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CERTAIN CONVEX HARMONIC FUNCTIONS
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We define and investigate a family of complex-valued harmonic convex univalent func-
tions related to uniformly convex analytic functions. We obtain coefficient bounds, extreme
points, distortion theorems, convolution and convex combinations for this family.
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1. Introduction. A continuous complex-valued function f = u + iv defined in a
simply connected complex domain % c C is said to be harmonic in & if both u and v
are real harmonic in %. Consider the functions U and V analytic in % so that u = RU
and v = JV. Then the harmonic function f can be expressed by

f(z)=h(z)+g(z), z€D, (1.1)

where h = (U+V)/2 and g = (U—-V)/2. We call h the analytic part and g the co-
analytic part of f. If the co-analytic part of f is identically zero then f reduces to the
analytic case.

The mapping z — f(z) is sense-preserving and locally one-to-one in % if and only
if the Jacobian of f is positive (see [1]), that is, if and only if

Jr(z)= | (2)|°- g (2)|*>0, zeD. (1.2)

Let ¥ denote the family of functions f = h + g which are harmonic, sense-preserving,
and univalent in the open unit disk A = {z: |z| < 1} with h(0) = f(0) = f2(0) -1 =0.
Thus, we may write

h(z)=z+ > anz", g(2)= > buz", |bi|<1. (1.3)
n=2 n=1

Also let % denote the subclass of # consisting of functions f = h + g so that the

functions h and g take the form

h(z)=z-> lan|z", g(z)=-> |balz", |bi] <Ll (1.4)
n=2 n=1
Recently, Kanas and Wisniowska [5] (see also Kanas and Srivastava [4]), studied the
class of k-uniformly convex analytic functions, denoted by k-U6Y, 0 < k < o0, so that
h € k-U%Y if and only if

h"(z)
h(z)

‘R{l+(z—§) }20, ICl <k, zeA. (1.5)
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For real ¢ we may let C = —kze!®. Then condition (1.5) can be written as

AN

%{1 + (1 +ke'®) )

(1.6)

Now considering the harmonic functions f = h + g of the form (1.3) we define the
family %€V (k,x), 0 < x <1, so that f = h+g € #6V (k,x) if and only if

Z2h'(z) +2zg'(z) +z2g" (2)
zh'(z) —zg'(z)

%{1+(1+kei¢) }za, 0O<ax<l1. (1.7)
Finally, we let #€V (k, x) = %6V (k, x) N %K.

Notice that if g = 0 and « = 0 then the family %% (k, «) defined by (1.7) reduces
to the class k-U%% of k-uniformly convex analytic functions defined by (1.5). If we,
further, let k = 1 in (1.5), we obtain the class of uniformly convex analytic functions
defined by Goodman [2]. A geometric characterization of the general family #6V (k, )
is an open question.

In Section 2, we introduce sufficient coefficient bounds for functions to be in
%€V (k, ) and show that these bounds are also necessary for functions in €Y (k, x).
In Section 3, the inclusion relation between the classes k-U6V and #6V (k, x) is ex-
amined. Extreme points and distortion bounds for %% (k, ) are given in Section 4.
Finally, in Section 5, we show that the class ¥V (k, ) is closed under convolution
and convex combinations.

Here we state a result due to Jahangiri [3], which we will use throughout this paper.

THEOREM 1.1. Let f = h+g with h and g of the form (1.3). If

|bn] <1, 0<a<l, (1.8)

i nn- (x) |+Zn(1n+o<)

n=1

then f is harmonic, sense-preserving, univalent in A, and f is convex harmonic of order
« denoted by % (x). Condition (1.8) is also necessary if f € HH(x) = #H (x) N K.

2. Coefficient bounds. First we state and prove a sufficient coefficient bound for
the class #<€V (k, ).

THEOREM 2.1. Let f =h+ g be of the form (1.3). If0 <k < 00,0 < x< 1, and

i nm+nk+k+ o)

Cw |bn| <1, 2.1)

nl

in(rwnk k- (x)|

n=1
then f is harmonic, sense-preserving, univalent in A, and f € #6V (k, x).

