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GLOBAL ATTRACTIVITY IN A GENOTYPE SELECTION MODEL
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We obtain a sufficient condition for the global attractivity of the genotype selection model
yn+1 =yneβn(1−2yn−k)/(1−yn+yneβn(1−2yn−k)), n∈N. Our results improve the results
established by Grove et al. (1994) and Kocíc and Ladas (1993).
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1. Introduction. Let Z denote the set of all integers. For a,b ∈ Z, define N(a) =
{a,a+1, . . .}, N=N(0), and N(a,b)= {a,a+1, . . . ,b} when a≤ b.

Consider the following nonlinear delay difference equation:

yn+1 = yneβn(1−2yn−k)

1−yn+yneβn(1−2yn−k)
, n∈N, (1.1)

where k∈N and {βn} is a sequence of positive real numbers.

When k= 0 and βn ≡ β for alln∈N, (1.1) was introduced by May [2, pages 513–560]

as an example of a map generated by a simple model for frequency-dependent natural

selection. The local stability of the equilibrium ȳ = 1/2 of (1.1) was investigated by

May [2]. In [1] (see also [3]), Grove further investigated the stability of the equilibrium

ȳ = 1/2 of (1.1) and proved that when βn ≡ β, the equilibrium ȳ = 1/2 of (1.1) is

locally asymptotically stable if 0 < β < 4cos(kπ/(2k+1)) and is unstable if 0 < β <
4cos(kπ/(2k+1)). Furthermore, if

0< β≤ 2
k
, k∈N(1). (1.2)

Then this equilibrium is a global attractor of all solution {yn} of (1.1) with initial

conditions y−k,y−k+1, . . . ,y0 ∈ (0,1).
On the basis of computer observations, the authors of [1] also observe that condition

(1.2) is probably far from sharp when k ∈ N(2). Therefore, it is highly desirable to

improve condition (1.2).

The purpose of this paper is to obtain new sufficient conditions for the global at-

tractivity of the equilibrium ȳ = 1/2 of (1.1). Our main result is the following theorem.

Theorem 1.1. Assume that {βn} is a positive sequence which satisfies

n∑
i=n−k

βi ≤ 3+ 1
k+1

, (1.3)
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for all large n, and

∞∑
i=0

βi =∞. (1.4)

Then every solution {yn} of (1.1) with initial conditions y−k,y−k+1, . . . ,y0 ∈ (0,1) will

tend to ȳ = 1/2.

Corollary 1.2. Assume that βn ≡ β for all n∈N and

β≤ 3
k+1

+ 1
(k+1)2

. (1.5)

Then every solution {yn} of (1.1) with initial conditions y−k,y−k+1, . . . ,y0 ∈ (0,1) will

tend to ȳ = 1/2.

It is easy to see that when k∈N(2), (1.5) is an improvement on (1.2).

By a solution of (1.1), we mean a sequence {yn} that is defined for n∈N(−k) and

that satisfies (1.1) for n ∈ N. If a−k,a−k+1, . . . ,a0 are k+1 given constants, then (1.1)

has a unique solution satisfying the initial conditions

xi = ai for i∈N(−k,0). (1.6)

For the sake of convenience, throughout, we use the convention

j∑
n=i
rn ≡ 0, whenever j ≤ i−1. (1.7)

2. Proof of Theorem 1.1. Let {yn} be a solution of (1.1) with initial conditions y−k,
y−k+1, . . . ,y0 ∈ (0,1). Then clearly, yn ∈ (0,1) for all n ∈ N(−k). By introducing the

substitution

xn = ln
yn

1−yn , n∈N(−k), (2.1)

we obtain

∆xn+rnf
(
xn−k

)= 0, n∈N, (2.2)

x−k,x−k+1, . . . ,x0 ∈ (−∞,∞), (2.3)

where

∆xn = xn+1−xn, rn = 1
2
βn, f (x)= 2− 4

ex+1
. (2.4)

It is easy to see that

f(0)= 0, xf(x) > 0 ∀x ∈R, (2.5)

f ′(x)= 4ex(
ex+1

)2 ∀x ∈R. (2.6)
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Thus, f is increasing, we also have

f ′(x) <
4ex(

2
√
ex
)2 = 1 for x ≠ 0, (2.7)

which implies that

∣∣f(x)∣∣< |x| for x ≠ 0. (2.8)

Define h as follows

h(x)=max
{
f(x),−f(−x)} for x > 0. (2.9)

We have from (2.5), (2.8), and the increasing property of f that h(x) is increasing

in [0,∞), and

∣∣f(x)∣∣≤ h(|x|)< |x| for x ≠ 0. (2.10)

We will now prove that

lim
n→∞xn = 0. (2.11)

There are two cases to consider.

