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Let F be a field, A a vector space over F . The group GL(F,A) of all automorphisms

of A and its distinct subgroups are the oldest subjects of investigation in Group The-

ory. For the case when A has a finite dimension over F , every element of GL(F,A)
defines some nonsingular n×n-matrix over F , where n= dimF A. Thus, for the finite-

dimensional case, the theory of linear groups is exactly the theory of matrix groups.

That is why the theory of finite-dimensional linear groups is one of the best developed

in algebra. However, for the case when dimF A is infinite, the situation is totally dif-

ferent. The study of this case always requires some essential additional restrictions.

Thus, the transition from the study of finite groups to the study of infinite groups

generated the finiteness conditions. It is natural to apply these finiteness conditions

to the study of infinite-dimensional linear groups. The study of finitary linear groups

(the linear analogies of FC-groups) shows the effectiveness of such approach (cf. a

survey of Phillips [6]).

The groups having a finite composition series were one of the first generalization

of the finite groups. Let G ≤ GL(F,A), then we can consider A as an FG-module.

We say that A has a finite composition length if A has a finite series 〈0〉 = B0 ≤
B1 ≤ ··· ≤ Bn = A of FG-submodules, every factor of which is a simple FG-module.

We can consider G/CG(Bi+1/Bi) as an irreducible linear group, 0 ≤ i ≤ n− 1. Let

T = ⋂0≤i≤n−1CG(Bi+1/Bi); then G/T ≤ X0≤i≤n−1G/CG(Bi+1/Bi), and T is a nilpotent

bounded p-subgroup whenever charF = p, or T is a nilpotent divisible torsion-free

subgroup whenever charF = 0. Thus, the case of irreducible linear groups is basic.

Irreducible linear groups as the automorphism groups of abelian chief factors, play

a crucial role in Group Theory, and their investigation is very useful for the solution

of many group theoretical problems. For the infinite-dimensional case, the irreducible

groups under some natural restrictions have been studied by Hartley and McDougall

[2], Zăıcev [13], Robinson and Zhang [9], Franciosi, de Giovanni, and Kurdachenko [1],

and Kurdachenko and Subbotin [5].
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The minimal and the maximal conditions were the very next classical finiteness

conditions that have appeared in algebra. Note that every FG-module of finite com-

position length is artinian (i.e., it satisfies the minimal condition on FG-submodules)

and noetherian (i.e., it satisfies the maximal condition on FG-submodules).

Let R be a ring, A an artinian R-module. Put

Sicl(A)=
{
B | B is an R-submodule of A and has no finite composition series

}
. (1)

If A has no finite composition series, then Sicl(A) ≠∅. Since A is artinian, Sicl(A)
has a minimal elementM . Thus, if U is a proper R-submodule ofM, then U has a finite

composition length.

An R-module M is said to be a minimal artinian, if M has no finite composition

series, but each of its proper submodule has a finite composition length.

Thus every artinian module includes a minimal artinian submodule. On the other

hand, the structure of artinian modules depends on the structure of its minimal ar-

tinian submodules, therefore, the study of minimal artinian modules is one of the

important steps for the study of artinian modules.

Let again F be a field, A a vector space over F , G ≤ GL(F,A). We want to consider

the situation when A is a minimal artinian FG-module. This consideration will lead us

to the fact that the group G is lying in the class X such that all irreducible X-groups

have been described. So we may set that if an FG-module B has finite composition

series, then the structure of G is defined.

Let F be a field, A a vector space over F , G ≤ GL(A). A group G is called a minimal

artinian if the following conditions hold:

(MA1) A has no finite composition series;

(MA2) if B is a proper FG-submodule of A, then B has a finite composition length.

The study of minimal artinian FG-modules (as any FG-module) consists of two

parts: the study of internal structure of the module and the study of the group

G/CG(A). The last group is imbedded in GL(F,A), that is, it is a linear minimal ar-

tinian group. Our paper is devoted to the study of some important types of minimal

artinian linear groups. The main results of this paper show that in such classes of

groups as hypercentral groups (so also, nilpotent and abelian groups) or FC-groups

the minimal artinian linear groups have precisely the same structure as the corre-

sponding irreducible linear groups have.

