem.

Hence, the function g0m(u) takes the form

g0m(u)= (∆0−βA2mu2m)√u, (
∆0 = βδ0, β=πθ

)
. (4.3)

Equation (4.3) represents a polynomial of degree 2m+1/2, and the solution of (2.19)

under condition (2.20) depends on the kernel (2.16) and the function (4.3). So, rewrite



328 M. A. ABDOU AND A. A. EL-BARY

(2.19) and (2.20) to take the following form:

µ0Zm(u)+
∫ 1

0
K(u,v)Zm(v)dv =u2m+1/2, (4.4)

∆0

∫ 1

0

√
uZ0(u)du−A2m

∫ 1

0

√
uZm(u)du=Q0, (4.5)

where

Φ0m(u)=∆0Z0(u)−A2mZm(u), (m≥ 1). (4.6)

To solve (4.4), we use the formula (7.3911) of [9] and with the aid of [2, 8], we can

write the kernel (2.16) in the form

K1/2
m (u,v)= c∗

√
2(uv)m+1/2

∞∑
j=0

Γ 2(j+m+3/4)Pm
j (u)Pm

j (v)
Γ 2(j+1+m)(2j+m+3/4)−1

, (4.7)

where

Pm
j (u)= P(m,1/4)

j
(
1−2u2). (4.8)

Here P(m,1/4)
j (x) is the Jacobi polynomial.

Hence, the solution of (4.4) with the kernel of (4.7) is equivalent to the solution of

the linear system

µ0Xi+c∗
∞∑
j=0

AjBijXj = fi, (4.9)

where

fj =
(
2j+m+ 3

4

)1/4∫ 1

0
fm(u)um+1Pm

j (u)du,

Aj = 1√
2

Γ 2(j+m+3/4)(2j+m+3/4)1/4

Γ 2(j+m+1)
,

Bij =
(
2j+m+ 3

4

)(
2i+m+ 3

4

)∫ 1

0
u2m+1Pm

i (u)Pm
j (u)du.

(4.10)

The infinite linear system of (4.9) is solvable under the condition

∞∑
j=0

∣∣c∗AjBij
∣∣< µ0,

(
c∗ = 2πa

)
. (4.11)

Using the orthogonality of the Jacobi polynomial, the general solution of (4.4) takes

the form

µ0Zm(u)=u2m+1/2−c∗
∞∑
j=0

√
2Γ 2(j+m+3/4)umPm

j (u)Xm
j

(j+m+1)(2j+m+3/4)−3/4
. (4.12)

Hence by the mathematical induction, the solution of (2.14) can be obtained.

5. Numerical computations. For j = 2, m = 3, µ0 = c∗ = 1, we have the results

shown in Table 5.1
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Table 5.1

u u2m+1 Z(u)
0.1 0.0000 0.0000

0.2 0.0007 0.0009

0.3 0.0044 0.0045

0.4 0.0162 0.0156

0.5 0.01442 0.0415

0.6 0.1004 0.0937

0.7 0.2001 0.1883

0.8 0.3270 0.3096

0.9 0.6224 0.6070

1.0 1.0 1.03

6. Conclusions. From the above results and discussions, the following may be con-

cluded.

(1) The three-dimensional semi-symmetric contact problem for a stamp impressed

into a layer surface, which was made of material according to the power law σj =K0εj ,
j = 1,2,3, by a variable force N(t) represents a Fredholm-Volterra integral equation

of the first kind.

(2) The generalized potential kernel represents a Weber-Sonin integral formula

K(u,v)=√uv
∫∞
0
Jm(tu)Jm(tv)dt, (6.1)

which represents a nonhomogeneous wave equation and the kernel can be written in

the Legender polynomial form as follows:

K1/2
m (u,v)= 1√

2
(uv)m+1/2

∞∑
n=0

Γ 2(n+m+3/4)Pm
n (u)Pm

n (v)
Γ 2(n+m+1)(2n+m+3/4)−1

, (6.2)

where, Pm
n (u) is a Legendre polynomial.

(3) The Fredholm-Volterra integral equation of the first kind can be reduced to a

finite linear system of Fredholm integral equation of the second kind.

(4) This paper is a generalization of the works of the contact problems in continu-

ous media for the Fredholm integral equation of the first and second kind when the

kernel takes the following forms: logarithmic kernel, Carleman kernel, elliptic integral

kernel, and potential kernel. Moreover, the contact problems that lead to the integro-

differential equation with Cauchy kernel are a special case of (2.19). Also in this work

the contact problems of higher-order (m≥ 1) harmonic are included as special cases.

References

[1] M. A. Abdou, Fredholm integral equation of the second kind with potential kernel, J. Com-
put. Appl. Math. 72 (1996), no. 1, 161–167. MR 97c:45001. Zbl 857.65143.

[2] , Integral equation and contact problem for a system of impressing stamps, Appl.
Math. Comput. 106 (1999), no. 2-3, 141–148. MR 2000g:74059. Zbl 991.37420.

[3] , Fredholm integral equation with potential kernel and its structure resolvent, Appl.
Math. Comput. 107 (2000), no. 2-3, 169–180. MR 2000h:45002. Zbl 991.37400.

http://www.ams.org/mathscinet-getitem?mr=97c:45001
http://www.emis.de/cgi-bin/MATH-item?857.65143
http://www.ams.org/mathscinet-getitem?mr=2000g:74059
http://www.emis.de/cgi-bin/MATH-item?991.37420
http://www.ams.org/mathscinet-getitem?mr=2000h:45002
http://www.emis.de/cgi-bin/MATH-item?991.37400


330 M. A. ABDOU AND A. A. EL-BARY

[4] , Spectral relationships for integral operators in contact problem of impressing
stamps, Appl. Math. Comput. 118 (2001), no. 1, 95–111. CMP 1 805 163.

[5] N. K. Arutyunyan,The plane contact problem of the theory of creep, J. Appl. Math. Mech. 23
(1960), 1283–1313, translated from Prikl. Mat. Mekh. 23(1959), 901–924 (Russian).
Zbl 113.39801.

[6] K. E. Atkinson, A Survey of Numerical Methods for the Solution of Fredholm Integral Equa-
tions of the Second Kind, SIAM, Pennsylvania, 1976. MR 58#3577. Zbl 353.65069.

[7] G. Bateman and A. Ergeyli, Higher Transendental Functions, vol. II, McGraw-Hill, New
York, 1985, reprint.

[8] M. H. Fahmy, M. A. Abdou, and M. A. Darwish, Integral equations and potential-theoretic
type integrals of orthogonal polynomials, J. Comput. Appl. Math. 106 (1999), no. 2,
245–254. MR 2000f:74057. Zbl 929.45004.

[9] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 5th ed., Aca-
demic Press, Massachusetts, 1994, translated from the fourth Russian edition.
MR 94g:00008. Zbl 918.65002.

[10] C. D. Green, Integral Equation Methods, Thomas Nelson and Sons, London, 1969.
MR 40#658. Zbl 179.44301.

[11] H. Hochstadt, Integral Equations, Pure and Applied Mathematics, John Wiley and Sons,
New York, 1973. MR 52#11503. Zbl 259.45001.

[12] E. V. Kovalenko, Some approximate methods of solving integral equations of mixed prob-
lems, Appl. Math. Mech. 53 (1989), 85–92.
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