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ULTRALOGICS AND PROBABILITY MODELS
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ABSTRACT. We show how nonstandard consequence operators, ultralogics, can generate
the general informational content displayed by probability models. In particular, a prob-
ability model that predicts that a specific single event will occur and those models that
predict that a specific distribution of events will occur.
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1. Introduction. In [3], the theory of nonstandard consequence operators is intro-
duced. Consequence operators, as an informal theory for logical deduction, were
introduced by Tarski [6]. There are two such operators investigated, the finite and the
general consequence operator. Let L be any nonempty set that represents a language
and % the set-theoretic power set operator.

DEFINITION 1.1. A mapping C: (L) — P (L) is a general consequence operator (or
closure operator) if for each X,Y € (L)
(i) XCcC(X)=C(C(X))CL andif
(i) X CY,then C(X)cCC(Y).
A consequence operator C defined on L is said to be finite (finitary, or algebraic) if it
satisfies
(iii) C(X) =u{C(A)| A € F(X)}, where F is the finite power set operator.

REMARK 1.2. The above axioms (i), (ii), and (iii) are not independent. Indeed, (i) and
(iii) imply (ii).

In [3], the language L and the set of all consequence operators defined on L are
encoded and embedded into a standard superstructure Jl = (N, €,=). This standard
superstructure is further embedded into a nonstandard and elementary extension
*M = (*N,€,=). For convenience, *.l is considered to be a 2M/-saturated enlarge-
ment. Then, in the usual constructive manner, */( is further embedded into the super-
structure, the Grundlegend structure, ¥ = (Y, €,=) where, usually, the nonstandard
analysis occurs. In all that follows in this article, the Grundlegend superstructure % is
altered by adjoining to the construction of .t a set of atoms that corresponds to the
real numbers. This yields a 2"-saturated enlargement */(; and the corresponding
extended Grundlegend structure %, [1, 2].

2. The main result. To indicate the intuitive ordering of any sequence of events,
the set T of Kleene styled “tick” marks, with a spacing symbol, is used [5, page 202] as
they might be metamathematically abbreviated by symbols for the nonzero natural
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numbers. Let G C L, be considered as a fixed description for a source that yields,
through application of natural laws or processes, the occurrence of an event described
by E C L. Further, the statement E’ C L; indicates that the event described within the
statement E did not occur. Let L = {G} U{E,E’'} UT. As usual, G, E, and E’ are assumed
to contain associated encoded general information [4]. Note that for subsets of L, bold
notation, such as G, denotes the image of G as it is embedded into J;.

THEOREM 2.1. For the language L and any p € R such that 0 < p < 1, where p
represents a theory predicted (i.e., a priori) probability that an event will occur, there
exists an ultrachoice function *C and an ultralogic P, with the following properties:

(1) When P,, is applied to *{G} = {G} a hyperfinite set of “events” {a.,...,an,...,*av}
is obtained such that for any “n” trials, {a1,...,an} is a finite identified “event” sequence,
where each a; determines the labeled event E or labeled non-event E'.

(2) The labeled events in (1) are sequentially determined by *C, where C determines
a sequence gap Of relative frequencies that converges to p.

(3) The sequence of relative frequencies ga, determined by *C gives the appearance
of theory dependent random chance.

PROOF. All of the objects discussed will be members of an informal superstructure
at arather low level and slightly abbreviated definitions, as also discussed in [1, pages
23, 30-31], are utilized. As usual N is the set of all natural numbers including zero,
and N> the set of all nonzero natural numbers.

LetA={a| (@:N " - N)A(Vn(neN?- (a(l)<1A0=<an+1l)—amn) <1)))}.
Note that the special sequences in A are nondecreasing and for each n € N*% a(n) <n.
Obviously A # &, for the basic example to be used below, consider the sequence
a(l) =0,a(2) =1,a3) =1,a) =2, a(5) =2, a(6) =3, a(7) =3, a(8) =4,...
which is a member of A. Next consider the most basic representation Q for the non-
negative rational numbers where we do not consider them as equivalence classes.
Thus Q = {(n,m) | (m e N) A (n € N>0)}.