Now we mention some needed results on hypercentral irreducible groups. The ir-

reducible ZG-modules have been studied in [5]. These results can be extended almost

without changes on the case of irreducible subgroups of GL(F,A), where A is a vector

space over a field F .

Lemma 1. Let F be a field, G a group, A a simple FG-module, I = AnnFG(A). If C/I
is a center of FG/I, then C/I is an integral domain. In particular, the periodic part of

ζ(G/CG(A)) is a locally cyclic p′-subgroup where p = charF .

As usual, 0′ denotes the set of all primes.

This statement is an immediate corollary of the known theorem of I. Schur.

A groupG is said to have finite 0-rank r0(G)= r (or finite torsion-free rank) ifG has a

finite subnormal series with exactly r infinite cyclic factors being the others periodic.
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We note that every refinement of each of these series has only r infinite cyclic

factors. Since every two subnormal series have the isomorphic refinements, 0-rank is

independent of the choice of the subnormal series.

Note also that if G is a locally nilpotent group of finite 0-rank, then the factor-group

G/t(G) by the periodic part t(G) has a finite special rank.

Lemma 2. Let G be a hypercentral group of finite 0-rank, F a locally finite field, A a

simple FG-module. Then ζ(G/CG(A)) is periodic.

This lemma follows from [4, Theorem 2].

Lemma 3. Let F be a field, p = charF , G an abelian group of finite 0-rank.

(1) If the field F is locally finite, and G is a locally cyclic p′-group, then there exists a

simple FG-module A such that CG(A)= 〈1〉.
(2) If F is not locally finite, and t(G) is a locally cyclic p′-group, then there exists a

simple FG-module A such that CG(A)= 〈1〉.

This construction is contained in [2].

Lemma 4. Let F be a field, p = charF , G an abelian group of infinite 0-rank. If t(G) is

a locally cyclic p′-group, then there exists a simple FG-module A such that CG(A)= 〈1〉.

This assertion has been proved in [9] for the case of finite field, however it is valid

also for an arbitrary field.

Lemma 5. Let F be a field, p = charF , G a hypercentral group of finite 0-rank,

C = ζ(G), T = t(C).
(1) If the field F is locally finite, and C = T is a locally cyclic p′-group, then there

exists a simple FG-module A such that CG(A)= 〈1〉.
(2) If F is not locally finite and T is a locally cyclic p′-group, then there exists a simple

FG-module A such that CG(A)= 〈1〉.

Lemma 6. Let F be a field, p = charF , G a hypercentral group of infinite 0-rank,

C = ζ(G), T = t(C). If T is a locally cyclic p′-group, then there exists a simple FG-

module A such that CG(A)= 〈1〉.

The proof of both these assertions is similar to the proof of the respective results

of [5].

Lemma 7. Let R be a ring, A a minimal artinian R-module. Then A does not decom-

pose into a direct sum of two proper R-submodules.

The lemma is obvious.

If A is an R-module, then let SocR(A) denotes the sum of all minimal R-submodules

whenever A includes such submodules, and SocR(A)= 〈0〉 otherwise.

Clearly, SocR(A) is a direct sum of some minimal R-submodules (if it is nonzero). If

A is an artinian R-module, then SocR(A)≠ 〈0〉 and SocR(A) is a direct sum of finitely

many minimal R-submodules. So we come to the following lemma.

Lemma 8. LetR be a ring,A a minimal artinianR-module. Then SocR(A) is a nonzero

proper submodule of A.
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Lemma 9. Let F be a field, G a group, H a normal subgroup having a finite index

in G, A an FG-module. If A has finite composition length as an FG-module, then A has

finite composition length as an FH-module.

Proof. Let

〈0〉 = B0 ≤ B1 ≤ ··· ≤ Bn =A (2)

be a series of FG-submodules with simple FG-factors. Then Bi+1/Bi is a direct sum of

finitely many simple FH-submodules [12], 0 ≤ i ≤ n−1. Thus A has a finite series of

FH-submodules with simple factors.