PROOF. Since n—-ax<n+nk—-k—-cxandn+ax<n+nk+k+ o« for 0 <k < oo,
it follows from Theorem 1.1 that f € %J{(«) and hence f is sense-preserving and
convex univalent in A. Now, we only need to show that if (2.1) holds then

SR{zh’(z)+(1 +kel?)z2h" (z2)+ (1 +2ke'®)zg' (z) + (1 + kel®)z2g" (z) } B %A(z) -
zh/(2) —zg' (2) T B(2) T
2.2)
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Using the fact that R(w) > «if and only if |1 — x+w| = |1+ &x—w/| it suffices to show
that

|A(z)+ (1-x)B(z)| - |A(z) - (1+ ®)B(z)| = 0, (2.3)

where A(z) = zh/(z) + (1 + ke'®)z2h" (z) + (1 + 2ke'?)zg’ (z) + (1 + kei®)z2g" (z) and
B(z) =zh'(z) —zg’(z). Substituting for A(z) and B(z) in (2.3), we obtain

|A(z)+(1-)B(z)| - |A(z) = (1 +x)B(2) |

2-x)z+ > nn+l-a+kn-1)e®la,z"

n=2

+> nn-1+a+k(n+1)e®]b,z"

n=1

‘ + > nn-1-a+k(n-1)e®la,z"
-2

+ > nn+l+a+k(n+1)e®]b,z"

n=1

00

> (2-—- - k+1)+1-k- n n
> (2-)lzl- D n[nk+1)+ of|an]lzl 0.4

n=2
- > nnk+1)-1+k+a]|bn|lzI"
n=1

—alz|- > nnk+1)-1-k—o]|an|lzI"

n=2

Z [n(k+1)+1+k+«]|by,|lzI"

= n{nk+1) -
>2(1- (x)lzl{ nzz -« \an|

-y n n(lerl)+k+o<] Ibn|}20, by 2.1).

— x

n=1

The harmonic functions
f(Z)=Z+i1_—axnz”+il—a5/n2" (2.5)
Synnk+n-k-o) onmk+n+k+o) ’

where X7 [xn|+ > 1 |vn| = 1, show that the coefficient bound given in Theorem 2.1

is sharp.
The functions of the form (2.5) are in #%6V (k, ®) because

S nn+nk—k—-x) S nn+nk+k+x) > a
3, M) 5 ML) 1) 2 S x4 [ =1 (26)
_ _ - _ _

n=2 n=1 n=2 n=1 0
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Next we show that the bound (2.1) is also necessary for functions in #€V (k, ).

THEOREM 2.2. Let f = h+g with h and g of the form (1.4). Then f € %€V (k,x) if
and only if

|b| <1. 2.7)

S nn+nk—k- ) nm+nk+k+ o)
e e S

PROOEF. In view of Theorem 2.1, we only need to show that f ¢ #%¢V (k, x) if condi-
tion (2.7) does not hold. We note that a necessary and sufficient condition for f = h+g
given by (1.4) to be in %%V (k, «) is that the coefficient condition (1.7) to be satisfied.
Equivalently, we must have

% (1-x)zh (z) + (1 + ke'®)z2h" (z) + (1 + &+ 2ke'?) zg' (z) + (1 + kei?)z2g" (2) -0
zh' (z)—zg'(2) -

(2.8)

Upon choosing the values of z on the positive real axis where 0 < z = v < 1, the above
inequality reduces to

l-o—{Yynmk+n—k-o)|an| +Xp n(nk+n+k+o)|by|}r™!
1-Ynonlan[rnt+ 35 nb, [rnt

>0. (2.9

If condition (2.7) does not hold then the numerator in (2.9) is negative for r suffi-
ciently close to 1. Thus there exists zg = 7y in (0,1) for which the quotient (2.9) is
negative. This contradicts the required condition for f € %€V (k,«) and so the proof
is complete. a

3. Inclusion relations. As mentioned earlier in the proof of Theorem 2.1, the func-
tions in %€V (k, x) are convex harmonic in A. In the following example we show that
this inclusion is proper.

EXAMPLE 3.1. Consider the harmonic functions

1 1
fn(z)=z—52—mzn, zeA, n=2,3,.... (3.1)

For a,, =0 and b,, = —1/2n?, we observe that
Zn2|an|+2n2|bn|:l+n2( L >:1+1:1. 3.2)
— — 2 2 2
n=2 n=1

Therefore, by Theorem 1.1, f,, € %3 (0).
On the other hand,

2k+1+a’_l +n(nk+n+k+o<) _L _2k+1+o(+nk+n+k+o<>1 (3.3)
1-« 2 1-« 2nl 2(1-w) 2n(l — ) T

Thus, by Theorem 2.2, f ¢ #6V (k, x).
More generally, we can prove the following theorem.