Case 1. The sequence {xn} is eventually nonnegative or eventually nonpositive. We

assume that {xn} is eventually nonnegative, then there exists an integer n0 ∈ N(k)
such that xn−k ≥ 0 for all n∈N(n0). By (2.2), we have ∆xn ≤ 0 for all n∈N(n0) and

there exists a≥ 0 such that

lim
n→∞xn = a. (2.12)

If a> 0, by the increasing property of f , it follows that

∆xn ≤−rnf(a) ∀n∈N(n0+k
)
. (2.13)

Summing (2.13) from n0+k to n−1 and using (1.4), we have

xn−xn0+k ≤−f(a)
n−1∑

i=n0+k
ri �→−∞ as n �→∞, (2.14)

which contradicts (2.12). The case when {xn} is eventually nonpositive can be dealt

with similarly.

Case 2. The sequence {xn} is oscillatory. By (1.3) and (2.4), then there exists an

integer n∗ ∈N(2k) such that

n∑
i=n−k

ri ≤α= 3
2
+ 1

2(k+1)
, n∈N(n∗−2k

)
, (2.15)

xn∗−1xn∗ ≤ 0, xn∗ ≠ 0. (2.16)

By virtue of the choice of n∗, there exists a real number λ∈ [0,1) such that

xn∗−1+λ
(
xn∗ −xn∗−1

)= 0. (2.17)
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Let l be a positive constant such that

max
n∈N(n∗−2k−1,n∗−1)

∣∣xn∣∣≤ l. (2.18)

By (2.2), (2.10), (2.18), and the increasing property of h, we have

∣∣∆xn∣∣≤ rnh(l), n∈N(n∗−1,n∗+k−1
)
. (2.19)

Which, together with (2.17), implies that

∣∣xn−k∣∣= ∣∣xn−k−xn∗−1−λ
(
xn∗ −xn∗−1

)∣∣

=
∣∣∣∣∣∣−

n∗−2∑
j=n−k

∆xj−λ∆xn∗−1

∣∣∣∣∣∣

≤ h(l)

 n∗−2∑
j=n−k

rj+λrn∗−1


, n∈N(n∗−1,n∗+k−1

)
.

(2.20)

In view of (2.2), (2.10), and (2.20), we obtain

∣∣∆xn∣∣≤ rnh(l)

 n∗−2∑
j=n−k

rj+λrn∗−1


, n∈N(n∗−1,n∗+k−1

)
. (2.21)

Now we show that

∣∣xn∣∣≤ h(l) ∀n∈N(n∗,n∗+k). (2.22)

There are two possible cases to consider.

Case 1. Suppose that d=∑n∗+k−1
i=n∗ ri+(1−λ)rn∗−1 ≤ 1. By (2.15), (2.17), and (2.21)

we have for n∈N(n∗,n∗+k)
∣∣xn∣∣= ∣∣xn−xn∗−1−λ

(
xn∗ −xn∗−1

)∣∣

=
∣∣∣∣∣∣
n−1∑
i=n∗

∆xi+(1−λ)∆xn∗−1

∣∣∣∣∣∣

≤
n∗+k−1∑
i=n∗

rih(l)


 n∗−2∑
j=i−k

rj+λrn∗−1


+(1−λ)rn∗−1h(l)


 n∗−2∑
j=n∗−k−1

rj+λrn∗−1




= h(l)
n∗+k−1∑
i=n∗

ri


 i∑
j=i−k

rj−
i∑

j=n∗
rj−(1−λ)rn∗−1




+h(l)(1−λ)rn∗−1


 n∗−1∑
j=n∗−k−1

rj−(1−λ)rn∗−1



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≤ h(l)

αd−

n∗+k−1∑
i=n∗

ri
i∑

j=n∗
rj−(1−λ)rn∗−1d




= h(l)

αd− 1

2


n

∗+k−1∑
i=n∗

ri




2

− 1
2

n∗+k−1∑
i=n∗

r 2
i −(1−λ)rn∗−1d




= h(l)

αd− 1

2
d2− 1

2


n

∗+k−1∑
i=n∗

r 2
i +(1−λ)2r 2

n∗−1




.

(2.23)

Since

n∗+k−1∑
i=n∗

r 2
i +(1−λ)2r 2

n∗−1 ≥
1

k+1


n

∗+k−1∑
i=n∗

ri+(1−λ)rn∗−1




2

= d2

k+1
. (2.24)

We obtain

∣∣xn∣∣≤ h(l)
[
αd−

(
1
2
+ 1

2(k+1)

)
d2
]

≤ h(l)
[
α−

(
1
2
+ 1

2(k+1)

)]

= h(l).