For each member of A, consider the sequence g, : N — Q defined by g,(n) =
(n,a(n)).Let F be the set of all such g, as a € A. Consider from the above hypotheses,
any p € R such that 0 < p < 1. We show that for any such p there exists an a € A and
a gap € F such that limy_« gap (n) = p. For each n € N>, consider n subdivisions of
[0,1], and the corresponding intervals [ck,ck+1), where cx11—cx =1/n,0 <k <n,and
co=0,c,=1.If p =0, let a(n) = 0 for each n € N>0. Otherwise, using the customary
covering argument relative to such intervals, the number p is a member of one and
only one of these intervals, for each n € N>, Hence for each such n > 0, select the end
point ¢ of the unique interval [ck, ck+1) that contains p. Notice thatforn = 1,cx = ¢co =
0. For each such selection, let a(n) = k. Using this inductive styled definition for the
sequence a, it is immediate, from a simple induction proof, that a € A, gap € F, and
that limy, -~ gap (n) = p. For example, consider the basic sequence a in paragraph 2 of
this proof. Then g4 = {(1,0),(2,1),(3,1),(4,2),(5,2),(6,3),(7,3),(8,4),...} issuch a
sequence that converges to 1/2. Let F, C F be the nonempty set of all such gsp. Note
that for the set F, p is fixed and F,, contains each ga,, as a varies over A, that satisfies
the convergence requirement. Thus, for 0 < p < 1, A is partitioned into subsets A,
and a single set A’ such that each member of A, determines a g, € Fp. The elements
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of A" are the members of A that are not so characterized by such a p. Let «{ denote
this set of partitions.

LetB={f|VnVm((meN"HDAameN)A(m=n)) - ((f: ([1,n]x{n}) x{m} -
{0,1HDA(Vj((eNYA(Q<j=n)) — (Z;Llf(((j,n),n),m) =m)))))}. The mem-
bers of B are determined, but not uniquely, by each (n,m) such that (n € N>%)A
(m € N) A (m < n). Hence for each such (n,m), let f,,, € B denote a member of B
that satisfies the conditions for a specific (n,m).

For a given p, by application of the axiom of choice, with respect to #, thereisana €
A, and a gqp with the properties discussed above. Also there is a sequence fyqn) of
partial sequences such that, when n > 1, it follows that (1) fnam) (J) = fo-1am-1)(J)
as 1 < j < (n-1). Relative to the above example, consider the following:

Jia(1) =0,
SFoa2)(1) =0,  foa)(2) =1,
S3a3)(1) =0, fza3(2) =1, fza3(3) =0, (2.1)

Jaa(1) =0,  faaw(2) =1, faaw(3) =0, fia@(4) =1,
S5a)(1) =0, fsa(2) =1, F5a53) =0, fsa)(4) =1, fsai)(5)=0,....

It is obvious how this unique sequence of partial sequences is obtained from any
a € A. For each a € A, let By = {fum | Y7 (n € N> — m = a(n))}. Let B} C B,
such that each fu., € B:ﬁ satisfies the partial sequence requirement (1). For each
n € N> let Pfnam) € B! denote the unique partial sequence of n terms generated
by an a and the (1) requirement. In general, as will be demonstrated below, it is the
P fram that yields the set of consequence operators as they are defined on L;. Con-
sider an additional map M from the set PF = {P fyam) | a € A} of these partial se-
quences into our descriptive language L; for the source G and events E, E’ as they
are now considered as labeled by the tick marks. For each n € N*%, and 1 < j < n, if
P fram) (j) =0, then M(P fram)(j)) = E" (.e., E' = E does not occur); if P fram) (j) =1,
then M (P fnam)(j)) = E (i.e., E does occur), as 1 < j < n, where the partial sequence
j=1,...,m models the intuitive concept of an event sequence since each E or E' now
contains the appropriate Kleene “tick” symbols or natural number symbols that are
an abbreviation for this tick notation.

Consider the set of consequence operators, each defined on L, H = {C(X,{G}) |
X cL},whereif GeY, then C(X,{G})(Y)=YuX;if G¢ Y, then C(X,{G})(Y) =Y.
Then for each a € Ay, n € N> and the respective P fnamn), there exists the set of
consequence operators Cqp = {C({M(Pnamn)(j))},{G}) | 1 < j <n} C H. Note that
from [3, page 5], H is closed under the finite v and the actual consequence operator
is CUM (Ppan)(1) U -+ - U{M (Puam) (1))}, {G}). Applying a realism relation R (i.e.,
in general, R(C({G})) = C({G}) — {G}) to C({M (Pram)(1))} U -+ - U{M (Ppam)(n))},
{G})({G}) vields the actual labeled or identified event partial sequence {M (Ppan) (1)),
---;M(Pna(n)(n))}-