Proposition 10. Let F be a field, G a group, A a minimal artinian FG-module such

that CG(A)= 〈1〉, H a normal subgroup having in G finite index, X a transversal to H
in G. Then

(1) A includes a minimal artinian FH-submodule B;

(2) A=∑x∈X Bx;

(3)
⋂
x∈X x−1CH(B)x = 〈1〉, in particular, H ≤ Xx∈XH/(x−1CH(B)x).

Proof. By Wilson’s theorem [11] A is an artinian FH-module. Since A has no finite

composition series as FG-module, then A has no finite composition series as FH-

module by Lemma 9. Let

S= {U |U is an FH-submodule of A and has no finite composition series}. (3)

Since A∈ S, S≠∅. Then S has a minimal element B. This means that B is minimal

artinian FH-submodule. The sum C = ∑x∈X Bx is an FG-submodule. If we suppose

that C is a proper FG-submodule of A, then it has a finite composition length. By

Lemma 9 it has also a finite composition length as an FH-module, which contradicts

the choice of B. This contradiction proves the equality A=∑x∈X Bx. Since CH(Bx)=
x−1CH(B)x, then it follows that

⋂
x∈X x−1CH(B)x ≤ CH(A)= 〈1〉. By Remak’s theorem,

H ≤ Xx∈XH/(x−1CH(B)x).

Lemma 11. Let F be a field, G a group, A a minimal artinian FG-module such that

CG(A)= 〈1〉. If 1≠ x ∈ ζ(G), then A=A(x−1).

Proof. The mapping ϕ : a → a(x−1), a ∈ A, is an FG-endomorphism of A. In

particular, Imϕ = A(x− 1) and Kerϕ = CA(x) are the FG-submodules of A. Since

x ∈ CG(A), then CA(x) ≠ A. By A(x−1) � A/CA(x), we obtain that A(x−1) has no

finite composition length. It follows that A(x−1)=A.

Corollary 12. Let F be a field, A a vector space over F , G a minimal artinian

subgroup of GL(F,A). Suppose that G is hypercentral. If charF = p > 0, then G does

not contain p-elements.

Proof. Denote by P the Sylow p-subgroup of G, and suppose that P ≠ 〈1〉. Since

G is a hypercentral group, P ∩ζ(G) ≠ 〈1〉. Let 1 ≠ z ∈ ζ(G)∩P . Since the additive

group of A is an elementary abelian p-group, a natural semidirect product B�〈z〉 is

a nilpotent group (cf. [8, Lemma 6.34]). Therefore [A〈z〉,A〈z〉]=A(z−1)≠A, which

contradicts Lemma 11. This contradiction shows that P = 〈1〉.
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Let G be a group. Put

FC(G)= {x ∈G | xG = {g−1xg | g ∈G} is finite
}
. (4)

That is, FC(G) is a characteristic subgroup of G. This subgroup is called the FC-

center of G.

Furthermore, the set T of all elements of finite order is a (characteristic) subgroup

of FC(G) and FC(G)/T is an abelian torsion-free group (cf. [7, Theorem 4.32]).

Let G be a group, π a set of primes. Denote by Oπ(G) the maximal normal π -

subgroup of G. In particular, if p is prime, then Op(G) denotes the maximal normal

p-subgroup of G, andOp′(G) denotes the maximal periodic subgroup, which does not

contain the p-elements.

Corollary 13. Let F be a field, A a vector space over F , G a minimal artinian

subgroup of GL(F,A). If charF = p > 0, then Op(FC(G))= 〈1〉.

Proof. Suppose the contrary, let 1≠y ∈Op(FC(G)). Put Y = 〈y〉G. By Ditsmann’s

lemma (cf. [7, Corollary 2 to Lemma 2.14]), Y is a finite normal subgroup of G. Since

Y is a finite p-subgroup, ζ(Y) = Z ≠ 〈1〉. Let H = CG(Z), then H is a normal sub-

group of finite index, and Z ≤ ζ(H). By Proposition 10 A includes a minimal ar-

tinian FH-submodule B. Since the additive group of B is an elementary abelian p-

group, the natural semidirect product B� 〈z〉 is a nilpotent group for each element

z ∈ Z (cf. [8, Lemma 6.34]). Therefore [B〈z〉,B〈z〉]= B(z−1)≠ B. Corollary 12 yields

that z ∈ CG(B). It is valid for every element z ∈ Z , therefore Z ≤ CG(B). In turn

Z = x−1Zx ≤ x−1CG(B)x = CG(Bx) for an arbitrary element x ∈ G. Since it is true

for every element x ∈ G, Z ≤ ⋂
x∈GCG(Bx) = CG(A), because A = ∑

x∈X Bx. But

CG(A)= 〈1〉. This contradiction proves that Op(FC(G))= 〈1〉.

