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ON SOLUTIONS OF THE GOtAB-SCHINZEL EQUATION
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ABSTRACT. We determine the solutions f : (0,%) — [0, o) of the functional equation f(x +
f(x)y) = f(x)f(y) that are continuous at a point a > 0 such that f(a) > 0. This is a
partial solution of a problem raised by Brzdek.
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The well-known Golab-Schinzel functional equation

fx+f(x)y)=f0)f(y) (1)

has been studied by many authors (cf. [1, 3, 5, 7, 10]) in many classes of functions.
Recently Aczél and Schwaiger [2], motivated by a problem of Kahlig, solved the fol-
lowing conditional version of (1)

flx+fx)y)=f(x)f(y) forx=0,y=0, (2)

in the class of continuous functions f: R — R, where R denotes the set of real num-
bers. Some further conditional generalizations of (1) have been considered by Reich
[9] (see also [8] and Brzdek [4]).

At the 38th International Symposium on Functional Equations (Noszvaj, Hungary,
June 11-17, 2000) Brzdek raised, among others, the problem (see [6]) of solving the
equation

fx+f(x)y)=f(x)f(y), whenever x,v,x+f(x)y Ry, (3)

in the class of functions f: R, — R that are continuous at a point, where R, = (0, ).
We give a partial solution to the problem, namely we determine the solutions f: R, —
[0, ) of (3) that are continuous at a point a € R, such that f(a) > 0. Note that actually
equations (1) and (3) have the same solutions in the class of functions f: R, — [0, ).
From now on we assume that f: R, — [0,) is a solution of (3), continuous at a
point a € R, such that f(a) > 0.
We start with some lemmas.

LEMMA 1. Suppose that vy, > y, >0 and f(y1) = f(y2) > 0. Then

(@ ft+(y2—x1))=f() fort=y;
(b) for every z > 0 such that f(z) > 0,

ft+f (@) (=) =f@) fort=z+y f(2); (4)


http://ijmms.hindawi.com
http://ijmms.hindawi.com
http://www.hindawi.com

542 ANNA MURENKO
(c) ifz1,z0 >0 and f(z2) > f(z1) >0, then
ft+(f(z2) = f(21))(2=21)) = f(t) fort =max{z1+y1f(z1),z2+y1f(22)}. (5)

PROOF. (a) We argue in the same way as in [2, 7]. Namely, for t > y;, by (3) we have

P a=y) = (et 5 20 f o)) = f v+ 2 f o)

Y27 F ) Fon)
- L=\ _ t—y1
= rof () = o () ©)
_ t-n _
=P+ oy Fom)) = £,
(b) For every z > 0 such that f(z) > 0 we have
f(z+f(2) = f@) f(0n) = f(2)f(>2) = f(z+32£(2)) 7)
and consequently by (a) (with y; and 1y, replaced by z+ v, f(z) and z + y» f(2))
f@)=Fflt+(z+y2f(2)—z=1f(2)] = f(t+f(2)(y2—-21)) (8)

fort =z+yi1f(2).

(o) Since (f(z2) — f(z1)) (2 —>1) > 0, t + (f(22) — f(21)) (V2 — y1) = max{z; +
yvif(z1),z2+y1f(22)} for t > max{z; + y1.f(21),22+y1f(z2)}. Thus using (b) twice,
for z = z; and z = z; (the first time with t replaced by t + (f(z2) — f(z1)) (v2 — 1)),
we have

S+ (f(z2) = f(z1))(v2-21))

= flt+(f(2z2) = f(21)) (2= 1) + f(21) (V2 = 1) ] 9)
=f(t+f(z2)(y2—21)) = f(1)
for t = max{z; +y1f(z1),z2 + y1.f(22)}. O

LEMMA 2. Let v, > y1 > 0 and f(y1) = f(y2) > 0. Then there exists xo > 0 such
that for every d > 0 there is c € (0,d) with f(t+c) = f(t) fort = xg.

PROOF. First suppose that there is aneighbourhood U = (a—6,a+ §) of a on which
f is constant. Then for every x € U such that a < x, from Lemma 1(a), we get

ft+(x—a))=f(t) fort=a. (10)

Thus it is enough to take xy = a.