THEOREM 3.2. Let0 <k <o, 0<ax<1,and0<B<1.Ifk> B/(1-PB) then the
proper inclusion relation €V (k, x) € HHK(B).
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PROOF. Let f € #%V (k,x), then, by Theorem 2.2,

yalkin—k-o) s onkentkio) g (3.4)
n=2

1-«x o} 1-«x
Since (n—B)/(1-B) < mk+n-k—o)/(1-«) and (n+pB)/(1-B) < (nk+n+
k+ «)/(1— o), by Theorem 1.1, we conclude that f € #J(B).

To show that the inclusion is proper, consider the harmonic functions

I_B = 1_B sn
20+8)° 2nm+p°

fu(z)=2z—- zeA n=2,3,.... (3.5)

By Theorem 1.1, f,, € %X (), because

> MB a3 D by - R LR D 2B )

= 1-B = 1-P 1-B2(1+B) 1-B 2n(n+p)
On the contrary, by Theorem 2.2, f,, ¢ %6V (k, x), because
in(nk+n+k+a)|b |_1+cx+2k 1-8 +n(n+(x+(n+1)k) 1-8
= 1-o " l-a 2(1+P) 1-« 2n(n+p)
_1-B {1+o<+2k+n+(x+(n+1)k}
T 2(1-w) 1+ n+p
1-8 {1+(x+23/(1—ﬁ)+n+(x+(n+1)B/(1—B)}
2(1 - ) 1+ n+p
D! a(1-p)(n+1+2p)
_2(1—0(){2 1+B) (n+p) }21' .
3.7
O

4. Extreme points and distortion bounds. Using definition (1.7), and according
to the arguments given in [3], we obtain the following extreme points of the closed
convex hulls of #€V (k, x) denoted by clco#€V (k, x).

THEOREM 4.1. Let f be the form of (1.4). Then f € clco#€V (k,x) if and only
if f(z) =351 (Xnhy + Yngn) where hi(z) = z, hy(z) = z— (1 — ) /n(n + nk —
k—o)z"(n =2,3,...), gn(z) =z—-((1- o)/ n(n+nk+k+x)z"(n = 1,2,3,...),
S 1 (Xn+Yy) =1, X, =0 and Yy, = 0. In particular, the extreme points of #EV (k, x)
are {hy} and {gn}.

Similarly, follows the distortion bounds for functions in €V (k, x).

THEOREM 4.2. If f € #€V (k,x) then

|f(2)] s(1+|b1|)1’+1< 1-a  1+2k+«

2\2+k-a 2+k-«

l( 1-«x _1+2k+o<
2\24+k—-ax 2+k—-«

\b1|)72, Izl =% <1,
4.1)
|f(2)|=(Q~|bi])r-

\b1|)72, Izl =7 < 1.
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If we let v — 1 in the left-hand inequality of Theorem 4.2 and collect the like terms,
we obtain the following theorem.

THEOREM 4.3. Iff € #€V (k,x) then{w : |lw| < 3+2k—x)/2(2+k—)-3(1— &)/
22+ k—o)|b11} C f(A).

5. Convolutions and convex combinations. For harmonic functions f(z) = z —
S slan|zh =0 1 IbylZ" and F(z) =z =5 5 |An| 2" = X1 |Bn| 2", we define the
convolution of f and F as

[ 00

(f*xF)(z)=f(z)*F(z)=2z— > |an||An|2"= > |bn||Bn|2" (5.1)

n=2 n=1
In the following theorem we examine the convolution properties of the class #€¥'(k, ).

THEOREM 5.1. ForO<a<p<1,let fc#eV(k,B) and F € #€V (k,x) then
fxF e eV (k,B) Cc eV (k,x). (5.2)

PROOF. Express the convolution of f and F as that given by (5.1) and note that
|A,| <1 and |B,| < 1. Now the theorem follows upon the application of the required
condition (2.7). |

The convex combination properties of the class %% (k, «) is given in the following
theorem.

THEOREM 5.2. The class %%V (k, ) is closed under convex combinations.

PROOF. Fori=1,2,..., suppose that f; € #€V (k,x) where f; is given by fi(z) =
z=>n olai,lz" =351 |bi, 12" For > t; =1,0 < t; < 1, the convex combinations
of f; may be written as

dtifilz)=z- > (Zti|ain |)Z"— > (Ztilbin \)2"- (5.3)
n=2 n=1 1

i=1 i=1 i-
Now, the theorem follows by (2.7) upon noting that >.;7, t; = 1. |
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