Corollary 14. Let F be a field, A a vector space over F , G a minimal artinian

subgroup of GL(F,A). If charF = p > 0, then the locally soluble radical of FC(G) has

no p-elements.

Lemma 15. Let F be a field, charF = p, A a vector space over F , G a minimal ar-

tinian subgroup of GL(F,A). If H is a nonidentity finite normal p′-subgroup of G, then

SocFH(A)=A.

Proof. For every element 0≠ a∈A, an FH-submodule aFH is finite-dimensional.

In particular, it includes a simple FH-submodule. This means that SocFH(A)≠ 〈0〉. By

Maschke’s theorem (cf. [10, Theorem 1.5]), SocFH(A)=A.

If R is a ring, G a group, then ωRG denotes the augmentation ideal of the group

ring RG.

Corollary 16. Let F be a field, charF = p, A a vector space over F , G a minimal

artinian subgroup of GL(F,A). If H is a nonidentity finite normal p′-subgroup of G,

then CA(H)= 〈0〉, A(ωFH)=A.

Proof. By Lemma 15, A =⊕λ∈ΛMλ, where Mλ is a simple FH-submodule, λ ∈ Λ.

SinceMλ(ωFH) is an FH-submodule ofMλ, then eitherMλ(ωFH)=Mλ orMλ(ωFH)
= 〈0〉. It implies the equality A = CA(H)⊕A(ωFH). Since H is a normal subgroup of
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G, both CA(H) and A(ωFH) are FG-submodules. Lemma 7 yields that CA(H) = 〈0〉
and A=A(ωFH).

Corollary 17. Let F be a field, charF = p, A a vector space over F , G a minimal

artinian subgroup of GL(F,A). If H is a nonidentity finite normal p′-subgroup of G and

B is a nonzero FG-submodule of A, then CH(B)= 〈1〉.

Proof. In fact, if H1 = CH(B) ≠ 〈1〉, then H1 is a nonidentity finite normal

p′-subgroup of G. Since B ≤ CA(H1), we obtain a contradiction with Corollary 12.

Corollary 18. Let F be a field, charF = p, A a vector space over F , G a minimal

artinian subgroup of GL(F,A). Furthermore, letH be a nonidentity normal p′-subgroup

having an ascending series of G-invariant subgroups

〈1〉 =H0 ≤H1 ≤ ··· ≤Hα ≤Hα+1 ≤ ··· ≤Hγ =H (5)

with finite factors. If B is a nonzero proper FG-submodule of A, then CH(B)= 〈1〉.

Proof. We use induction on α. If α= 1, then the assertion follows from Corollary

13. Let α> 1, and we have already proved that CHβ(B)= 〈1〉 for all β <α.

Let Cα = CHα(B). If α is a limit ordinal, then Hα =
⋃
β<αHβ, and therefore Cα =⋃

β<α(Cα∩Hβ). But Cα∩Hβ = CHβ(B)= 〈1〉. Thus Cα = 〈1〉.
Suppose now that α is not a limit, and put L = Hα−1. Assume that Cα ≠ 〈1〉. Then

Cα∩L= CL(B)= 〈1〉, so that Cα � Cα/(Cα∩L)� CαL/L≤Hα/L. It follows that Cα is a

finite normal subgroup of G. And we obtain a contradiction with Corollary 12 because

B ≤ CA(Cα). Hence CHα(B)= 〈1〉. For α= γ we obtain that CH(B)= 〈1〉.

Let G be a group. A normal subgroup H is called the hyperfinite radical of G if H
satisfies the following conditions:

(1) H possesses an ascending series of G-invariant subgroups

〈1〉 =H0 ≤H1 ≤ ··· ≤Hα ≤Hα+1 ≤ ··· ≤Hγ =H, (6)

every factor of which is finite;

(2) G/H has no nonidentity finite normal subgroups.