Now assume that there does not exist any neighbourhood of a on which f is con-
stant. Take € € (0, f(a)). The continuity of f at a implies that there exists 6 € (0,1)
such that for every x € U, = (a—6,a+ ) we have f(x) € (f(a) —¢, f(a) +¢). Take
Xx1,Xx2 € Uy such that f(x;) < f(x2). Then f(x2) — f(x1) < 2¢. From € < f(a) we infer
f(x1) > 0 and by Lemma 1(c) we get

ft+(fx2) = f(x1))(va=x1)) = f(t) fort =max {x1+y1f(x1),x2+y1.f(x2)}.
(11)
Next by a suitable choice of € the value ¢ := (f(x2) — f(x1)) (32 — 1) can be made
arbitrarily small. Moreover, x1,x> <a+1 and f(x1), f(x2) < f(a) +& < 2f(a), which
means that f(t+c)=f(t) for t =xp:=a+1+y12f(a). This completes the proof. O
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LEMMA 3. If for some y, > yv1 >0, f(y1) = f(2) > 0, then forevery e >0 ande > 0
there is c € (0,e) with f(t+c) = f(t) fort > €.

PROOF. By Lemma 2 there exists xo > 0 such that for arbitrarily small ¢ > 0
f(t+c)=f(t) fort = xy. (12)

By induction, from Lemma 1(a), we get f(y1) = f(y1 + n(y2 —y1)) for any positive
integer n. Consequently there exists x; € [xg, o) with f(x1) = f(y1).

Put B = {x > xo: f(x) > 0}. Clearly x; € B. Thus (12) implies that Bn A + @ for
every nontrivial interval A C [x(, ®). Define a function f; : [0, %) — [x(, ) by

Sfi(x) =x1+xf(x1). (13)

Note that f; is increasing. Let € > 0 and vy € BN (f1(0), f1(¢)) # &. By the continuity
of fi there exists zy € (0, ¢) such that f1(z¢) = yo. Take d > 0 with f(t+d) = f(t) for
t > xo. Then

f(0) = f(yo+d) #0. (14)

The form of the function f; implies that there exists z; > zg such that f;(z1) = yo+d.
Note that (14) yields

fx1+zof(x1)) = f(fi(20))

=f(vo) =f(o+d) = f(fi(z1)) (15)
= f(x1+z1.f(x1)) =0.
Further by (3)
f(x1)f(20) = f(x1)f(z1) #0, (16)

and consequently f(zo) = f(z1) > 0. Hence, in view of Lemma 1(a), we infer that
ft+(z1-20)) = f(t) fort=z. (17)

This completes the proof, because € > z¢ and, choosing sufficiently small d, we can
make c := (z; — z¢) arbitrarily small. O

LEMMA 4. If there exist y, > v > 0 such that f(y1) = f(32) >0, then f = 1.

PROOF. First we show that f(x) = f(a) =: b for x € R,. For the proof by contra-
diction suppose that there exists to > 0 with f(ty) # f(a). Put

0= |f(to) - fla)]. (18)

The continuity of f at a implies that there exists § > 0 such that if |[x —a| < 6 then
|f(x)—f(a)| < &. By Lemma 3 there exists y, > 0 such that |yy—al < é and f(yy) =
f(to), which means that | f (tg) — f (a)| < &, contrary to (18). Thus we have proved that
f = b.Clearly from 3)we getb = f(a) = f(a+af(a)) = f(a)? = b? and consequently
b = 1. This completes the proof. O

LEMMA 5. If f is nonconstant then (f(x) — 1)/x is constant for all x > 0 with

f(x)>0.
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PROOF. Suppose that x >0,y >0, x =y, f(x)f(y) >0, and
fx)-1_ fr) -1

(19)
X y
Then x +yf(x) +y+xf(y) and
fx+yf(x)=f)f () =f(y+xf(y))>0. (20)
Thus, by Lemma 4, f = 1, a contradiction. O

REMARK 6. If we denote the constant in Lemma 5 by ¢, then from Lemma 5 we
get f(x) € {cx +1,0} for every x > 0. In the case ¢ < 0 we have f(x) = 0 for every
x = —1/c (because f = 0).