(2.25)

Case 2. Suppose that d=∑n∗+k−1
i=n∗ ri+(1−λ)rn∗−1 > 1. In this case, there exists an

integer m∈N(n∗,n∗+k) such that

n∗+k−1∑
i=m

ri ≤ 1,
n∗+k−1∑
i=m−1

ri > 1. (2.26)

Therefore, there is an η∈ (0,1] such that

n∗+k−1∑
i=m

ri+(1−η)rm−1 = 1. (2.27)

By (2.15), (2.17), (2.19), and (2.21), we have for n∈N(n∗,n∗+k)
∣∣xn∣∣= ∣∣xn−xn∗−1−λ∆xn∗−1

∣∣

=
∣∣∣∣∣∣
n−1∑
i=n∗

∆xi+(1−λ)∆xn∗−1

∣∣∣∣∣∣

=
n∗+k−1∑
j=n∗

∣∣∆xj∣∣+(1−λ)∣∣∆xn∗−1

∣∣
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= (1−λ)∣∣∆xn∗−1

∣∣+
m−2∑
j=n∗

∣∣∆xj∣∣+η∣∣∆xm−1

∣∣+(1−η)∣∣∆xm−1

∣∣+
n∗+k−1∑
j=m

∣∣∆xj∣∣

≤ h(l)

(1−λ)rn∗−1+

m−2∑
j=n∗

rj+ηrm−1


+h(l)(1−η)rm−1


 n∗−2∑
j=m−1−k

rj+λrn∗−1




+h(l)
n∗+k−1∑
j=m

rj


 n∗−2∑
i=j−k

ri+λrn∗−1




= h(l)

(1−λ)rn∗−1+

m−1∑
j=n∗

rj−(1−η)rm−1




+h(l)(1−η)rm−1


 m−1∑
j=m−1−k

rj−
m−1∑
j=n∗

rj−(1−λ)rn∗−1




+h(l)
n∗+k−1∑
j=m

rj


 j∑
i=j−k

ri−
j∑

i=m
ri−

m−1∑
i=n∗

ri−(1−λ)rn∗−1




≤ h(l)

α−(1−η)rm−1−

n∗+k−1∑
j=m

rj
j∑

i=m
ri




= h(l)

α−(1−η)rm−1− 1

2


n

∗+k−1∑
j=m

rj




2

− 1
2

n∗+k−1∑
j=m

r 2
j




= h(l)

α−(1−η)rm−1− 1

2

(
1−(1−η)rm−1

)2− 1
2

n∗+k−1∑
j=m

r 2
j




= h(l)

α− 1

2
− 1

2


n

∗+k−1∑
j=m

r 2
j +(1−η)2r 2

m−1




.

(2.28)

Since

n∗+k−1∑
j=m

r 2
j +(1−η)2r 2

m−1 ≥
1

n∗−m+k+1


n

∗+k−1∑
j=m

rj+(1−η)rm−1




2

≥ 1
k+1

. (2.29)

We obtain

∣∣xn∣∣≤ h(l)
(
α− 1

2
− 1

2(k+1)

)
= h(l). (2.30)

Furthermore, we can prove that

∣∣xn∣∣≤ h(l) ∀n∈N(n∗). (2.31)
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Assume, for the sake of contradiction, that (2.31) is not true. Then there exists m1 ∈
N(n∗+k+1) such that |xm1 |>h(l) and |xn| ≤ h(l) for n∈N(n∗,m1−1). Set

m2 =max
{
n∈N(n∗,m1

)
: xn−1xn ≤ 0,xn ≠ 0

}
. (2.32)

In case m1 ≤m2+k. From (2.10), we have

max
n∈N(m2−2k−1,m2−1)

∣∣xn∣∣≤ h(l) < l. (2.33)

By a similar method to the proof of (2.22), we obtain

∣∣xn∣∣≤ h(l) ∀n∈N(m2,m2+k
)

(2.34)

which contradicts the definition of m1. In case m1−1 ≥m2+k, it follows from the

choice of m1 and m2 that

xn > 0 or xn < 0 ∀n∈N(m2,m1
)
. (2.35)

Assume that xn > 0 for all n ∈ N(m2,m1). (In case xn < 0, the proof is similar.)

From (2.2) we have

∆xn ≤ 0 for n∈N(m1−1,m1+k
)

(2.36)

which implies that

xm1 ≤ xm1−1 ≤ h(l). (2.37)

This contradicts the definition of m1. Thus (2.31) holds.

From the argument above, we can establish a sequence {ni} of positive integers

with n1 =n∗, ni+1−ni > 2k such that

xni−1xni ≤ 0, xni ≠ 0, (2.38)

and a sequence {zi} with z1 = l, zi+1 = h(zi) such that

max
n∈N(ni−2k−1,ni−1)

∣∣xn∣∣≤ zi, ∣∣xn∣∣≤ zi+1 ∀n∈N(ni). (2.39)

By (2.10), we obtain

lim
i �→∞

zi = 0 (2.40)

which, together with (2.39), implies that limn→∞xn = 0. The proof is complete.
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