We will denote the hyperfinite radical of G by HF(G).
Let Soc(G)= Xλ∈ΛSλ, where Sα is a minimal normal subgroup of G, λ∈Λ. Put

Λab =
{
λ∈Λ | Sλ is abelian

}
, Socab(G)= Xλ∈ΛabSλ. (7)

Corollary 19. Let F be a field, charF = p, A a vector space over F, G a minimal

artinian subgroup of GL(F,A). Let S = Socab(G)∩HF(G). Then S is a p′-subgroup

including a subgroup Q such that S/Q is a locally cyclic group and CoreG(Q)= 〈1〉.

Proof. Clearly S is a subgroup of the locally soluble radical of FC(G). By Corollary

17 of Lemma 11, S is a p′-subgroup. Let B be a minimal FG-submodule of A. By

Corollary 18, CS(B) = 〈1〉. In other words, S is imbedded in an irreducible subgroup

of GL(F,B). And now we can use [1, Lemma 8.2].

Now we can expose the main results.
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Theorem 20. Let F be a field,A a vector space over F ,G a minimal artinian subgroup

of GL(F,A). If G is an FC-group, then Socab(G) is a p′-subgroup including a subgroup

Q such that Socab(G)/Q is a locally cyclic group and CoreG(Q)= 〈1〉, where p = charF .

Proof. Let T be the periodic part of G, S the locally soluble radical of G. For every

element x ∈ T , the subgroup 〈x〉G is finite by Ditsmann’s lemma (cf. [7, Corollary 2 to

Lemma 2.14]). This implies the inclusion T ≤HF(G). In particular, Socab(G)≤HF(G).
Now we can use Corollary 19 of Lemma 15.

The results of [3] imply that for the group G having the structure, described in

Theorem 20, there is a simple FG-module A such that CG(A) = 〈1〉. This means that

this theorem cannot be strengthened. Thus, minimal artinian linear FC-groups have

the same structure as irreducible linear FC-groups.

Theorem 21. Let F be a field,A a vector space over F ,G a minimal artinian subgroup

of GL(F,A). If G is a hypercentral, then t(ζ(G)) is a locally cyclic p′-subgroup, where

p = charF .

Proof. By Corollary 12 of Lemma 11, the periodic part T of the group G is a

p′-subgroup. Since G is a hypercentral group, T = HF(G). Choose a minimal FG-

submodule B ofA. By Corollary 18 of Lemma 15, T∩CG(B)= 〈1〉, that is, T � TCG(B)/
CG(B). In other words, T is imbedded in an irreducible subgroup of GL(F,B). Now we

can use Lemma 1.

Corollary 22. Let F be a field, A a vector space over F , G a minimal artinian

subgroup of GL(F,A). If G is abelian, then t(G) is a locally cyclic p′-subgroup, where

p = charF .

Lemmas 3, 4, 5, and 6 show that, for the group G having the structure described in

Theorem 21 (and in its corollary), there is a simple FG-module A such that CG(A) =
〈1〉. This means that this theorem (and its corollary) cannot be strengthened. Thus,

minimal artinian linear hypercentral (and abelian) groups have the same structure as

irreducible linear hypercentral (abelian) groups.

In connection with Lemma 2 and Theorem 21, there arises the following question:

let F be a locally finite field,G a hypercentral group of finite 0-rank. LetG be a minimal

artinian subgroup of GL(F,A). Can we claim ζ(G) to be periodic? The following simple

example gives a negative answer to it.

Let F be a field, A a vector space over F of countable dimension, {an | n ∈ N} a

basis of A, 〈x〉 an infinite cyclic group. Define the action of x on A by the rule

a1x=a1, an+1x=an+1+an, or a1(x−1)=0, an+1(x−1)=an, n∈N. (8)

Then we can consider A as an F〈x〉-module. It is easy to see that A=A(x−1) and

every proper F〈x〉-submodule of A coincides with some a1F +···+anF , n ∈ N. In

particular, the F〈x〉-module A is minimal artinian and C〈x〉(A)= 〈1〉.
Also it shows that the question about the internal structure of minimal artinian

modules requires separate consideration.
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