LEMMA 7. Suppose that f is nonconstant. Then,
(@ inthecasec:=(f(a)—1)/a<0, f(x)=cx+1 forx €(0,-1/c);
(b) inthecasec:=(f(a)-1)/a>0, f(x)=cx+1 forx >0.

PROOF. The continuity of f at a implies that there exists § € (0,a) such that
f(x) > 0 for every x € U = [a — §,a + §]. Thus, by Remark 6, f(x) = cx + 1 for
xeU.

LetI = (a,-1/c)if c<0and I = (a,») if ¢ > 0. Put By := {x € (0,a) : f(x) = 0},
By := {X EI:f(X) :0}, B = By UBoy,

supB; if By # &, infB, if B, + &,
_{upl I by dZ:‘lm 2> 1t By 1)

" la-s6 ifB =0, a+s ifB=0.

Clearly f(x) > 0 on the interval A = (dy,d2) D (a—36,a+96).

(a) For the proof by contradiction suppose that there exists b; € (0,—1/c) with
f(by) = 0. Notice that d> < —1/c. Indeed, if B, + @ then, since B, C (a,—1/c), so
infB, < —1/c. If not, then from Remark 6 we have that a + 6 < —1/c. Consequently
d; < —1/c. Thus cd, > —1 and consequently 6 + 6cd, > 0. Take b € B and z € A such
that |z—b| < § + dcd». Define functions h,g: U — R by

hix)=x+zf(x) forxeU,

gx)=x+bf(x) forxeU. (22)

By the continuity of f on U, h is continuous. Next, since z < d», so cz > cd» and
6+d6cz>d+dcdyr > 0. Hence

h(a)-h(a-6)=a+z(ca+1)—a+85-z[c(a-6)+1]=5+b6cz >0,

h(a+6)-h(a)=a+d6+z[c(a+6)+1]—a—-z(ca+1)=06+bcz > 0. (23)
Moreover 1 > ca+1 = f(a) > 0, whence
|[h(a)-g(a)| = |a+z(ca+1)—a—b(ca+1)]|
(24)

=|z-bl|lca+1|<|z=-b|<6+b6cdr <6+6cz.
From (23) and (24) we obtain

h(a-9) <g(a) <h(a+90). (25)



ON SOLUTIONS OF THE GOLAB-SCHINZEL EQUATION 545

The continuity of h implies that there exists xy € (a—98,a+ ) such that h(xg) = g(a).
Since a,xo,z € A and b € B, so we have

0= f(x0)f(2) = f(xo+2zf(x0)) = f(h(x0))
=f(g(a)) = f(a+bf(a)) = f(a)f(b) =0.

This contradiction ends the proof of (a).

(b) For the proof by contradiction suppose that f(b;) = 0 for some b; > 0. Since
ca+1= f(a) > 0, there are b € B and z € A such that |z—-b| < §/(ca + 1). Define
functions h,g: U — R in the same way as in the proof of (a). Then (23) holds and

(26)

|[h(a)-g(a)| =1z-Dbllca+1] < 6 (ca+1)=8<6+6cz. (27)
ca+1
Hence
h(a-9) <g(a) <h(a+9). (28)
We obtain a contradiction in a similar way as in the proof of (a). O

LEMMA 8. Ifc:=(f(a)—1)/a =0, then f(x) =1 for x > 0.

PROOF. The continuity of f at a implies that there exists § > 0 such that f(x) >0
for every x € [a—6,a + 6]. Thus, by Lemma 5 and Remark 6, f(x) =cx+1 =1 for
every x € [a—6,a+ 6]. Hence Lemma 4 implies that f(x) = 1 for every x > 0. O

Finally from Lemmas 7 and 8 and Remark 6 we get the following theorem.

THEOREM 9. If a function f : R, — [0,0) is continuous at a point a such that
f(a) # 0 and satisfies (3), then

f(x)=max{cx+1,0} VxeR,. (29)
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