Now embed the above intuitive results into the superstructure Jt; = (R, €,=) which
is further embedded into the nonstandard structure *; = (*®R,€,=) [1,2].Letp € R
be such that 0 < p < 1, where p represents a theory predicted (i.e., a priori) probability
that an event will occur. Applying a choice function C to s, there is some a € A,
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such that gap — p. Thus *C applied to *si yields *a € *A, and *gap € *Fp. Let
v € *N be any infinite natural number. The hyperfinite sequence {a4,...,au,...,*a}
exists and corresponds to {ai,...,a,} for any natural number n € N>°. Also we know
that st(*a,) = p for any infinite natural number u. Thus there exists some internal
hyperfinite P f,x4(v) € * PF with the x-transferred properties mentioned above. Since
*H is closed under hyperfinite v, there is a P, € *H such that, after application of the
relation *R, the result is the hyperfinite sequence

S = {*M(Pv*u(v)(1));---:*M(Pv*a(v)(j))a---,*M(Pv*a(v)(V))}- (22)

Note that if j € N, then we have that *E = E or *E’ =E’ as the case may be.

An extended standard mapping that restricts S to internal subsets would restrict
S to {*M(Pysa0n(1)),..., *M(Pyy,(v)(j))}, whenever j € N>, Such a restriction map
models the restriction of S to the natural-world in accordance with the general inter-
pretation given for internal or finite standard objects [2, page 98]. This completes the
proof. O

3. Distributions. Prior to considering the statistical notion of a frequency (mass,
density) function and the distribution it generates, there is need to consider a finite
Cartesian product consequence operator. Suppose that we have a finite set of con-
sequence operators {Ci,...,Cy}, where at least one is axiomless, each defined upon
its own language L. Define the operator I1C,, as follows: for any X C L; X - - - X Ly,
using the projections pry, consider the Cartesian product pr; (X) X - - - X pr,,, (X). Then
HCp (X) = Ci(pry(X)) X - - - X Cpy (pr,,, (X)) is a consequence operator on Ly X - - - X Lyy,.
If each Cy is a finite consequence operator, then I1C,, is finite. In all other cases, I1C,,
is a general consequence operator. All of these standard facts also hold within our
nonstandard structure under x-transfer.

A distribution’s frequence function is always considered to be the probabilistic
measure that determines the number of events that occur within a cell or “interval”
for a specific decomposition of the events into various definable and disjoint cells.
There is a specific probability that a specific number of events will be contained in a
specific cell and each event must occur in one and only one cell and not occur in any
other cell.

For each distribution over a specific set of cells, I, there is a specific probability
pk that an event will occur in the cell I;. Assuming that the distribution does indeed
depict physical behavior, we will have a special collection of g,p, sequences generated.
For example, assume that we have three cells and the three probabilities p; = 1/4,
p2 =1/2, p3 = 1/4 occur in I,1,,I3, respectively. Assume that the number of events
to occur is 6. Then the three partial sequences might appear as follows

ap, = 1(1,1),(2,1),(3,1),(4,2),(5,2),(6,2)},
ap, = 1(1,0),(2,1),(3,2),(4,2),(5,2),(6,3)}, (3.1)
Japs = 1(1,0),(2,0),(3,0),(4,0),(5,1),(6,1)}.

Thus after six events have occurred, 2 events are in the first cell, 3 events are in the
second cell, and only 1 event is in the third cell. Of course, as the number of events
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continues the first sequence will converge to 1/4, the second to 1/2, and the third to
1/4. Obviously, for any n = 1, gap, (n) + gap, (M) + gap; (n) = n. Clearly, these required
Jap,; Properties can be formally generated and generalized to any finite number m of
cells.

Relative to each factor of the Cartesian product set, all of the standard aspects of
Theorem 2.1 will hold. Further, these intuitive results are embedded into the above su-
perstructure and further embedded into our nonstandard structure. Hence, assume
that the languages Ly = L, and that the standard factor consequence operator Cy
used to create the product consequence operator is a Cyp, of Theorem 2.1. Under
the nonstandard embedding, we would have that for each factor, there is a pure non-
standard consequence operator P,, € *Hy. Finally, consider the nonstandard product
consequence operator I1P,, . For *({G1} X X{Gm}) = {G1} X -+ - X {Gm}, Gi = G,
this nonstandard product consequence operator yields for any fixed event number n,
an ordered m-tuple, where one and only one coordinate would have the statement E
and all other coordinates the E’. It would be these m-tuples that guide the proper cell
placement for each event and would satisfy the usual requirements of the distribution.
Hence, the patterns produced by a specific frequency function for a specific distribu-
tion may be rationally assumed to be the result of an application of an ultralogic.
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